JPS5974247A - Fiber reinforced metallic composite member and its production - Google Patents
Fiber reinforced metallic composite member and its productionInfo
- Publication number
- JPS5974247A JPS5974247A JP18517382A JP18517382A JPS5974247A JP S5974247 A JPS5974247 A JP S5974247A JP 18517382 A JP18517382 A JP 18517382A JP 18517382 A JP18517382 A JP 18517382A JP S5974247 A JPS5974247 A JP S5974247A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- reinforced
- composite material
- reinforcing fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/10—Pistons having surface coverings
- F02F3/12—Pistons having surface coverings on piston heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/16—Fibres
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、m維強化金属複合(Δ斜部材に係り、表面層
が短繊維又は粒子にて強化され内部が長繊緒又は短繊維
にて強化された繊維強化金属複合材料部材に係る。Detailed Description of the Invention The present invention relates to an m-fiber reinforced metal composite (Δ diagonal member, in which the surface layer is reinforced with short fibers or particles and the inside is reinforced with long fibers or short fibers). Pertains to composite material members.
自動車、航空機などの各種構成要素や部材に於ては、部
分的に特別な機械的特性を要求されることが多い。例え
ば、自動車用1ンジンに於−Cは、エンジンの性能に対
する要求が高くなるにつれて、ピストンの如ぎ部材は比
強度や剛性に優れていることに加えて、そのm動向が耐
摩耗性に優れており、またその頂面部が耐熱性及び断熱
性に優れていることが強く要求されるようになってきた
。かかる部材の比強度、耐摩耗性、耐熱性、断熱性など
を向上させる一つの手段どして、それらの部材を各種の
無機質繊維などを強化材としアルミニウム合金の如き軽
金属をマトリックスとする繊維強化金属複合材料にて構
成ザることが試みられている。Various components and members of automobiles, aircraft, etc. are often required to have special mechanical properties. For example, in automobile engines, as the demands for engine performance become higher, members such as pistons not only have excellent specific strength and rigidity, but also have excellent wear resistance. In addition, there is a strong demand for the top surface to have excellent heat resistance and heat insulation properties. One way to improve the specific strength, abrasion resistance, heat resistance, heat insulation, etc. of such members is to make them fiber-reinforced using various inorganic fibers as reinforcement materials and light metals such as aluminum alloys as a matrix. Attempts have been made to construct them using metal composite materials.
しかし従来の繊維強化金属複合材料にて構成された部材
に於ては、一般に一梗類の強化材のみが使用されており
、そのた゛めががる繊維強化金属複合材料にて構成され
た部材はそれに要求される全ての特性を満たりことがで
きず、その用途が限られたり、その部材に対し別の処理
を施さなければならないなどの不具合がある。例えばピ
ストンピンの比強度を向上させる目的で、ピストンピン
をK m Wt、雑の如き長繊維にて強化されたアルミ
ニウム合金にて構成すれば、その曲げ強さや剪断強さの
如き強度を向上させることはできるが、ピストン及びコ
ネクティングロッドとの摺動向の耐摩耗性を充分には向
上さけることがひきないため、ピストンピンの円筒状外
周面に対し・モリブデン又はその合金などを溶射したり
、Ni −Pめっきの如きめっきを施すなどの処理を行
なう必要がある。However, in conventional parts made of fiber-reinforced metal composite materials, only one type of reinforcing material is generally used, so the parts made of fiber-reinforced metal composite materials are There are disadvantages such as not being able to satisfy all the characteristics required for it, limiting its uses, and requiring other treatments to be applied to the component. For example, in order to improve the specific strength of a piston pin, if the piston pin is made of an aluminum alloy reinforced with long fibers such as Km Wt, the strength such as bending strength and shear strength can be improved. However, it is not possible to sufficiently improve the wear resistance of the sliding movement between the piston and the connecting rod, so the cylindrical outer peripheral surface of the piston pin may be thermally sprayed with molybdenum or its alloy, or Ni - It is necessary to perform a treatment such as plating such as P plating.
本発明は、従来の繊維強化金属複合材料にて構成された
部材に於ける上述の如き不具合に鑑み、また各秤機械の
部材に於ては一般に表面層に於(は耐摩耗性ヤ)耐熱性
に(帰れていることが必要とされ、部材全体としCは強
度に優れていることが必要とされることに鑑み、部材の
表面層及び内部がそれぞれに要求される特性に応じてそ
れぞれ短繊維又は粒子、長繊維又は短繊維にて強化され
た繊維強化金属複合材料部材及びその製造方法を提供す
ることを目的としている。The present invention has been developed in view of the above-mentioned problems with conventional members made of fiber-reinforced metal composite materials, and in general, the surface layer of each weighing machine member has heat resistance (wear resistance). In view of the fact that the material as a whole is required to have excellent strength, the surface layer and interior of the material are each shortened according to the required characteristics. The object of the present invention is to provide a fiber-reinforced metal composite material member reinforced with fibers or particles, long fibers, or short fibers, and a method for producing the same.
