JPS6289831A - Manufacture of fiber preliminary compact - Google Patents

Manufacture of fiber preliminary compact

Info

Publication number
JPS6289831A
JPS6289831A JP22775385A JP22775385A JPS6289831A JP S6289831 A JPS6289831 A JP S6289831A JP 22775385 A JP22775385 A JP 22775385A JP 22775385 A JP22775385 A JP 22775385A JP S6289831 A JPS6289831 A JP S6289831A
Authority
JP
Japan
Prior art keywords
fiber
soln
long fibers
binder
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22775385A
Other languages
Japanese (ja)
Inventor
Suenobu Hata
畑 季延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22775385A priority Critical patent/JPS6289831A/en
Publication of JPS6289831A publication Critical patent/JPS6289831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain the titled compact capable of forming composite body with metal having required strength and rigidity, by adding and dispersing whisker into soln. of organic (metal) compd., further dipping reinforcing long fibers then taking out, compacting them using the soln. as binder, drying, hardening, then heating and calcining. CONSTITUTION:Hardener is added to solvent soln. of aceton, etc., with organic compd. (such as acrylic resin thermally decomposable at <=400 deg.C) or organic metal compd. (example; silicone resin) to prepare binder soln. Next, whiskers of SiC, etc., are added and dispersed in the soln., then reinforcing long fibers made of carbon fiber, etc., are dipped therein. The reinforcing long fibers are taken out from the soln., compacted while using the soln. as binder, then dried and hardened. Next, the hardened compact is heated, calcined to decompose most organic components in binder and preliminary fiber compact having <=10% fiber vol. ratio is obtd. By the method, reinforcing long fibers are not coagulated but uniformly dispersed, strength and rigidity reqiured at compositing with metal can be provided.

Description

【発明の詳細な説明】 り灸二匹皿皿次1 本発明は、金属または非金属材v+で形成した長4J&
維を用いて、加圧鋳造法、真空鋳造法等により、繊維強
化全屈(FRH)を得るための繊維予備成形体(ブリフ
オーム)を製33 、)る方法に関するしのである。
[Detailed description of the invention] The present invention provides a long 4J&
This article relates to a method for manufacturing a fiber preform (briform) for obtaining fiber reinforced full bending (FRH) by a pressure casting method, a vacuum casting method, etc. using a fiber.

従J=L止 軽合金マトリックスを繊維で強化した繊維強化余病(以
下、FRHと称する)は、軽量、高強度、高剛性、高耐
熱性なる優れた特性を備えており、近時、注目されてい
る材料である。FRHのは産向き製造法として、有機系
あるいは無機系結合剤(バインダー)を用いて繊維を所
望形状に成形して得た繊維予備成形体を鋳型内に入れ、
溶融金属を注いで、プランジI!−で加圧する加圧vi
造法が知られている。
Fiber-reinforced steel (hereinafter referred to as FRH), which is made by reinforcing a J=L light alloy matrix with fibers, has been attracting attention recently because it has excellent properties such as light weight, high strength, high rigidity, and high heat resistance. This is the material that has been used. FRH is a production method that involves molding fibers into a desired shape using an organic or inorganic binder and placing the obtained fiber preform into a mold.
Pour molten metal and plunge I! - pressurize vi
The method of construction is known.

1 く ° しよ と  ロ − ところが、強化用m雑が長繊維である場合、結合剤を用
いても、繊維に所望形状を与え、これを保持することは
難しく、また数十〜数百万本の繊維を束ねることも容易
ではない。それ故、成形した繊維を鋳造金型内に設置す
る際、細心の注意を払わなければならず、かつ溶融金属
を金型内に注入して加圧する際、m雑の一部が押し流さ
れて変形したり、さらには繊維が凝集する等により、不
均一に分散し、微視的に所定の繊維体積率(Vr )を
確保できず、繊m凝集部においては、マトリックス金属
の未充填を生ずる等の不具合が生ずる。
However, when the reinforcing materials are long fibers, it is difficult to give and maintain the desired shape to the fibers even if a binder is used, and it is difficult to give the fibers a desired shape and maintain it. It is not easy to bundle the fibers of a book. Therefore, great care must be taken when placing the formed fibers into the casting mold, and when pouring molten metal into the mold and pressurizing it, some of the miscellaneous material may be washed away. Due to deformation or even agglomeration of fibers, the fibers are dispersed non-uniformly, making it impossible to secure a microscopically predetermined fiber volume ratio (Vr), and causing unfilled matrix metal in the fiber aggregation area. Such problems may occur.

その結果、健全なFRHを得ることが難しく、強度のば
らつきを生じ、FRHの信頼性が損なわれていた。
As a result, it is difficult to obtain a sound FRH, resulting in variations in strength, which impairs the reliability of the FRH.

