JPH0829987B2 - Method for producing carbon fiber reinforced carbon composite material - Google Patents

Method for producing carbon fiber reinforced carbon composite material

Info

Publication number
JPH0829987B2
JPH0829987B2 JP61252633A JP25263386A JPH0829987B2 JP H0829987 B2 JPH0829987 B2 JP H0829987B2 JP 61252633 A JP61252633 A JP 61252633A JP 25263386 A JP25263386 A JP 25263386A JP H0829987 B2 JPH0829987 B2 JP H0829987B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
thermosetting resin
resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61252633A
Other languages
Japanese (ja)
Other versions
JPS63107862A (en
Inventor
公平 奥山
明男 加藤
恵介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP61252633A priority Critical patent/JPH0829987B2/en
Publication of JPS63107862A publication Critical patent/JPS63107862A/en
Publication of JPH0829987B2 publication Critical patent/JPH0829987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面に熱硬化された熱硬化性樹脂の被覆層
を有する炭素繊維を補強繊維として使用する、優れた性
能を持つ炭素繊維強化炭素複合材の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses a carbon fiber having a coating layer of a thermosetting thermosetting resin on its surface as a reinforcing fiber, and is reinforced with a carbon fiber having excellent performance. The present invention relates to a method for manufacturing a carbon composite material.

〔従来の技術〕[Conventional technology]

炭素繊維強化炭素複合材(以下c/c複合材と略す)は
軽量、高強度であり、耐熱、耐触性に優れているという
特徴を活かしてロケツトノズル、ノーズコーン、航空機
のデイスクブレーキなどの航空宇宙材料や、発熱体、ホ
ツトプレート鋳型、その他の機械部品、原子炉用部材な
どに用いられている。
Carbon fiber reinforced carbon composite material (hereinafter abbreviated as c / c composite material) is lightweight, has high strength, and is excellent in heat resistance and touch resistance, and is used for rocket nozzles, nose cones, aircraft disc brakes, etc. It is used in aerospace materials, heating elements, hot plate molds, other mechanical parts, reactor components, etc.

従来c/c複合材は予め炭素繊維にフエノール樹脂、フ
ラン樹脂などの熱硬化性樹脂、あるいはピツチなどの熱
可塑性樹脂などのマトリツクス前駆物質を含浸または混
合して加熱成型したものを不活性ガスなどの非酸化性雰
囲気中において600〜1000℃で炭化、さらに要するなら
ば1800〜2500℃で黒鉛化することにより製造されてい
る。
Conventional c / c composite materials are heat-molded by previously impregnating or mixing carbon fibers with a thermosetting resin such as phenol resin or furan resin, or a matrix precursor such as a thermoplastic resin such as pitch. It is manufactured by carbonizing at 600 to 1000 ° C in a non-oxidizing atmosphere, and graphitizing at 1800 to 2500 ° C if necessary.

ところで、複合材においては補強繊維が負荷された応
力を主に担い、マトリツクスは応力を個々の繊維に均等
に分担させる伝達の役割を担うと言われている。従つて
複合材としての性能を充分なものとするためには繊維が
マトリツクス中に均一に分布し、その繊維がマトリツク
スで、一様に囲まれており、さらに繊維とマトリツクス
が充分に接着していて応力の伝達が円滑に行なわれる様
になつていることが重要である。
By the way, it is said that in the composite material, the reinforcing fibers mainly bear the stress applied thereto, and the matrix plays a role of transmission in which the stress is evenly shared by the individual fibers. Therefore, in order to obtain sufficient performance as a composite material, the fibers are evenly distributed in the matrix, the fibers are evenly surrounded by the matrix, and the fibers and matrix are sufficiently adhered. Therefore, it is important that the stress is transmitted smoothly.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来技術によりc/c複合材を製造した場合に
は炭素繊維とマトリツクス前駆物質との濡れ性が必ずし
も良好でないため、炭素繊維にマトリツクス前駆物質を
含浸または混合する時にマトリツクス前駆物質を繊維間
に均一に浸透させることが困難であつた。また、一般に
マトリツクス前駆物質の炭化による収縮が大であるため
炭素繊維とマトリツクス前駆物質の接着が充分でない場
合には炭化の終了した時点で炭素繊維とマトリツクス前
駆物質から変化したマトリツクス炭素との界面に空隙を
生じることが多かつた。これらの理由のため炭素繊維と
マトリツクス炭素との間の応力伝達が阻害されて充分な
性能を持つc/c複合材を得ることは困難であつた。
However, when the c / c composite material is manufactured by the conventional technique, the wettability between the carbon fiber and the matrix precursor is not always good, so when the carbon fiber is impregnated with or mixed with the matrix precursor, the matrix precursor is not mixed between the fibers. It was difficult to make it uniformly penetrate into. In addition, since the shrinkage due to carbonization of the matrix precursor is generally large, if the adhesion between the carbon fiber and the matrix precursor is not sufficient, the interface between the carbon fiber and the matrix carbon changed from the matrix precursor at the end of the carbonization Often created voids. For these reasons, it was difficult to obtain a c / c composite material with sufficient performance because the stress transfer between the carbon fiber and the matrix carbon was impeded.