かかる目的は、本発明によれば、繊維強化金属複合材料
部材にして、該部材の表面層の少なくとも一部は繊維径
に対する5iutt長の比が小さい強化繊維にて強化さ
れており、前記部材の前記表面層より内側の部分の少な
くとも一部は4411径に対′1Jる繊維長の比が前記
第一の強化繊維よりも大きい強化繊維にて強化された繊
維強化金属複合材料部材、及び繊維強化金属複合材料部
材にして、該部材の表面層の少なくとも一部はl1ff
径に対する繊維長の比が小さい第一の強化繊維にて強化
されており、前記部材の前記表面層J、り内側の部分の
少なくとも一部は綴紐径に対する繊ll1t長の比が前
記第一の強化繊維よりも大きい第二の強化繊維にて強化
された繊維強化金属複合材料部材の製造方法にして、前
記第二の強化繊維にて所定の形状、密度、配向の繊維成
形体を形成し、前記繊維成形体の表面に前記第一の強化
繊維を付着させ、これを鋳型内に配置し、該鋳型内に金
属の溶湯を注渇し、該溶湯を前記鋳型内にて加圧しつつ
凝固させる繊維強化金属複合材料部材の製造方法によっ
て達成される。According to the present invention, the present invention provides a fiber-reinforced metal composite material member, in which at least a part of the surface layer of the member is reinforced with reinforcing fibers having a small ratio of 5iutt length to fiber diameter; A fiber-reinforced metal composite material member in which at least a part of the inner part of the surface layer is reinforced with reinforcing fibers having a fiber length ratio of 4411 diameter to '1J larger than that of the first reinforcing fibers, and a fiber-reinforced metal composite material member. a metal composite material member, at least a part of the surface layer of the member is l1ff
At least a part of the inner side of the surface layer J of the member is reinforced with a first reinforcing fiber having a small ratio of fiber length to diameter, and at least a part of the inner side of the surface layer J of the member is reinforced with a first reinforcing fiber having a fiber length to diameter ratio of the first reinforcing fiber. A method for producing a fiber-reinforced metal composite material member reinforced with second reinforcing fibers larger than the reinforcing fibers, the method comprises forming a fiber molded article with a predetermined shape, density, and orientation using the second reinforcing fibers. , attaching the first reinforcing fiber to the surface of the fiber molded body, placing it in a mold, pouring a molten metal into the mold, and solidifying the molten metal while pressurizing it in the mold. This is achieved by a method for manufacturing a fiber-reinforced metal composite material member.
本発明ににれば、部材の表面層の少なくとも一部は繊維
径に対する繊維長の比が小さい強化繊維にて強化され、
部lの表面層より内側の部分の少なくとも一部が繊維径
に対づ゛る繊維長の比が人さい強化繊維にて強化される
ので、部材全体としくは比強度や剛性に優れており、ま
た表面層に於ては耐摩耗性や耐熱性に優れた部材を得る
ことがCきる。即ち部材の各部に要求される特性に応じ
て、長繊維、短繊維又は粒子、及びマトリックス金属を
適宜に選定することにより、各部に要求される特性の実
質的に全てを具備する部材を得ることができる。例えば
、本発明に従ってビス1ヘンやピストンピンを製造1”
れば、それらの比強度や耐久性を向上さけることができ
、更にはエンジンの高性能化を図ることができる。According to the present invention, at least a part of the surface layer of the member is reinforced with reinforcing fibers having a small ratio of fiber length to fiber diameter,
At least a part of the inner part of the surface layer of part 1 is reinforced with human reinforcing fibers in which the ratio of fiber length to fiber diameter is increased, so the member as a whole has excellent specific strength and rigidity. Moreover, in the surface layer, a member with excellent wear resistance and heat resistance can be obtained. That is, by appropriately selecting long fibers, short fibers or particles, and matrix metal according to the properties required for each part of the member, it is possible to obtain a member that has substantially all of the properties required for each part. I can do it. For example, manufacturing screws and piston pins according to the present invention.
If so, it is possible to avoid improving their specific strength and durability, and furthermore, it is possible to improve the performance of the engine.
またM&帷強化金属複合材料は一般(5−被削P1が悪
く、従ってwX雑強化金属複合材料を所定の形状及び大
ぎさの部材に研削等にて什」−げ加二丁でるq七は困難
であるが、本発明によれば、部材の表面層は短繊維や粒
子にて強化されるので、本発明ににるm維強化金属複合
材料部材は、部材全体が高強度及び高剛性を有する長I
ItIt#に−C強化された従来の繊維強化金属複合材
料部材に比して、研削等の仕上げ加工を容易に行ない得
るものであり、まIJその仕上げ而もより平滑になる。In addition, the M&Treinforced metal composite material is generally used (5-The workpiece P1 is poor, so the wX miscellaneous reinforced metal composite material is ground into a member of a predetermined shape and size.) Although it is difficult, according to the present invention, the surface layer of the member is reinforced with short fibers and particles, so the entire member has high strength and high rigidity. long I
Compared to conventional fiber-reinforced metal composite material members reinforced with -C, it is easier to perform finishing processes such as grinding, and the finishing process of the IJ is also smoother.
また本発明によるmM強化金属複合材料部材の製造方法
によれば、上述の如く比強度、耐久性、加工性などに優
れた11帷強化金属複合月料部材を容易に且能率良く製
造することができる。Furthermore, according to the manufacturing method of the mm-reinforced metal composite material member according to the present invention, it is possible to easily and efficiently manufacture the 11-wire reinforced metal composite material member having excellent specific strength, durability, workability, etc. as described above. can.