しかして、前記無機系結合剤は、短m¥/i、ウィスカ
ーの如く繊維同志の“からみパが多いものに対して有効
であるが、長繊維に対しては結合力が不十分で適用し難
く、また、前記有機系結合剤は、結合力は十分であるが
、そのだ:菊にsagが凝集し易く、Vf≧60%程度
の繊維予備成形体を得る場合に使用しうるものの、Vf
=30%程度の低い繊維体積率の繊維予備成形体を得る
ことはできず、かつマトリックス金属とmMを複合した
後に有機物成分が多聞に残ると、FRHの特性に悪影響
を及ばずことになる。
However, the inorganic binder is effective for short fibers such as short m/i and whiskers, which have a lot of entanglement between fibers, but the binding force is insufficient for long fibers and it cannot be used. In addition, although the organic binder has sufficient binding strength, sag easily aggregates in chrysanthemums, and although it can be used to obtain a fiber preform with Vf≧60%, it has a low Vf
It is not possible to obtain a fiber preform with a fiber volume fraction as low as 30%, and if a large amount of organic components remain after compounding the matrix metal with mM, the properties of the FRH will not be adversely affected.

一方、束状I!維間に金属粉末を進入させ、加熱、加圧
成形する等の焼結法でFRHを得る方法(例、特開昭5
6−119746号公報参照)が提案されており、この
方法を応用して、粉末を包含し、必要なm雄体積率を確
保した11雑束を、加圧tJ造法における繊維予備成形
体として用いることも想定されるが、粉末による結合力
は期待できず、必要な剛性が得られないため、応用は不
可能である。
On the other hand, bundle I! A method of obtaining FRH by a sintering method such as entering metal powder between fibers, heating and press forming (for example, Japanese Patent Application Laid-open No. 5
6-119746) has been proposed, and by applying this method, 11 miscellaneous bundles containing powder and ensuring the necessary male volume fraction are used as fiber preforms in the pressurized tJ manufacturing method. Although it is conceivable that it could be used, it is impossible to apply it because the bonding strength of powder cannot be expected and the necessary rigidity cannot be obtained.

他方、一方向に配向された長繊維をもって強化されたF
RHは、繊維配向方向において大幅な引張り強度の向上
を計り得るものの、繊維に対して交差する方向の引張り
強度、およびtalllと71−リツクス金属の界面に
おける剪所強度が低いという問題がある。
On the other hand, F reinforced with long fibers oriented in one direction
Although RH can significantly improve tensile strength in the direction of fiber orientation, there are problems in that the tensile strength in the direction crossing the fibers and the shear strength at the interface between tall and 71-Rix metal are low.

。    ′ るための、′°゛び 本発明の目的は、強化用長繊維がU集せず、均一に分散
され、金属との複合化を行う際に必要な強度と剛性を有
するとともに、複合化後のFRHにおける強度上の弱点
を解消させることが可能な繊維予備成形体を得る点にあ
る。
. It is an object of the present invention to have reinforcing long fibers that do not clump together, are uniformly dispersed, have the strength and rigidity necessary for composites with metals, and have the same properties as composites. The aim is to obtain a fiber preform that can eliminate the weak points in strength in the subsequent FRH.

この目的は、有機化合物または有機金属化合物の溶液、
または有機溶媒で希釈したその溶液中に、繊1(ウィス
カー)体積率(Vf )510%(好ましくは、Vf=
3〜8%)を狙って、ウィスカーを添加、分散させ、そ
の溶液中に強化用長繊維を浸漬し、次いで該強化用長繊
維を溶液から取り出し、溶液を結合剤として前記強化用
長繊維およびウィスカーを成形した後、乾燥、硬化させ
、かつ加熱焼成によって、結合剤である前記有機化合物
または有機金属化合物中の有機物成分の大部分を分解せ
しめることによって達成される。
For this purpose, solutions of organic or organometallic compounds,
Or in the solution diluted with an organic solvent, fiber 1 (whisker) volume fraction (Vf) 510% (preferably, Vf=
3 to 8%), whiskers are added and dispersed, reinforcing long fibers are immersed in the solution, then the reinforcing long fibers are taken out from the solution, and the reinforcing long fibers and This is achieved by forming the whiskers, drying and curing them, and then heating and baking to decompose most of the organic components in the organic compound or organometallic compound that is the binder.