従来の技術ではかかる問題を解決する方法として一般
的には炭化の終了したc/c複合材に改めて樹脂類を含浸
して、マトリツクス前駆物質の末浸透部分や、マトリツ
クス前駆物質の炭化収縮に起因する炭素繊維−マトリツ
クス炭素界面の空隙を埋め、再度炭化する方法が採用さ
れているが、末浸透部分、界面の空隙を完全に埋めるた
めには樹脂類の含浸−再炭化の工程を多数回繰返さなけ
れば充分な性能を発現するに至らないといつた難点が有
つた。
In the conventional technique, as a method for solving such a problem, generally, the carbonized c / c composite material is again impregnated with resins to cause the end-permeation part of the matrix precursor or the carbonization shrinkage of the matrix precursor. The method of filling the voids at the carbon fiber-matrix carbon interface and carbonizing again is adopted, but in order to completely fill the voids at the end-permeating part and the interface, the steps of impregnation of resins and re-carbonization are repeated many times. Without it, there was a problem that it would not be possible to develop sufficient performance.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者等は炭素繊維とマトリツクス前駆物質
の濡れ性を向上させ、かつ接着性を高める方法について
鋭意検討した結果、補強用の炭素繊維を予め、c/c複合
材製造の際のマトリツクス前駆物質として使用される様
な熱硬化性樹脂の希薄溶液で処理し、その後加熱処理す
ることで繊維の表面に該熱硬化性樹脂の熱硬化された薄
い被覆層を形成させておけば炭素繊維とマトリツクス前
駆物質との濡れ性、接着性が改良され、その結果優れた
性能のc/c複合材が得られることを見出し、本発明を完
成するに至つた。
Therefore, the present inventors have improved the wettability of the carbon fiber and the matrix precursor, and as a result of diligent study on a method of increasing the adhesiveness, the carbon fiber for reinforcement was previously prepared, and the matrix precursor during the production of the c / c composite material. It is treated with a dilute solution of a thermosetting resin such as that used as a substance, and then heat treated to form a thin coating layer of the thermosetting resin on the surface of the fiber. The inventors have found that the wettability and adhesiveness with the matrix precursor are improved, and as a result, a c / c composite material having excellent performance can be obtained, and have completed the present invention.

すなわち、本発明の要旨は、熱硬化性樹脂溶液を炭素
繊維に塗布し、50〜300℃の温度で加熱処理することに
より該熱硬化性樹脂を熱硬化して表面に熱硬化性樹脂の
被覆層を有する炭素繊維を形成し、得られた該熱硬化性
樹脂被覆炭素繊維にマトリツクス前駆物質を含浸または
混合した後、成型し、次いで焼成処理することを特徴と
する炭素繊維強化炭素複合材の製造方法に存する。
That is, the gist of the present invention is to apply a thermosetting resin solution to carbon fibers and heat-treat the thermosetting resin by heating at a temperature of 50 to 300 ° C. to coat the surface with the thermosetting resin. A carbon fiber-reinforced carbon composite material, characterized in that a carbon fiber having a layer is formed, the obtained thermosetting resin-coated carbon fiber is impregnated with or mixed with a matrix precursor, and then molded and then fired. It depends on the manufacturing method.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明で使用する炭素繊維は公知のPAN系、ピツチ系
炭素繊維あるいは気相成長法炭素繊維等いずれの種類で
も良く、その形態も長繊維、短繊維あるいは織布、不織
布等のいずれであつても良いが長繊維ロービングや織布
の様に各単繊維が高密度に集合した状態にあるものが特
に本発明の効果が大である。
The carbon fiber used in the present invention may be any kind of known PAN-based, Pitch-based carbon fiber or vapor grown carbon fiber, and its form may be long fiber, short fiber or woven fabric, non-woven fabric and the like. However, the effect of the present invention is particularly large when the single fibers are in a state of being aggregated at a high density, such as long fiber roving or woven cloth.