本発明の一つの詳細な特徴によれば、lli紺径に対り
る繊維長の比が大きい強化繊維、即ち長繊維又は類41
維は、アルミナ繊維や炭化ケイ素繊維の如きセラミック
繊維、各種の炭素繊維、ステンレス鋼線やタングステン
線の如き金属繊維、アルミナ繊維やアルミナ−シリカ繊
維の如きセラミック短繊維、各種の炭素短繊維、炭化ケ
イ素、窒化ケイ素、アルミナ、チタン酸カリウムなどの
ボイス力などであってよく、また繊維径に対する繊維長
の比が小さい強化繊維・、即ち短繊維又は粒子は、ノ7
ルミナ械維やアルミナ−シリカ繊維の如きセラミック短
繊維、各種の炭素短繊維、炭化ケイ素。According to one detailed feature of the invention, reinforcing fibers having a large fiber length to diameter ratio, i.e. long fibers or class 41
Fibers include ceramic fibers such as alumina fibers and silicon carbide fibers, various carbon fibers, metal fibers such as stainless steel wires and tungsten wires, ceramic short fibers such as alumina fibers and alumina-silica fibers, various carbon short fibers, and carbonized fibers. Reinforcing fibers, i.e., short fibers or particles, may be silicon, silicon nitride, alumina, potassium titanate, etc., and have a small ratio of fiber length to fiber diameter.
Ceramic short fibers such as lumina mechanical fibers and alumina-silica fibers, various short carbon fibers, and silicon carbide.
窒化ケイ素、アルミナ、チタン酸カリウムなどのボイス
力、炭化チタン、炭化ケイ素、rA化バナジウム、炭化
タングステン、炭化ニオブ、炭化クロムなどの金属炭化
物粒子、酸化クロム、アルミナ。Voice power such as silicon nitride, alumina, potassium titanate, metal carbide particles such as titanium carbide, silicon carbide, vanadium RA, tungsten carbide, niobium carbide, chromium carbide, chromium oxide, alumina.
酸化チタン、酸化ジルコニウム、酸化ケイ素などの金属
酸化物粒子、窒化ケイ素、窒化チタン、窒化クロム、窒
化ボロンなどの金属窒化物粒子、イの仙炭素粒子や粒化
モリブデン粒子などであってよく、マトリックス金属は
アルミニウム合金やマグネシウム合金などの軽合金\b
、亜鉛合金、鉛合金、銅合金、スズ合金などであってよ
い。They may be metal oxide particles such as titanium oxide, zirconium oxide, and silicon oxide, metal nitride particles such as silicon nitride, titanium nitride, chromium nitride, and boron nitride, carbon particles and granulated molybdenum particles, and the matrix. The metal is a light alloy such as aluminum alloy or magnesium alloy.
, zinc alloy, lead alloy, copper alloy, tin alloy, etc.
また本発明による繊維強化金属複合材料部材の製造方法
の一つの詳細な特徴によれば、繊維成形体の表面に第一
の強化繊維を付着させる工程に於ては、第一の強化繊維
は無機バインダーにて繊組成形体の表面に付着される。Further, according to one detailed feature of the method for manufacturing a fiber-reinforced metal composite material member according to the present invention, in the step of attaching the first reinforcing fibers to the surface of the fiber molded article, the first reinforcing fibers are inorganic. It is attached to the surface of the fiber composition body using a binder.
この場合に使用される無機バインダーとしては、コロイ
ド状のシリカ、アルミナ、ジルコニア、酸化イソ1ヘリ
ウム、酸化セリウム、酸化第二鉄、ケイ酸ジルコニウム
、醇化アンチモンなどであってよく、かかる無機バイン
ダーと共に第一の強化繊維を繊維成形体に付着させ、し
かる後筒−の強化繊維を(−1着された[1成形体を乾
燥させる。また無機バインダーとじでポリビニルアルコ
ールなどの有機バインダが使用されCもよいが、この場
合にはマトリックス金属との複合化に先立って、第一の
強化!11ftを付着された繊維成形体を焼成して右1
幾バインダ中に含まれる有機成分を除去する必要がある
。The inorganic binder used in this case may be colloidal silica, alumina, zirconia, iso-helium oxide, cerium oxide, ferric oxide, zirconium silicate, antimony diluted, etc. The reinforcing fibers of the cylinder are attached to the fiber molded body, and the reinforcing fibers of the cylinder are then dried. However, in this case, prior to compounding with the matrix metal, the fiber molded body to which the first reinforcement!11ft was attached was fired and
It is necessary to remove some organic components contained in the binder.
本発明による繊維強化金属複合材料部材の製造方法の他
の一つの詳細な特徴によれば、鋳型内に7トリツクス金
属の溶湯が注湯されるに先立って、第一の強化繊維を付
着された繊維成形体はマトリックス金属の融点以上の温
度に加熱される。According to another detailed feature of the method for manufacturing a fiber-reinforced metal composite material component according to the present invention, prior to pouring the molten 7-trix metal into the mold, a first reinforcing fiber is attached. The fiber molded body is heated to a temperature higher than the melting point of the matrix metal.
以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明Jる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.
実施例1
第1図は自動車用デ゛イーゼルエンジンのピストンピン
どして構成された本発明による繊維強化金属複合材11
部月の一つの実施例を一部破断して示す解図、第2図乃
至第4図は第1図に示されたビス1〜ンビンの製造工程
を示づ解図である。Example 1 Figure 1 shows a fiber-reinforced metal composite material 11 according to the present invention configured as a piston pin of an automobile diesel engine.
FIGS. 2 to 4 are illustrations showing the manufacturing process of the screws 1 to 1 shown in FIG. 1. FIGS.