有機系結合剤を用いた場合に、強化用長繊維の凝集が生
じ易いことは前述の通りであるが、本発明者等は強化用
長繊維間に粉末を介在させることによって、II維間の
間隔を維持し得ることに着眼し、有機系結合剤中にウィ
スカー(粉末に代る)を分散させることにより、長11
1ffの凝集および不均一分散の阻止を計った。また、
繊維予備成形体の焼成に当り、有機化合物または有機金
・態化合物の有機物成分が完全に消失すると、繊維予備
成形体としての形状を維持し得ないため、有機化合物ま
たは有機金属化合物における有機物成分の分解、減少量
が90〜99%(すなわち、その残存化が1〜10%)
である様な加熱焼成温度および時間を選択し、それによ
って、加圧鋳造を行う際に繊維予備成形体に要求される
強度、剛性を確保することが可能となる。焼成によって
得た繊維予備成形体の長繊維相互間には、ウィスカーが
介在して繊維間隔が保持されること、および残菌有機物
成分が、その中に取り込まれたウィスカーによって強化
されていることにより、所望の長mM体積率(Vf)を
確保し得るとともに十分な強度、剛性を得ることができ
る。
As mentioned above, when an organic binder is used, the reinforcing long fibers tend to agglomerate, but the present inventors have found that by interposing powder between the reinforcing long fibers, the Focusing on the ability to maintain the spacing, by dispersing whiskers (instead of powder) in an organic binder, length 11
The inhibition of agglomeration and heterodispersion of 1 ff was measured. Also,
When the fiber preform is fired, if the organic component of the organic compound or organometallic compound completely disappears, the shape of the fiber preform cannot be maintained. The amount of decomposition and reduction is 90-99% (i.e., the amount remaining is 1-10%)
By selecting the heating and firing temperature and time such that the fiber preform is pressurized, it is possible to ensure the strength and rigidity required of the fiber preform during pressure casting. Whiskers are interposed between the long fibers of the fiber preform obtained by firing to maintain the fiber spacing, and residual organic matter components are strengthened by the whiskers incorporated therein. , a desired length mm volume fraction (Vf) can be ensured, and sufficient strength and rigidity can be obtained.

なお、ウィスカーの繊維体積率(Vf)は、これを10
%以下にするのが好ましい。その理由は、Vrが10%
を越えると、長liNの繊維間にウィスカーが均一分散
せず、凝集し、−マトリックス金属の未充填が生じてF
RHの強度低下をもたらすからである。
The fiber volume fraction (Vf) of the whisker is 10
% or less. The reason is that Vr is 10%
If the value exceeds 1, the whiskers will not be uniformly dispersed between the long liN fibers and will aggregate, resulting in unfilled matrix metal and F.
This is because it causes a decrease in RH strength.

本発明で使用する有機化合物、または有機金属化合物を
選択するに当っては、それ等を加熱分解させる際のtI
lffの高温劣化を十分考虞しなければならず、例えば
、強化用長繊維どして高強度炭素m雑を用いる場合には
、大気中において400℃を越える加熱を行うと、繊維
が劣化するため、400℃以Fで加熱分解する有機化合
物または有機金属化合物を使用する必要があり、アクリ
ル系樹脂、スチロール系樹脂、セルロース系樹脂等が好
適である。
When selecting the organic compound or organometallic compound used in the present invention, the tI when thermally decomposing them is
High-temperature deterioration of lff must be taken into consideration; for example, when high-strength carbon materials are used as long fibers for reinforcement, heating above 400°C in the atmosphere will cause the fibers to deteriorate. Therefore, it is necessary to use an organic compound or an organometallic compound that thermally decomposes at 400° C. or higher, and acrylic resins, styrene resins, cellulose resins, etc. are suitable.

また、有様金属化合物を使用する場合には、前記条件に
加えて、加熱分解侵の残存金属成分が繊維に対して悪影
響を及ぼさないものでなければならず、かつその代表物
であるシリコーン樹脂の場合、残留SLとマトリックス
金属との適合性をも考慮しなければならない。
In addition to the above-mentioned conditions, when using a specific metal compound, the remaining metal components after thermal decomposition must not have a negative effect on the fibers, and the silicone resin, which is a typical example of such compounds, must be In this case, the compatibility between the residual SL and the matrix metal must also be considered.

しかして、ウィスカーを添加、分散させた有機系結合剤
をもって結合し、加熱焼成した長繊維の予備成形体では
、相互に間隔を置いて平行に伸びる長繊維間に、無秩序
な方向性でウィスカーが存在しており、該繊維予備成形
体をもって金属の複合強化を行うと、その長繊維と交差
方向に作用する引張り力に対してウィスカーが効果的に
対抗するとと6に、長繊維とマトリックス金属の界面に
作用する剪断力に対しても交差方向のウィスカーが対抗
し、長繊維とマトリックス金属の剥離現象を用土する。
However, in a preform of long fibers bonded using an organic binder containing dispersed whiskers and heated and fired, whiskers are randomly oriented between the long fibers extending parallel to each other at intervals. 6. When composite reinforcement of metal is performed using the fiber preform, the whiskers effectively counter the tensile force acting in the direction crossing the long fibers.6. The cross-direction whiskers also counteract the shear force acting on the interface, preventing the peeling phenomenon between the long fibers and the matrix metal.