本発明においては炭素繊維の表面に熱硬化性樹脂の希
薄溶液を浸漬等の方法によつて塗布する。該熱硬化性樹
脂としては、例えばフエノール樹脂、フラン樹脂、エポ
キシ樹脂、不飽和ポリエステル樹脂等が挙げられるが、
フエノール樹脂特にレゾール型のフエノール樹脂が好適
に使用出来る。これらの熱硬化性樹脂はエタノールの様
なアルコール類、ヘキサンの様な炭化水素あるいはアセ
トンといつた溶剤で溶解希釈して溶液となし炭素繊維に
塗布される。
In the present invention, a dilute solution of the thermosetting resin is applied to the surface of the carbon fiber by a method such as dipping. Examples of the thermosetting resin include a phenol resin, a furan resin, an epoxy resin, and an unsaturated polyester resin.
A phenol resin, particularly a resol type phenol resin, can be preferably used. These thermosetting resins are dissolved and diluted with an alcohol such as ethanol, a hydrocarbon such as hexane or acetone and a solvent to form a solution, which is applied to carbon fibers.

熱硬化性樹脂溶液の濃度としては通常0.2〜5wt%、好
ましくは0.5〜2wt%の範囲のものを使用するのが繊維の
表面に均一に塗布するために望ましい。また、フラン樹
脂、エポキシ樹脂等硬化剤を要するものは硬化剤も溶液
中に添加されるのがその量はそれぞれの樹脂に適した量
が添加される。
The concentration of the thermosetting resin solution is usually 0.2 to 5 wt%, preferably 0.5 to 2 wt%, which is desirable for uniform application on the surface of the fiber. Further, for those requiring a curing agent such as furan resin and epoxy resin, the curing agent is also added to the solution, and the amount thereof is an amount suitable for each resin.

かかる熱硬化性樹脂溶液を炭素繊維に塗布する方法と
しては溶液中に炭素繊維を浸漬するといつた簡単な方法
で良いが、長繊維ロービングあるいは連続した織布等で
あるならば溶液の満された槽内を連続的に走行させる方
法が処理の効率の点から好ましい。また、この際に溶液
の満された槽に10〜50KHz程度の超音波を作用させてお
くと各単繊維間、織目間の気泡等による処理むらの影響
を防ぐことが出来るので好ましい。
As a method of applying the thermosetting resin solution to the carbon fiber, it is possible to simply immerse the carbon fiber in the solution, but if it is long fiber roving or continuous woven cloth, the solution is filled. From the viewpoint of treatment efficiency, the method of continuously traveling in the tank is preferable. Further, at this time, it is preferable to apply an ultrasonic wave of about 10 to 50 KHz to the tank filled with the solution because it is possible to prevent the influence of processing unevenness due to bubbles or the like between each single fiber and between weaves.

熱硬化性樹脂溶液を塗布した炭素繊維は例えばローラ
ーを通すなどして余分な溶液を除去し、次いで加熱処理
を施される。
The carbon fiber coated with the thermosetting resin solution is passed through a roller, for example, to remove the excess solution, and then subjected to heat treatment.

該加熱処理により、熱硬化性樹脂は熱硬化し、炭素繊
維の表面に薄い熱硬化性樹脂層が形成される。加熱処理
の条件は使用する熱硬化性樹脂の種類によつてそれぞれ
適正条件は異なるが通常50〜300℃、好ましくは80〜200
℃の温度で0.2〜5時間、好ましくは0.2〜2時間加熱処
理される。この際、炭素繊維に塗布された熱硬化性樹脂
溶液からの急激な溶剤の脱離を避るため所定の温度への
昇温を徐々に行なわれることが望ましい。また、加熱処
理は炭素繊維を連続的に加熱炉内を走行させる方法で行
なうのが処理の効率の点から好ましい。
By the heat treatment, the thermosetting resin is thermoset, and a thin thermosetting resin layer is formed on the surface of the carbon fiber. The conditions for heat treatment differ depending on the type of thermosetting resin used, but usually 50 to 300 ° C, preferably 80 to 200.
It is heat-treated at a temperature of ° C for 0.2 to 5 hours, preferably 0.2 to 2 hours. At this time, it is desirable that the temperature be gradually raised to a predetermined temperature in order to avoid the rapid desorption of the solvent from the thermosetting resin solution applied to the carbon fibers. Further, the heat treatment is preferably carried out by a method in which carbon fibers are continuously run in a heating furnace from the viewpoint of treatment efficiency.