第1図に於て、1はアルミニウム合金(A1−3%M(
1)にて構成されたビス1−ンビンを示しており、ビス
1〜ンピン1は軸線2に沿って延在する孔3を有する中
空構造をイjしている。このピストンピン1の円筒状外
周面を郭定づる表面層4(厚さ約0.5mm>は炭化ク
イ素ボイスカ5(平均繊維?M’0.2μm、平均si
#lt長150μm)に−(強化されており、表面層
4より半径方向内側の内層部6は軸線2の周りにピッチ
角θp−±70°にて螺旋状に配向された炭素繊I「7
(東し株式会社製トレカM40(登録商標)、繊維径7
μm)にて強化されている。In Figure 1, 1 is an aluminum alloy (A1-3%M (
1), the screw 1 to the pin 1 have a hollow structure with a hole 3 extending along an axis 2. The surface layer 4 (thickness approximately 0.5 mm) defining the cylindrical outer peripheral surface of the piston pin 1 is made of silicon carbide voice 5 (average fiber? M'0.2 μm, average si
#lt length 150 μm) - (reinforced, and the inner layer 6 radially inner than the surface layer 4 is made of carbon fibers I"7 spirally oriented around the axis 2 at a pitch angle θp-±70°.
(Trading card M40 (registered trademark) manufactured by Toshi Co., Ltd., fiber diameter 7
μm).
以上の如く構成されたビスl−>ビンは、木ブを明によ
る繊維強化金属複合材料部材の製造方法に()1って以
下の如く製造された。The screw 1->bottle constructed as described above was manufactured in the following manner using the method for manufacturing a fiber-reinforced metal composite material member by Akira Kibu (1).
まず外径Bm+nのステンレス11M(JIS規格SU
S 31 ’OS )製の棒8の表面に炭素繊維7の1
7−ン(繊維数3 ’O’0 ’O木)をピッチ角θp
=±70°のフィラメントワインディングにより軸線2
の周りに螺旋状に巻付けることにより、第2図に示され
ている如き外径21.5mmの棒体10を形成した。次
いでこの棒体10を長さ75w+mの円柱体に切断した
。First, stainless steel 11M (JIS standard SU) with outer diameter Bm+n
1 of carbon fiber 7 on the surface of rod 8 made of
7-n (number of fibers 3 'O'0 'O tree) as pitch angle θp
Axis 2 due to filament winding = ±70°
A rod 10 having an outer diameter of 21.5 mm as shown in FIG. 2 was formed by winding the rod helically around the rod. Next, this rod 10 was cut into a cylinder having a length of 75w+m.
次いで炭化クイ素ボイスカ5を水溶性シリカゾル3’Q
wt%溶液中に分散させ、その分散液をスプレーにて前
記円柱体の円筒状外周面に厚さ1mmにて付着させ、こ
れを120’Cにて2時間乾燥させることにJ:す、第
3図に示されている如き複合繊維成形体11を形成した
。Next, silica carbide VOISCA 5 was mixed with water-soluble silica sol 3'Q.
wt% solution, and the dispersion was applied to the cylindrical outer circumferential surface of the cylindrical body to a thickness of 1 mm by spraying, and this was dried at 120'C for 2 hours. A composite fiber molded body 11 as shown in FIG. 3 was formed.
次いでこの複合繊維成形体11を予熱炉内にて80 ’
O℃に予熱し、第4図に示されている如く上型12及び
下型13により郭定されたモールドキャビティ14内に
配置し、七−ルビキャビティ14内に湯道15を経て約
740℃のアルミニウム合金の溶場16を注渇し、該溶
場をプランジャ17によっ’C15’0Ok(1/am
9の圧力に加圧し、その加圧状態をアルミニウム合金の
溶場16が完全に凝固するまで保持しlC0
かくしてアルミニウム合金の溶場16が完全に凝固した
後、上型12を下型13より離型し、上述の如く形成さ
れた凝固体をノックアウトビン18〜20によって取出
し、その凝固体に対し切削及びドリルによる錐揉みなど
の機械加工を行なって炭素繊維及び炭化ケイ素ボイス力
にて強化された部分のみを切出し、これに対し研削加工
などを行なって、第1図に示されている如き外径22n
v。Next, this composite fiber molded body 11 is heated for 80' in a preheating furnace.
It is preheated to 0°C, placed in a mold cavity 14 defined by an upper mold 12 and a lower mold 13 as shown in FIG. The melt field 16 of the aluminum alloy of
The pressurized state is maintained until the melt field 16 of the aluminum alloy is completely solidified. After the melt field 16 of the aluminum alloy is completely solidified, the upper mold 12 is separated from the lower mold 13. The solidified body formed as described above is taken out by knockout bottles 18 to 20, and the solidified body is subjected to machining such as cutting and drilling, and is strengthened with carbon fiber and silicon carbide voice force. Cut out only the part and perform grinding etc. on it to obtain an outer diameter of 22nm as shown in Fig. 1.
v.
内径(3mm、長さ72I1mのピストンピン1を形成
した。A piston pin 1 with an inner diameter (3 mm) and a length of 72I1 m was formed.
尚上述の如く製造されIcピストンピン1の炭化ケイ素
ホイスカ5及び炭素繊維7の体積率はそれぞれ約10%
、約60%であった。またかくして製造されたピストン
ピン1をその@輸2に沿って切断し、その11面を観察
したところ、表面層4を強化する炭化ケイ素5の一部が
炭素繊維7の間に滲み込んでおり、炭化クイ素ホイスカ
5にて強化された表面層4ど炭素繊維7にで強化された
内層、部6どが強固に密着していることが認められた。Incidentally, the volume fraction of the silicon carbide whisker 5 and the carbon fiber 7 of the Ic piston pin 1 manufactured as described above is about 10% each.