なお、長繊維間の間隔を、より効果的に維持するために
、ウィスカーに粉末を併用するのも効果的であり、この
粉末としては、マトリックス金属と同材質、あるいはそ
の主要含有元素の金属粉末(または合金粉末)を使用す
ることがでさ、また、マトリックス金属への溶解が好ま
しくなければ、セラミック粉末を用いることができる。
In addition, in order to more effectively maintain the distance between the long fibers, it is also effective to use a powder in combination with the whisker, and this powder may be a metal powder made of the same material as the matrix metal or its main element. Ceramic powders can also be used if dissolution into the matrix metal is undesirable.

支ΔMユ 下記の手順により、繊維予備成形体を形成し、炭素繊維
強化マグネシウム合金複合材料を得た。
A fiber preform was formed by the following procedure to obtain a carbon fiber reinforced magnesium alloy composite material.

■径7μmの炭素長繊維(東し曲製T300) 600
0本より成る単位繊維束を纏めて90万本の繊維の束1
0を形成した。繊維束10の繊維本数は、後記ガラス管
16の内径との関係で決定され、炭素繊維の繊維体積率
(Vr)−30%を狙ったものである。
■ Long carbon fiber with a diameter of 7 μm (Toshimagari T300) 600
A bundle of 900,000 fibers is obtained by putting together a unit fiber bundle consisting of 0 fibers.
0 was formed. The number of fibers in the fiber bundle 10 is determined in relation to the inner diameter of the glass tube 16 described later, and is aimed at a fiber volume ratio (Vr) of carbon fibers of −30%.

■アクリル系樹脂溶液(東洋インキ■製 商標名:オリ
パイン)と溶媒のアセトンを1=1の比率で混合し、溶
液仝休に対し2%の硬化剤(ポリイソシアネート)を加
えた結合剤溶液を容器12中に用意し、該結合剤溶液に
、3501? / jのSλCウィスカー(東海カーボ
ン■製)を添加し、撹拌混合した。
■Acrylic resin solution (manufactured by Toyo Ink ■, trade name: Olypain) and solvent acetone are mixed in a ratio of 1:1, and a binder solution is prepared by adding 2% hardening agent (polyisocyanate) to the solution. Prepared in a container 12 and added 3501? /j SλC whiskers (manufactured by Tokai Carbon ■) were added and mixed by stirring.

■該結合剤溶液14中に、繊維束10を浸漬し、結合剤
溶液を撹拌させるととらに繊維束10を振動させて、繊
維束10の繊維間に結合剤溶液およびS、−Cウィスカ
ーを十分進入せしめたく以上、第1図参照)。
(2) The fiber bundle 10 is immersed in the binder solution 14, the binder solution is stirred, and the fiber bundle 10 is vibrated to spread the binder solution and S, -C whiskers between the fibers of the fiber bundle 10. (Please refer to Figure 1 for details on how to make sufficient inroads).

■繊賄東10を結合剤溶液14から引出し、第2図に示
す様に内径12Mφのガラス管16内を通過させ、余分
な溶液を排除して、棒状の成形体(12IMφX120
m)を得た。
■ The fiber optic 10 is pulled out from the binder solution 14 and passed through a glass tube 16 with an inner diameter of 12Mφ as shown in FIG.
m) was obtained.

■該成形体18を乾燥、硬化させた後、電気炉24内で
アルゴンガス雰囲気の下、400′cX1時間の加熱を
行った(第3図参照)。この加熱焼成により、有磯物成
分は分解し、炭素繊維の繊維体積率(Vf)−30%、
SλCウィスカーの繊維体積率(Vr)−7%の繊維予
備成形体が19られた。
(2) After drying and curing the molded body 18, it was heated for 400'c×1 hour in an argon gas atmosphere in an electric furnace 24 (see FIG. 3). By this heating and firing, the mineral components are decomposed, and the fiber volume fraction (Vf) of carbon fiber -30%,
A fiber preform with a fiber volume fraction (Vr) of −7% of SλC whiskers was prepared.

■焼成汎みの繊維予備成形体を、アルゴンガス雰囲気下
、700℃で15分間予熱した後、加圧&2i造用金型
内に設置し、直ちに、溶湯温度730℃のマグネシウム
合金(八STHAS41材)を注湯し、圧力1000K
g/criで加圧複合化させ、炭素繊維強化マグネシウ
ム合金複合材料を得た。
■ After preheating the general-purpose fiber preform for firing at 700°C for 15 minutes in an argon gas atmosphere, it was placed in a pressure & 2i mold, and immediately immediately ) is poured and the pressure is 1000K.
A carbon fiber-reinforced magnesium alloy composite material was obtained by pressurizing the composite material at g/cri.