以上の様にして得られる炭素繊維はその表面に熱硬化
された熱硬化性樹脂の薄い被覆層が形成されているが、
被覆層の厚さが薄すぎる場合にはc/c複合材製造に用い
るマトリツクス前駆物質との濡水性、接着性の改良の効
果が充分ではなく、逆に被覆層が厚すぎる場合には各単
繊維間の固着が生じて以後の炭素繊維の取扱いが著しく
困難になつてしまう。従つて被覆層の厚さとしては平均
の厚さとして0.2〜3μ、好ましくは0.5〜1.5μの範囲
であることが望ましい。
The carbon fiber obtained as described above has a thin coating layer of thermosetting thermosetting resin formed on its surface,
If the coating layer is too thin, the effect of improving the wettability and adhesiveness with the matrix precursor used for c / c composite material production is not sufficient. The adhesion between the fibers occurs and the subsequent handling of the carbon fibers becomes extremely difficult. Therefore, it is desirable that the thickness of the coating layer is in the range of 0.2 to 3 µ, preferably 0.5 to 1.5 µ as an average thickness.

熱硬化性樹脂の被覆層の厚さは炭素繊維に塗布される
熱硬化性樹脂溶液の濃度にほぼ依存し、溶液の濃度を調
整することで所望の被覆層の厚さを得ることが可能であ
るが、高濃度の溶液を使用した場合には被覆層の形成が
不均一になることもある。所望の被覆層厚さを得、かつ
均一な被覆層形成を達成するために、熱硬化性樹脂溶液
の塗布、加熱処理による熱硬化性樹脂の熱硬化を繰返え
し行なつても良い。この場合初めは溶液の濃度を低く
し、繰返し毎に次第に濃度を高くしてゆくことが均一な
被覆層を形成させるため、および処理された炭素繊維の
取扱い性等の点で好ましい。
The thickness of the thermosetting resin coating layer depends almost on the concentration of the thermosetting resin solution applied to the carbon fiber, and it is possible to obtain the desired coating layer thickness by adjusting the concentration of the solution. However, when a high-concentration solution is used, the formation of the coating layer may become uneven. In order to obtain a desired coating layer thickness and achieve uniform coating layer formation, application of a thermosetting resin solution and thermosetting of the thermosetting resin by heat treatment may be repeated. In this case, it is preferable to reduce the concentration of the solution at the beginning and gradually increase the concentration with each repetition in order to form a uniform coating layer, and in terms of handleability of the treated carbon fiber.

得られた、表面に熱硬化された熱硬化性樹脂の被覆層
を有する炭素繊維は次いでマトリツクス前駆物質を含浸
または混合した後、金型中に配列し一定の加熱、加圧条
件ともとで成型される。
The obtained carbon fiber having a coating layer of thermosetting resin on the surface is then impregnated with or mixed with a matrix precursor, and then arranged in a mold and molded under constant heating and pressure conditions. To be done.

マトリツクス前駆物質としてはフエノール樹脂、フラ
ン樹脂などの熱硬化性樹脂、あるいはピツチなどの熱可
塑性樹脂が使用できるが、熱硬化性樹脂を使用するのが
本発明の効果を発現させるためにはより好ましい。
As the matrix precursor, a thermosetting resin such as a phenol resin or a furan resin, or a thermoplastic resin such as a pitch can be used, but it is more preferable to use the thermosetting resin in order to exert the effect of the present invention. .