, about 60%. Furthermore, when the thus manufactured piston pin 1 was cut along its @portion 2 and its 11th surface was observed, it was found that a portion of the silicon carbide 5 that strengthens the surface layer 4 had seeped into the spaces between the carbon fibers 7. It was observed that the surface layer 4 reinforced with carbon fiber whiskers 5, the inner layer reinforced with carbon fibers 7, and the portion 6 were firmly adhered to each other.
更に上述の如く製造されたピストンピン1を、イれがピ
ストンに対しポル]へにて固定され−」ネクテイングロ
ツドにブツシュを介さずに挿通されたセミフローティン
グ方式にで4気筒4vイクルデイーピルエンジン(圧縮
比+21.5、排気用:2198CG)に組込み、下記
の表1に示す試験条件にて試験運転を行なったところ、
上述の如く製造されたピストンピンは充分な強度及び耐
摩耗性を右するものであることが確かめられた。Furthermore, the piston pin 1 manufactured as described above is fixed to the piston by a pin, and is inserted into the connecting rod without using a bushing. It was installed in a pill engine (compression ratio +21.5, exhaust: 2198CG) and tested under the test conditions shown in Table 1 below.
The piston pin manufactured as described above was found to have sufficient strength and wear resistance.
表 1
使用燃料二 軽油
エンジン回転数:4(3QQrpm
(5%オーバーラン)
エンジン負荷= フル1」−ド
冷却水温: 100℃
試験時間 20 ’O時間
実施例2
第5図は自動車用ディーゼルエンジンのピストンとして
構成された本発明による繊維強化金属複合材料部材の他
の一つの実施例を一部切欠いて示す斜視図、第6図乃至
第8図は第5図に示されたビスl−ンの製造工程を示す
解図である。Table 1 Fuel used 2 Diesel engine speed: 4 (3QQrpm (5% overrun) Engine load = full 1'' - Cooling water temperature: 100℃ Test time 20'O hours Example 2 Figure 5 shows the results of a diesel engine for an automobile. FIGS. 6 to 8 are partially cutaway perspective views showing another embodiment of the fiber-reinforced metal composite material member according to the present invention configured as a piston, and FIGS. It is an illustration showing a manufacturing process.
第5図に於て、21はアルミニウム合金(JISMAI
8AC8へ)にて構成されたピストンを示してi3す、
ピストン21のピストンヘッド22の表面層23(厚さ
約1.5mn+)は平均直径3μmのジル]ニア粒子2
4にて強化されており、ビス1−、ンヘッド22の表面
層23J:りも内側の1ノ1層部25(厚さ約5mn)
はアルミナ−シリカ短繊維26(平均繊維径3μm、繊
維長5〜13111m>にて上吊化されている。またこ
のピストン21の側8rlり14^1面27の1〜ツブ
ランド28及び1〜ツブ1ノングiM 29を郭定づる
部分は側部外周面27J:り半径方+6tBamの幅に
厘り内層部25を強化するアルミプ゛−シリカ短mgと
同一のアルミナーシリノJ ’)n [Nli <こで
強化されている。In Figure 5, 21 is an aluminum alloy (JISMAI
8AC8) shows a piston configured with i3.
The surface layer 23 (thickness approximately 1.5 mm+) of the piston head 22 of the piston 21 is made of Zirnia particles 2 with an average diameter of 3 μm.
4, screw 1-, surface layer 23J of head 22: 1-1 layer part 25 on the inner side of the rim (approximately 5 mm thick)
is suspended from alumina-silica short fibers 26 (average fiber diameter 3 μm, fiber length 5 to 13111 m). Also, the piston 21 side 8rl side 14^1 surface 27 1~tube brand 28 and 1~tube The part defining the 1 long iM 29 is alumina silino J')n [Nli < It has been strengthened here.
尚第5図に於て、30は図には示されてpz l; (
、s+ピストンピンを受りる孔を示しており、31及び
32はそれぞれ図には示されていないセカンド1ノング
及びオイルリングを受入れるリング溝を示している。In addition, in FIG. 5, 30 is shown as pz l; (
, s+ indicates a hole for receiving a piston pin, and 31 and 32 indicate a ring groove for receiving a second 1 nong and an oil ring, respectively, which are not shown in the figure.
以」二の如く構成されたビス1−ン21は、本発明によ
る繊維強化金属複合材料部材σ)製造方法にfMつて以
下の如く製造された。The screw 1-21 constructed as described above was manufactured as follows using the manufacturing method of the fiber-reinforced metal composite material member σ) according to the present invention.
まずアルミナ−シリカ短繊維26を水に分散させ、その
分散液より真空成形法により第6図に示されている如く
直径9Qmm、高さ2’Qmm、円筒状側壁33の厚さ
8mm、底壁34の厚さ5nmの皿形の繊維成形体35
を形成した。First, the alumina-silica short fibers 26 are dispersed in water, and the dispersion is vacuum-formed into a shape having a diameter of 9 Q mm, a height of 2' Q mm, a thickness of the cylindrical side wall 33 of 8 mm, and a bottom wall as shown in FIG. 34 and a dish-shaped fiber molded body 35 with a thickness of 5 nm.
was formed.
次いでジルコニア粒子24を水溶性ジルコニアゾル2Q
wt%溶液中に分散さU゛、イの分散液を繊維成形体3
5の底壁34のビス]−ンヘッド側の表面36に対し刷
毛を用いて厚さ約1,5mmにて何首させ、これを20
0℃にて2時間乾燥させることにより、第7図に示され
ている如きアルミナ−シリカ短繊維26とジルコニア粒
子24とよりなる複合繊維成形体37を形成した。Next, the zirconia particles 24 were dissolved in water-soluble zirconia sol 2Q.