この複合材料の引張り試験を行い、引張り強度76に9
f/cri、弾性率11 、000/(gf/cIIi
なる結果を得た。
A tensile test was conducted on this composite material, and the tensile strength was 76 to 9.
f/cri, modulus of elasticity 11, 000/(gf/cIIi
I got the result.

さらに、第4図図示の如く、前記複合材料の外層(マト
リックス金属層)22の一部を切除し、強化層24のみ
を鋼製固定板26の間口に量適ざV、強化層24の外周
を把持して矢印へ方向の荷重を印加することにより、強
化層24と外層22の界面gfJ断強度を調べ、5.8
/(917mm 2なる結果を得た。
Further, as shown in FIG. 4, a part of the outer layer (matrix metal layer) 22 of the composite material is removed, and only the reinforcing layer 24 is applied to the frontage of the steel fixing plate 26. By grasping and applying a load in the direction of the arrow, the interface gfJ shear strength between the reinforcing layer 24 and the outer layer 22 is examined, and 5.8
/(917mm2) was obtained.

また比較例として、SλCウィスカーの代りに−r =
粉末(325メツシユ以下)を用いた点を除さ、前記と
同一工程で作成した炭素繊維強化マグネシウム合金複合
材料の強度を調べたところ、引張り強度73に’J f
 /mIn2.弾性率10,5001(gf/繭2.界
而剪断強度2.3Nyf/s+2であった。
Also, as a comparative example, −r =
When the strength of a carbon fiber reinforced magnesium alloy composite material made in the same process as above except that powder (325 mesh or less) was used, the tensile strength was 73.
/mIn2. The modulus of elasticity was 10,5001 gf/cocoon 2. The shear strength was 2.3 Nyf/s+2.

この試験結果から、炭素繊維間にSLCウィスカーを介
在させて形成した繊維予備成形体を用いて19だ複合材
料の界面剪断強度は、炭素繊維間に粉末を介在させて形
成した繊維予備成形体を用いて得た複合材料のそれに比
して十分大きいことが、理解される。
From this test result, the interfacial shear strength of the composite material was 19% when using a fiber preform formed by interposing SLC whiskers between carbon fibers. It is understood that this is sufficiently large compared to that of the composite material obtained using this method.

支MJIユ 実施例1と同様の炭素II維、およびSLCウィスカー
を添加したアクリル系樹脂溶液を用い、繊維供給用ボビ
ン30から巻戻した炭素I雑31を、結合剤溶液14に
通し、断面角形の巻取り筒32に等間隔で単層に巻取っ
た後、自然乾燥させた(第5図参照)。次に、巻取った
炭素I1Mを巻取り筒32にお各ノる稜線33に沿って
切断し、第6図(要部斜視図)に示す繊維予備成形体3
4(120X 120履)を得た。
Using an acrylic resin solution containing the same carbon II fibers and SLC whiskers as in Example 1, the carbon I miscellaneous material 31 unwound from the fiber supply bobbin 30 is passed through the binder solution 14 to form a rectangular cross section. After winding it up into a single layer at equal intervals on the winding tube 32, it was air-dried (see FIG. 5). Next, the wound carbon I1M is cut into a winding cylinder 32 along each ridge line 33, and a fiber preform 3 is obtained as shown in FIG. 6 (perspective view of main part).
4 (120X 120 shoes).

この繊維予備形成体34を複数枚用意し、マグネシウム
合金(ASTHAZ31材)製蒲板35 (120x1
20X O,6m)と交互にW4層させ、これをステン
レス鋼板36内に包み込み、脱気孔を残して該ステンレ
ス鋼板36の周囲を溶接した。これをマツフル炉内に装
入し、炉内の脱気を行いつつ400℃で4時間保持して
余剰樹脂成分を完全に分解させた。
A plurality of these fiber preforms 34 are prepared, and a magnesium alloy (ASTHAZ31 material) shroud board 35 (120x1
20X O, 6 m) were alternately formed into four layers of W, and this was wrapped inside the stainless steel plate 36, and the periphery of the stainless steel plate 36 was welded leaving a vent hole. This was placed in a Matsufuru furnace and held at 400° C. for 4 hours while degassing the furnace to completely decompose the excess resin component.