上記含浸または混合は目的等により適宜選択しうる
が、炭素繊維が長繊維の場合には含浸、短繊維の場合に
は混合が採用されるのが通常である。また、炭素繊維の
使用量はc/c複合材の用途によつて異なるので一概には
特定出来ないが成形体の体積に対して通常30〜70%の範
囲から選択される。
The impregnation or mixing can be appropriately selected depending on the purpose and the like, but when the carbon fibers are long fibers, impregnation or mixing is usually adopted when the carbon fibers are short fibers. The amount of carbon fiber used varies depending on the use of the c / c composite material and cannot be specified unconditionally, but is usually selected from the range of 30 to 70% relative to the volume of the molded body.

得られた成型体は次いで焼成処理される。例えばパツ
キングコークス中に埋め込んだ炭化処理を行ない、さら
に必要ならば黒鉛化処理を行なうことによりc/c複合材
とする。また、炭化の後に必要に応じてピツチ含浸ある
いは樹脂含浸−再炭化の緻密化処理を繰返して行なうこ
とにより一段と優れた性能のc/c複合材を得ることが出
来る。
The obtained molded body is then fired. For example, a c / c composite material is obtained by performing a carbonization treatment by embedding it in packing coke, and further performing a graphitization treatment if necessary. Also, by repeating the densification treatment of pitch impregnation or resin impregnation-recarbonization after carbonization, if necessary, a c / c composite material with much better performance can be obtained.

〔実施例〕〔Example〕

実施例1 1000℃で炭化したピツチ系炭素繊維ロービング(3000
フイラメント、繊維径12μ、引張強度170kg/mm2)を45K
Hz、100Wの超音波を作用させている、0.5wt%フエノー
ル樹脂溶液(群栄化学社製レゾール型フエノール樹脂
“レジトツプPL−2211",レジン分55%をエタノールで溶
解希釈)の満された槽内を走行させ、次いで複数のロー
ラを通過させた後ドラムに巻取つた。この処理における
炭素繊維ロービングの走行速度は10m/Hrであり、フエノ
ール樹脂溶液の満された槽内における滞留時間は1minで
あつた。
Example 1 Pitch-based carbon fiber roving carbonized at 1000 ° C. (3000
Filament, fiber diameter 12μ, tensile strength 170kg / mm 2 ) 45K
A tank filled with 0.5 wt% phenol resin solution (Resol type phenol resin "Resitop PL-2211" manufactured by Gunei Chemical Co., Ltd., 55% resin dissolved and diluted with ethanol), which is operated by ultrasonic waves of Hz and 100 W. It was run inside and then passed through a plurality of rollers before being wound on a drum. The running speed of the carbon fiber roving in this treatment was 10 m / Hr, and the residence time in the tank filled with the phenol resin solution was 1 min.

フエノール樹脂溶液を塗布した炭素繊維ロービングは
ドラムに巻取つたまま常温で25Hr風乾した後、全長0.3
m、中心部最高温度200℃の炉内を0.3m/Hrの速度で走行
させて加熱処理を行なつた。
The carbon fiber roving coated with the phenolic resin solution was air-dried at room temperature for 25 hours while still wound on the drum, and then the total length was 0.3.
Heat treatment was carried out by running at a speed of 0.3 m / Hr in a furnace with a central temperature of 200 ° C.

以上の処理の結果得られた炭素繊維ロービングはしな
やかであり、処理前に比べて2.6%の重量増加が有つ
た。また走査型電子顕微鏡で観察した所表面に平均で約
0.3μの厚さの被覆層が認められた。
The carbon fiber roving obtained as a result of the above treatment was supple and had a weight increase of 2.6% compared to before treatment. On the other hand, when observing with a scanning electron microscope,
A 0.3 μ thick coating layer was observed.

次いでこの炭素繊維ロービングを27cmの長さに切り揃
え、マトリツクス前駆物質としてフエノール樹脂(群栄
化学社製“レジトツプPL−2211"、レジン分55%)を含
浸、風乾してプリフオームとした後、厚さ2mm、巾10m
m、長さ230mmの金型内に一方向に引揃えてVf=55%とな
る量を配列し、最高温度250℃、最高圧力80kg/cm2の条
件で成型して成型体を得た。
Then, this carbon fiber roving was cut into pieces each having a length of 27 cm, impregnated with a phenol resin (“Resitop PL-2211” manufactured by Gunei Chemical Co., resin content 55%) as a matrix precursor, air-dried into a preform, and then thickened. 2mm, width 10m
A mold having a length of 230 mm and a length of 230 mm was aligned in one direction and arranged in an amount of Vf = 55%, and molded at a maximum temperature of 250 ° C. and a maximum pressure of 80 kg / cm 2 to obtain a molded body.