The dispersions of U゛ and A dispersed in the wt% solution were added to the fiber molded body 3.
Using a brush, apply several threads to a thickness of about 1.5 mm on the surface 36 of the bottom wall 34 of No. 5 on the screw head side.
By drying at 0° C. for 2 hours, a composite fiber molded body 37 made of alumina-silica staple fibers 26 and zirconia particles 24 as shown in FIG. 7 was formed.
次いでこの複合繊維成形体37を予熱炉内にて約80
’O℃に予熱し、ピストン鋳造装置の下型38の底壁3
9上に載回し、下型38内にアルミニ・クム含金の溶湯
40を注渇し、該溶湯を上型41により13 ’O’O
kq/い9の圧力に加圧し、その加圧状態をアルミニウ
ム合金の溶湯40が完全に凝固するまで保持した。Next, this composite fiber molded body 37 is heated to about 80% in a preheating furnace.
'Preheat the bottom wall 3 of the lower mold 38 of the piston casting machine to 0°C.
9, pour the molten metal 40 containing aluminum and cum into the lower mold 38, and pour the molten metal into the upper mold 41 at 13'O'O.
The pressure was increased to kq/9, and the pressurized state was maintained until the molten aluminum alloy 40 was completely solidified.
アルミニウム合金の溶湯40が完全に凝固した後、かく
して形成された凝固体をノックアウトビン42によって
下型38より取出し、その凝固体に対し切削及び研削等
の機械加工を行なって第5図に示されている如く、直径
9’Qmm、長さ70mmのピストンを形成した。After the molten aluminum alloy 40 is completely solidified, the thus formed solidified body is taken out from the lower mold 38 by the knockout bin 42, and the solidified body is subjected to machining such as cutting and grinding, as shown in FIG. A piston with a diameter of 9'Qmm and a length of 70mm was formed as shown in FIG.
尚上述の如く製造されたピストン21のアルミナ−シリ
カ短繊維及びジルコニア粒子の体積率はイれぞれ約7%
、約40%であった。またかくして製造されたビス1−
ン21を4気筒4リイクルj゛イーゼルエンジン(圧縮
比:21.5、排気量2198CC)に組込み、1掲の
表1に示す試験条件に゛C試験運転を行なったところ、
−[述の如< IJit+7されたピストン21はピス
トン全体としての強匪、トップリング溝29に於(〕る
耐摩耗性、ビス1−ンヘッド22に於ける耐熱性及び断
熱性が、アルミニウム合金のみに゛C構成されICピス
トンに比し−くはるかに優れていることが確かめられた
。The volume percentages of alumina-silica short fibers and zirconia particles in the piston 21 manufactured as described above are each about 7%.
, about 40%. Also, the screw 1-
The engine 21 was assembled into a 4-cylinder 4-recycle easel engine (compression ratio: 21.5, displacement 2198 CC), and a test run was conducted under the test conditions shown in Table 1.
- [As mentioned above, the piston 21 with IJit+7 has the strength of the piston as a whole, the wear resistance of the top ring groove 29, and the heat resistance and heat insulation properties of the screw head 22, compared to only aluminum alloys. It has been confirmed that the piston is far superior to the IC piston.
更に上述の如く製造されたピストン21をイの軸線に沿
って切断しその断面を観察したところ、表面層23とそ
の内側の内層部25どの間の密着も良好であることが認
められた。Further, when the piston 21 manufactured as described above was cut along the axis A and its cross section was observed, it was found that the adhesion between the surface layer 23 and the inner layer 25 inside the surface layer 23 was good.
以上に於ては本発明を二つの実施例について訂柵に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて種々の実施例が可能であるこ
とは当業者にとって明らかであろう。Although the present invention has been explained above with reference to two embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art.
5XS1図は自動車用ディーゼルエンジンのビス]ヘン
ビンどしての構成された本発明による繊維強化金属複合
材料部ネAの一つの実施例を一部破断して示す解図、第
2図乃至第4図は第1図に示されたピストンピンの製造
工程を示−1解図、第5図は自動車用ディーゼル1ン1
ジンのピストンとして構成された本発明による繊維強化
金属複合材料部材の他の一つの実施例を一部切欠いて示
づ斜視図、第6図乃至第8図は第5図に示されたピスト
ンの製造工程を示す解図である。
1・・・ピストンピン、2・・・軸線、3・・・孔、4
・・・表面層、5・・・炭化ケイ素ボイス力、6・・・
内層部、7・・・炭素繊維、8・・・棒、10・・・棒
体、11・・・複合繊維成形体、12・・・上型、13
・・・下型、14・・・モールド−1−ヤビティ、15
・・・湯道、16・・・アルミニウム合金の溶湯、17
・・・プランジp、18−20・・・ノックアウトピン
8,21・・・ビス1−ン、22・・・ピストンヘッド
、23・・・表面層、2/l・・・ジルコニア粒子、2
5・・・内層部、26・・・アルミナルシリアJ短繊維
、27・・・側部外周面、28・・・トップランド、2
9・・・トップリング溝、30・・・孔、31.32・
・・リング溝、33・・・円筒状側壁、34・・・底壁
、35・・・繊維成形体、36・・・表面、37・・・
複合繊維成形体。
38・・・下型、39・・・底壁、40・・・アルミニ
ウム合金の溶湯、41・・・土、型、42・・・ノック
アラ1−ビン特 許 出 願 人 トヨタ自動車株式
会社代 理 人 弁理士 明石 畠毅第1
図
1
第2図
ρ0
第3図
第 4 ノ
第 8 図Figure 5 The figure shows the manufacturing process of the piston pin shown in Figure 1.