次いで、炉内を減圧状態に保ちつつ、その温度を120
℃まで上昇させ、前記マグネシウム合金が完全に溶融し
て5分経過した後、ステンレス鋼板36による包装体を
炉外に取出し、直ちに油圧ブレス装買で加辻して、マグ
ネシウム合金と炭素繊維の複合化を行った。
Next, while keeping the inside of the furnace in a reduced pressure state, the temperature was increased to 120°C.
℃, and after 5 minutes have elapsed since the magnesium alloy has completely melted, the packaged body made of stainless steel plate 36 is taken out of the furnace, and immediately heated using a hydraulic press to form a composite of magnesium alloy and carbon fiber. .

得られた板状FRH(120X 120X 5 trt
ta )から、炭素ll雑の配向角(θ) (第8図参
照)が異なる複数個の試験片37を切り出し、!l維配
向角(θ)と引張り強度の関係を調べたところ、第9図
にお番ノる曲線■が得られた。なお、第8図におけるP
は引張り試験における引張り荷重方向を示す。
The obtained plate-shaped FRH (120X 120X 5 trt
A plurality of test pieces 37 having different orientation angles (θ) (see FIG. 8) of carbon ll miscellaneous are cut out from ta ), and! When the relationship between the l-fiber orientation angle (θ) and the tensile strength was investigated, a curve (■) shown in FIG. 9 was obtained. In addition, P in Figure 8
indicates the tensile load direction in the tensile test.

また、比較のためにSLCウィスカーを含まない繊維予
備成形体をもって複合化したFRHについて同様の試験
を行い、曲線■を得た。
Further, for comparison, a similar test was conducted on FRH composited with a fiber preform containing no SLC whiskers, and a curve (2) was obtained.

基JLJI 炭水繊維(長繊維)のam体積率(Vr)=30%とし
て、SLCウィスカーの繊維体積率(Vr )を変化さ
せた各1a帷子備成形体を、前記各実施例と同様なアク
リル系樹脂溶液を用いて形成し、該I!維予備成形体を
もって強化したマグネシウム合金(ASTM  AZ3
1材)の引張り強度を、炭素繊維の配向角(θ)=C”
、45°、90@(実施例2参照)について調べ、その
結果を第10図に示した。
Based on JLJI The am volume fraction (Vr) of the hydrocarbon fibers (long fibers) was set at 30%, and each 1a cloth-equipped molded body with varying fiber volume fraction (Vr) of SLC whiskers was prepared using the same acrylic resin as in each of the above examples. The I! system resin solution is used to form the I! Magnesium alloy reinforced with fiber preforms (ASTM AZ3
The tensile strength of material 1) is determined by the orientation angle of carbon fiber (θ) = C”
, 45°, and 90@ (see Example 2), and the results are shown in FIG.

〈評価〉 第9図によれば、炭素mM配向方向(θ=0)における
両材料1.IIの引張り強度の差が僅少であるのに対し
、炭素繊維に対し交差する方向の引張り力に対しては、
SLCウィスカーを含む本実施例に係るFRHの強度が
優れていることが判る。
<Evaluation> According to FIG. 9, both materials 1. While the difference in tensile strength of II is small, for tensile force in the direction crossing the carbon fiber,
It can be seen that the FRH according to this example containing SLC whiskers has excellent strength.

また、θ=45°近傍において、両材料1.IIの差が
大きく、SLCウィスカーを用いたことにより剪断強度
が大幅に向上することが判る。
Also, in the vicinity of θ=45°, both materials 1. The difference in II is large, and it can be seen that the shear strength is significantly improved by using SLC whiskers.

第10図によれば、θ=06において、S=Cウィスカ
ーのmtN1体積率(Vr )が7%を越えると引張り
強度が低)しており、これはS=Cウィスカーの凝集が
生じるためである。また、θ=45°。
According to Fig. 10, at θ=06, when the mtN1 volume fraction (Vr) of S=C whiskers exceeds 7%, the tensile strength is low, and this is due to the aggregation of S=C whiskers. be. Also, θ=45°.

90°において、S=Cウィスカーの繊維体積率(Vr
 )が3〜8%で強度向上効果が大きいことが判る。
At 90°, the fiber volume fraction (Vr
) is 3 to 8%, it can be seen that the strength improving effect is large.