成型体はパツキングコークス中に埋め込み1000℃で炭
化してc/c複合材とした後、ピツチ含浸して1000℃で再
炭化する緻密化プロセスを4回繰返し、次いでアルゴン
雰囲気中2000℃の処理を行なつて嵩密度1.67g/cm8の黒
鉛化されたc/c複合材を得た。
The compact is embedded in packing coke and carbonized at 1000 ° C to make a c / c composite material, then impregnated with pitch and re-carbonized at 1000 ° C. This densification process is repeated 4 times and then treated at 2000 ° C in an argon atmosphere. Then, a graphitized c / c composite material having a bulk density of 1.67 g / cm 8 was obtained.

このc/c複合材から長さ45mmおよび20mmの試験片をそ
れぞれ3枚切り出し、スパン間距離40mmおよび10mm、歪
速度2mm/minで3点曲げ試験を行ない、曲げ強度および
層間剪断強度を求めた結果、それぞれ3点の試験片の平
均値として48.9kg/mm2、2.53kg/mm2の値を得た。
From this c / c composite material, three test pieces each having a length of 45 mm and a length of 20 mm were cut out and subjected to a three-point bending test with a span distance of 40 mm and 10 mm and a strain rate of 2 mm / min to obtain bending strength and interlaminar shear strength. result, each of 48.9 kg / mm 2 as an average value of the triangular test piece, to obtain a value of 2.53kg / mm 2.

実施例2 実施例1と同じ条件でフエノール樹脂溶液を塗布し、
加熱処理して得られた炭素繊維ロービングを、フエノー
ル樹脂溶液濃度を1.5wt%とした他は実施例1と同じ条
件で再びフエノール樹脂溶液の塗布および加熱処理をし
た。この結果得られた炭素繊維ロービングはしなやかさ
を残しており、最初に用意した処理前の炭素繊維ロービ
ングに比べて7.8%の重量増加があつた。また、走査型
電子顕微鏡での観察により表面に平均で約0.7μの厚さ
の被覆層が認められた。
Example 2 A phenol resin solution was applied under the same conditions as in Example 1,
The carbon fiber roving obtained by the heat treatment was applied again with the phenol resin solution and heat treated under the same conditions as in Example 1 except that the concentration of the phenol resin solution was 1.5 wt%. The resulting carbon fiber roving remained pliable, with a 7.8% weight gain over the initially prepared untreated carbon fiber roving. In addition, observation with a scanning electron microscope revealed a coating layer having an average thickness of about 0.7 μm on the surface.

この炭素繊維ロービングを実施例1と同じ条件でフエ
ノール樹脂含浸、成型、炭化、緻密化、黒鉛化を行ない
嵩密度1.69g/cm2のc/c複合材を得た。このc/c複合材に
つき実施例1と同様にして曲げ強度、層間剪断強度を求
めた結果、それぞれ56.4kg/mm2、2.59kg/mm2の値を得
た。
This carbon fiber roving was impregnated with a phenol resin, molded, carbonized, densified and graphitized under the same conditions as in Example 1 to obtain a c / c composite material having a bulk density of 1.69 g / cm 2 . The c / c flexural strength in the same manner as in Example 1 per composite result of obtaining an interlayer shear strength, respectively 56.4 kg / mm 2, to obtain a value of 2.59 kg / mm 2.

比較例1 実施例1で使用したものと同じ炭素繊維ロービングを
フエノール樹脂溶液の塗布を行なうことなく使用して、
実施例1と同じ条件でフエノール樹脂含浸、成型、炭
化、緻密化を行ない嵩密度1.69g/cm3のc/c複合材を得
た。
Comparative Example 1 Using the same carbon fiber roving as that used in Example 1 without applying the phenolic resin solution,
Under the same conditions as in Example 1, the resin was impregnated, molded, carbonized, and densified to obtain a c / c composite material having a bulk density of 1.69 g / cm 3 .

このc/c複合材につき実施例1と同様にして曲げ強
度、層間剪断強度を求めた結果、それぞれ37.3kg/mm2
1.99kg/mm2の値を等た。
The bending strength and the interlaminar shear strength of the c / c composite material were determined in the same manner as in Example 1, and the result was 37.3 kg / mm 2 , respectively.
A value of 1.99 kg / mm 2 was set.