FIGS. 6 to 8 are perspective views, partially cut away, of another embodiment of the fiber-reinforced metal composite material member according to the present invention configured as a piston for a piston, and FIGS. It is an illustration showing a manufacturing process. 1... Piston pin, 2... Axis line, 3... Hole, 4
...Surface layer, 5...Silicon carbide voice force, 6...
Inner layer part, 7... Carbon fiber, 8... Rod, 10... Rod body, 11... Composite fiber molded body, 12... Upper mold, 13
... Lower mold, 14 ... Mold-1-Yaviti, 15
... runner, 16 ... molten aluminum alloy, 17
...Plunge p, 18-20...Knockout pin 8, 21...Bis 1-n, 22...Piston head, 23...Surface layer, 2/l...Zirconia particle, 2
5...Inner layer part, 26...Aluminaria J short fiber, 27...Side outer peripheral surface, 28...Top land, 2
9... Top ring groove, 30... Hole, 31.32.
...Ring groove, 33...Cylindrical side wall, 34...Bottom wall, 35...Fibre molded body, 36...Surface, 37...
Composite fiber molded body. 38... Lower mold, 39... Bottom wall, 40... Molten aluminum alloy, 41... Soil, mold, 42... Knockara 1-bin patent Applicant: Toyota Motor Corporation representative Person Patent Attorney Akashi Hatake No. 1
Figure 1 Figure 2 ρ0 Figure 3 Figure 4 - Figure 8
Claims (3)
層の少なくとも一部は繊維径に対する繊維長の比が小さ
い第一の強化繊維にて強化されており、前記部材の前記
表面層より内側の部分の少なくとも一部は繊維径に対す
る繊維長の比が前記第一の強化IBMよりも大きい第二
の強化繊維にて強化された繊維強化金属複合材料部材。(1) A fiber-reinforced metal composite material member, in which at least a part of the surface layer of the member is reinforced with a first reinforcing fiber having a small ratio of fiber length to fiber diameter, and the surface layer of the member is A fiber-reinforced metal composite material member, wherein at least a portion of the inner portion is reinforced with a second reinforcing fiber having a fiber length to fiber diameter ratio greater than that of the first reinforcing IBM.
表面層の少なくとも一部は繊維径に対りる繊維長の比が
小さい第一の強化繊維にて強化されており、前記部材の
前記表面層より内側の部分の少なくとも一部は繊H径に
対する繊維長の比が前記第一の強化繊維よりも大きい第
二の強化繊維にて強化された繊維強化金属複合材料部材
の製造方法にして、前記第二の強化al維にて所定の形
状、密度、配向の繊維成形体を形成し、前記繊維成形体
の表面に前記第一の強化繊維を付着させ、これを鋳型内
に配置し、該鋳型内にマトリックス金属の溶湯を注渇し
、該溶湯を前記鋳型内にで加圧しつつ凝固さUる繊維強
化金属複合材料部材の製造り法。(2) A II fiber-reinforced metal composite material member, at least a part of the surface layer of the member is reinforced with first reinforcing fibers having a small ratio of fiber length to fiber diameter; A method for producing a fiber-reinforced metal composite material member, wherein at least a part of the inner part of the surface layer is reinforced with second reinforcing fibers having a ratio of fiber length to fiber H diameter larger than that of the first reinforcing fibers. A fiber molded body having a predetermined shape, density, and orientation is formed using the second reinforcing Al fibers, the first reinforcing fibers are attached to the surface of the fiber molded body, and this is placed in a mold. A method for manufacturing a fiber-reinforced metal composite material member, comprising: pouring a molten matrix metal into the mold, and solidifying the molten metal while pressurizing the molten metal within the mold.