1肥立l」 以上の説明から明らかな様に、本発明による繊維強化金
属用繊維予備成形体の製造方法では、有機化合物または
有機金属化合物の溶液、または有機溶媒で希釈したその
溶液中に、ウィスカーを添加、分散させ、その溶液中に
強化用長繊維を浸漬し、次いで該強化用長繊維を溶液か
ら取り出し、溶液を結合剤として前記強化用長繊維を成
形した侵、乾燥、硬化させ、かつ加熱焼成によって、結
合剤である前記有機化合物または有機金属化合物中の有
機物成分の大部分を分解せしめることとしたため、強化
用長繊維の凝集が生じない適正41811体積率の繊維
予備成形体を得ることができ、かつ該m線予備成形体を
用いて得たFRHは、無秩序に存在するウィスカーによ
って、長繊維に対して交差する方向で作用する引張り力
、および長繊維と71−リックス金屈の界面に作用する
剪断力に対しても強化され、長繊頼を用いた「1(Hの
弱点が解消される。
As is clear from the above explanation, in the method for producing a fiber preform for fiber-reinforced metal according to the present invention, in a solution of an organic compound or an organometallic compound, or in the solution diluted with an organic solvent, Adding and dispersing whiskers, immersing reinforcing long fibers in the solution, then taking out the reinforcing long fibers from the solution, molding the reinforcing long fibers using the solution as a binder, drying, and curing; Moreover, most of the organic components in the organic compound or organometallic compound serving as the binder are decomposed by heating and firing, thereby obtaining a fiber preform with an appropriate volume ratio of 41811 in which no agglomeration of the reinforcing long fibers occurs. and the FRH obtained using the m-line preform has a tensile force acting in a direction crossing the long fibers due to the randomly existing whiskers, and a tensile force between the long fibers and the 71-lix gold bending force. It is also strengthened against shear forces acting on the interface, eliminating the weaknesses of ``1 (H'') using long fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る繊維予備成形体の製造
方法において、SLCウィスカーを添加した結合剤溶液
中に浸漬した状態を示す図、第2図は結合剤溶液から引
出した炭糸繊維の束をガラス管に通して余剰樹脂分を除
去する状態を示す図、第3図はその炭素![束を加熱炉
中で加熱し、樹脂成分を分解さぼる状態を示す図、第4
図は該炭素繊維束を用いて得たFItHの剪断強度を調
べるための試験態様を示す図、第5図は他の実施例に係
る繊維予備成形体の製造方法において、ボビンから巻戻
した炭素繊維を結合剤溶液に通す状態を示1図、第6図
は結合剤で結合された炭素繊維の膜状体を示す図、第7
図は該膜状体をマグネシウム板と交互に積層し、ステン
レス鋼板内に包み込/υだ状態を示す図、第8図は該製
造方法で得られたFltHより切出した試験片を示す図
、第9図は本発明方法で得たSLCウィスカーを含有す
る炭素繊維予備成形体を用いたFRH、およびSλCウ
ィスカーを含まない炭素繊維予備成形体を用いたFRH
の繊維配向角と引張り強度の関係を示すグラフ、第10
図はSLCウィスカー繊維体積率がFRHの引張り強度
に及ぼす影響を示すグラフである。 10・・・繊維束、12・・・容器、14・・・結合剤
溶液、16・・・ガラス管、18・・・結合剤溶液、2
2・・・外層、24・・・強化層、26・・・鋼製固定
板、30・・・繊維供給用ボビン、31・・・炭素繊維
、32・・・巻取り筒、33・・・稜線、34・・・繊
維予備形成体、36・・・ステンレス鋼板、31・・・
試験片。 代理人 弁理士  江 原   望 外2名 第 12 第2図 第3図 第 4 図 3、  第5図 第6図
FIG. 1 is a diagram showing a state in which the fiber preform is immersed in a binder solution to which SLC whiskers are added in a method for manufacturing a fiber preform according to an embodiment of the present invention, and FIG. 2 is a diagram showing a state in which carbon fibers are pulled out from the binder solution. Figure 3 shows how a bundle of fibers is passed through a glass tube to remove excess resin, and the carbon! [Diagram 4 showing a state in which the bundle is heated in a heating furnace and the resin components are decomposed.]
The figure shows a test mode for examining the shear strength of FItH obtained using the carbon fiber bundle, and FIG. Figure 1 shows the state in which fibers are passed through a binder solution, Figure 6 shows a membrane-like body of carbon fibers bonded with a binder, and Figure 7 shows a state in which the fibers are passed through a binder solution.
The figure shows a state in which the film-like body is alternately laminated with magnesium plates and wrapped in a stainless steel plate, and Figure 8 is a diagram showing a test piece cut from FltH obtained by this manufacturing method. FIG. 9 shows an FRH using a carbon fiber preform containing SLC whiskers obtained by the method of the present invention and an FRH using a carbon fiber preform containing no SλC whiskers.
Graph showing the relationship between fiber orientation angle and tensile strength, No. 10
The figure is a graph showing the influence of SLC whisker fiber volume fraction on the tensile strength of FRH. DESCRIPTION OF SYMBOLS 10... Fiber bundle, 12... Container, 14... Binder solution, 16... Glass tube, 18... Binder solution, 2
2... Outer layer, 24... Reinforcement layer, 26... Steel fixing plate, 30... Fiber supply bobbin, 31... Carbon fiber, 32... Winding cylinder, 33... Ridge line, 34... Fiber preform, 36... Stainless steel plate, 31...
Test pieces. Agent Patent Attorney Nozomi Ehara 2 people No. 12 Figure 2 Figure 3 Figure 4 Figure 3, Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 繊維強化金属用繊維予備成形体の製造方法において、 有機化合物または有機金属化合物の溶液、または有機溶
媒で希釈したその溶液中に、繊維(ウィスカー)体積率
(Vf)≦10%を狙って、ウィスカーを添加、分散さ
せ、その溶液中に強化用長繊維を浸漬し、次いで該強化
用長繊維を溶液から取り出し、溶液を結合剤として前記
強化用長繊維を成形した後、乾燥、硬化させ、かつ加熱
焼成によって、結合剤である前記有機化合物または有機
金属化合物中の有機物成分の大部分を分解せしめること
を特徴とする繊維予備成形体の製造方法。
[Scope of Claims] A method for producing a fiber preform for fiber-reinforced metals, wherein a fiber (whisker) volume fraction (Vf) ≦10 is added to a solution of an organic compound or an organometallic compound, or a solution thereof diluted with an organic solvent. %, whiskers are added and dispersed, reinforcing long fibers are immersed in the solution, then the reinforcing long fibers are taken out from the solution, and the reinforcing long fibers are molded using the solution as a binder. A method for producing a fiber preform, which comprises drying, curing, and heating and baking to decompose most of the organic components in the organic compound or organometallic compound that is the binder.
JP22775385A 1985-10-15 1985-10-15 Manufacture of fiber preliminary compact Pending JPS6289831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22775385A JPS6289831A (en) 1985-10-15 1985-10-15 Manufacture of fiber preliminary compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22775385A JPS6289831A (en) 1985-10-15 1985-10-15 Manufacture of fiber preliminary compact

Publications (1)

Publication Number Publication Date
JPS6289831A true JPS6289831A (en) 1987-04-24

Family

ID=16865834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22775385A Pending JPS6289831A (en) 1985-10-15 1985-10-15 Manufacture of fiber preliminary compact

Country Status (1)

Country Link
JP (1) JPS6289831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270030A (en) * 1988-09-06 1990-03-08 Honshu Paper Co Ltd Sic whisker reinforced metal composite material
FR2657800A1 (en) * 1990-02-02 1991-08-09 Pechiney Recherche PROCESS FOR SINGING POWDERS OF METALS OR METAL ALLOYS OF CERAMICS OR CERMETS.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270030A (en) * 1988-09-06 1990-03-08 Honshu Paper Co Ltd Sic whisker reinforced metal composite material
JPH0471972B2 (en) * 1988-09-06 1992-11-17 Honshu Seishi Kk
FR2657800A1 (en) * 1990-02-02 1991-08-09 Pechiney Recherche PROCESS FOR SINGING POWDERS OF METALS OR METAL ALLOYS OF CERAMICS OR CERMETS.

Similar Documents

Publication Publication Date Title
US3936535A (en) Method of producing fiber-reinforced composite members
US6074716A (en) Weavable metal matrix impregnated tow composite material
JPS58217435A (en) Manufacture of fiber reinforced glass matrix composite material article
EP0108216B1 (en) Composite material manufacturing method exothermically reducing metallic oxide in binder by element in matrix metal
KR20010050316A (en) Low Volume Fraction Metal Matrix Preforms
JPS6289831A (en) Manufacture of fiber preliminary compact
JPS5974247A (en) Fiber reinforced metallic composite member and its production
US4681151A (en) Method for production of fiber-reinforced metal composite material
JP2717618B2 (en) Method for producing fiber-reinforced composite material
JPS6240409B2 (en)
JPS61166932A (en) Production of fiber preform
JPH0564692B2 (en)
WO2002068360A1 (en) Method for producing sic fiber/sic composite material having high strength
JPS627825A (en) Manufacture of preform of metal base composite material
JP2007270340A (en) Metal-ceramic composite material and its manufacturing method
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPH0411664B2 (en)
JPH01116039A (en) Potassium titanate whisker reinforced metallic composite material
JPH0343245A (en) Heat insulating ceramic composite and preparation thereof
SE461847B (en) PROCEDURES FOR SURFACE TREATMENT OF INORGANIC FIBERS AND APPLICATION OF THESE FOOD REINFORCEMENT OF TITAN OR NICKEL
JPH0218364A (en) Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
Yamada et al. Wrenn, Jr., GE, Abbatiello, LA and Lewis, Jr., J.(US Department of Energy, Washington, DC, USA) US Pat 4 818 448 (4 April 1989) The method of forming a carbon-bonded
JPH01192858A (en) Production of fiber preform
JPH04367365A (en) Fiber reinforced metallic cylindrical body and production thereof