材の製造方法に於て、前記繊維成形体の表面に前記第一
の強化繊維を付着させる工程に於ては、前記第一の強化
繊維は無機バインダーにで前記M&組成形体の表面に付
着されることを特徴とづる繊維強化金属複合材料部材の
製造方法。(3) In the method for manufacturing a fiber-reinforced metal composite monthly member according to claim 2, in the step of attaching the first reinforcing fibers to the surface of the fiber molded body, the first A method for producing a fiber-reinforced metal composite material member, characterized in that the reinforcing fibers are attached to the surface of the M&composition shaped body using an inorganic binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18517382A JPS5974247A (en) | 1982-10-20 | 1982-10-20 | Fiber reinforced metallic composite member and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18517382A JPS5974247A (en) | 1982-10-20 | 1982-10-20 | Fiber reinforced metallic composite member and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5974247A true JPS5974247A (en) | 1984-04-26 |
JPS6341967B2 JPS6341967B2 (en) | 1988-08-19 |
Family
ID=16166106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18517382A Granted JPS5974247A (en) | 1982-10-20 | 1982-10-20 | Fiber reinforced metallic composite member and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5974247A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191341A (en) * | 1984-10-12 | 1986-05-09 | Sumitomo Chem Co Ltd | Fiber reinforced metallic composite body |
JPS61178050U (en) * | 1985-04-24 | 1986-11-06 | ||
JPS61253341A (en) * | 1985-05-02 | 1986-11-11 | Toyota Motor Corp | Alumina fiber-and alumina-silica fiber-reinforced metallic composite material |
JPS6286133A (en) * | 1985-05-02 | 1987-04-20 | Toyota Motor Corp | Combination of member |
JPS6296626A (en) * | 1985-05-02 | 1987-05-06 | Toyota Motor Corp | Combination of member |
EP0249927A2 (en) * | 1986-06-17 | 1987-12-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and processes for producing same |
JPS6338717A (en) * | 1986-07-31 | 1988-02-19 | Honda Motor Co Ltd | Light alloy sliding member |
JPS6352946U (en) * | 1986-09-25 | 1988-04-09 | ||
JPS63138141A (en) * | 1986-11-29 | 1988-06-10 | Kobe Steel Ltd | Manufacture of piston of internal combustion engine |
US4755437A (en) * | 1985-07-04 | 1988-07-05 | Michele Sabatie | Castings and their production process |
JPS63243237A (en) * | 1987-03-31 | 1988-10-11 | Yanmar Diesel Engine Co Ltd | Frm wear-resistant parts containing graphitic carbon fiber |
JPH02308953A (en) * | 1989-05-22 | 1990-12-21 | Isuzu Motors Ltd | Machine element made of fiber-reinforced metal |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10003881B2 (en) | 2015-09-30 | 2018-06-19 | Apple Inc. | Earbuds with capacitive touch sensor |
-
1982
- 1982-10-20 JP JP18517382A patent/JPS5974247A/en active Granted
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191341A (en) * | 1984-10-12 | 1986-05-09 | Sumitomo Chem Co Ltd | Fiber reinforced metallic composite body |
JPS61178050U (en) * | 1985-04-24 | 1986-11-06 | ||
JPS61253341A (en) * | 1985-05-02 | 1986-11-11 | Toyota Motor Corp | Alumina fiber-and alumina-silica fiber-reinforced metallic composite material |
JPS6286133A (en) * | 1985-05-02 | 1987-04-20 | Toyota Motor Corp | Combination of member |
JPS6296626A (en) * | 1985-05-02 | 1987-05-06 | Toyota Motor Corp | Combination of member |
US4755437A (en) * | 1985-07-04 | 1988-07-05 | Michele Sabatie | Castings and their production process |
EP0249927A2 (en) * | 1986-06-17 | 1987-12-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and processes for producing same |
US4961990A (en) * | 1986-06-17 | 1990-10-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same |
JPS6338717A (en) * | 1986-07-31 | 1988-02-19 | Honda Motor Co Ltd | Light alloy sliding member |
JPH0578709B2 (en) * | 1986-07-31 | 1993-10-29 | Honda Motor Co Ltd | |
JPS6352946U (en) * | 1986-09-25 | 1988-04-09 | ||
JPS63138141A (en) * | 1986-11-29 | 1988-06-10 | Kobe Steel Ltd | Manufacture of piston of internal combustion engine |
JPH0337023B2 (en) * | 1986-11-29 | 1991-06-04 | Kobe Steel Ltd | |
JPS63243237A (en) * | 1987-03-31 | 1988-10-11 | Yanmar Diesel Engine Co Ltd | Frm wear-resistant parts containing graphitic carbon fiber |
JPH02308953A (en) * | 1989-05-22 | 1990-12-21 | Isuzu Motors Ltd | Machine element made of fiber-reinforced metal |
Also Published As
Publication number | Publication date |
---|---|
JPS6341967B2 (en) | 1988-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2994482B2 (en) | Single cylinder or multiple cylinder block | |
JPS5974247A (en) | Fiber reinforced metallic composite member and its production | |
US6383656B1 (en) | Perform for metal matrix composite material and cylinder block made of the same | |
WO2012113428A1 (en) | Aluminum matrix composite material, semi-finished product consisting of the aluminum matrix composite material and method for producing the same | |
WO1986003997A1 (en) | A metal matrix composite and method for its production | |
CN109136693A (en) | Lightweight I type distance rod and its casting and molding method | |
EP0624657B1 (en) | A slide member made of an aluminium alloy | |
US4036599A (en) | Polycrystalline alumina fibers as reinforcement in magnesium matrix | |
JPH01111830A (en) | Reinforcing fiber for production of fiber-reinforced composite metallic material | |
US5354528A (en) | Process for producing preform for metal matrix composite | |
EP1010770B1 (en) | Method of making carbon fibre reinforced metal-matrix composites | |
Chigal et al. | Mechanical testing of Al6061/silicon carbide metal matrix composite | |
US5369064A (en) | shaped fibrous materials for fiber-reinforced metals | |
WO2023136100A1 (en) | Metal-coated metal-matrix composite and manufacturing method of metal-coated metal-matrix composite | |
JPH06136563A (en) | Metallic composite member | |
JPS6078164A (en) | Fiber reinforced metallic piston and manufacturing method thereof | |
JPH076016B2 (en) | Potassium titanate whisker reinforced metal composite | |
JP2508145B2 (en) | Fiber Reinforced Metals for Manufacturing Composite Materials | |
JP3323396B2 (en) | Cylinder liner, cylinder block, and method of manufacturing the same | |
JPH02301533A (en) | Manufacture of composite material | |
JPH0564692B2 (en) | ||
Verma et al. | Manufacturing of composites by squeeze casting | |
JPS6249073A (en) | Piston-in for internal combustion engine | |
JPH01180929A (en) | Manufacture of aluminum composite material having lubricative characteristics | |
JPH02277733A (en) | Shift fork for transmission |