比較例2 フエノール樹脂溶液の濃度を5wt%とした他は実施例
1と同じ条件でフエノール樹脂溶液の塗布を行ない、次
いで加熱処理を行なつたが得られた炭素繊維ロービング
は固い棒状であつた。この炭素繊維ロービングを走査型
電子顕微鏡で観察した所各単繊維の間がフエノール樹脂
で埋つている部分が多数観察された。観察した部分の、
炭素繊維の数・径とフエノール樹脂の占める面積から計
算した平均的な被覆層の厚さは4.6μの値となつた。次
いで、この炭素繊維ロービングを実施例1と同じ条件で
フエノール樹脂含浸、成型、炭化してみたが得られたc/
c複合材は長さ方向にねじれを生じており、かつ炭素繊
維ロービング間のマトリツクス炭素部分に亀裂が認めら
れた。
Comparative Example 2 The phenol resin solution was applied under the same conditions as in Example 1 except that the concentration of the phenol resin solution was 5 wt%, followed by heat treatment. The obtained carbon fiber roving was a solid rod shape. . When this carbon fiber roving was observed with a scanning electron microscope, a large number of portions in which each single fiber was filled with a phenol resin were observed. Of the observed part,
The average thickness of the coating layer calculated from the number and diameter of carbon fibers and the area occupied by the phenol resin was 4.6 μ. Then, this carbon fiber roving was impregnated with a phenol resin under the same conditions as in Example 1, molded, and carbonized.
The c-composite material was twisted in the longitudinal direction, and cracks were observed in the matrix carbon portion between the carbon fiber rovings.

〔発明の効果〕〔The invention's effect〕

本発明方法によれば、炭素繊維とマトリツクス前駆物
質の濡れ性、接着性を向上させ、優れた性能のc/c複合
材を得ることができる。
According to the method of the present invention, the wettability and adhesiveness of the carbon fiber and the matrix precursor can be improved, and a c / c composite material having excellent performance can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱硬化性樹脂溶液を炭素繊維に塗布し、50
〜300℃の温度で加熱処理することにより該熱硬化性樹
脂を熱硬化して表面に平均厚さ0.2〜3μの熱硬化性樹
脂の被覆層を有する炭素繊維を形成し、 得られた該熱硬化性樹脂被覆炭素繊維にマトリックス前
駆物質を含浸または混合した後、成型し、次いで焼成処
理することを特徴とする炭素繊維強化炭素複合材の製造
方法。
1. A thermosetting resin solution is applied to carbon fibers to form 50
The thermosetting resin is heat-cured by heat treatment at a temperature of ˜300 ° C. to form a carbon fiber having a coating layer of the thermosetting resin having an average thickness of 0.2˜3 μ on the surface thereof. A method for producing a carbon fiber-reinforced carbon composite material, which comprises impregnating or mixing a curable resin-coated carbon fiber with a matrix precursor, followed by molding and then firing treatment.
【請求項2】熱硬化性樹脂がフェノール樹脂であること
を特徴とする特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the thermosetting resin is a phenol resin.
【請求項3】熱硬化性樹脂溶液の濃度が5重量%以下で
あることを特徴とする特許請求の範囲第1項記載の方
法。
3. The method according to claim 1, wherein the concentration of the thermosetting resin solution is 5% by weight or less.
JP61252633A 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material Expired - Lifetime JPH0829987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61252633A JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61252633A JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPS63107862A JPS63107862A (en) 1988-05-12
JPH0829987B2 true JPH0829987B2 (en) 1996-03-27

Family

ID=17240068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61252633A Expired - Lifetime JPH0829987B2 (en) 1986-10-23 1986-10-23 Method for producing carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH0829987B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100352B2 (en) * 1987-03-02 1995-11-01 イビデン株式会社 Method for manufacturing fiber-reinforced composite material
JP2743397B2 (en) * 1988-04-28 1998-04-22 三菱化学株式会社 Carbon fiber reinforced carbon composite material and method of using the same
JPH02141452A (en) * 1988-11-24 1990-05-30 Shinagawa Refract Co Ltd Refractory containing carbon
WO2017170024A1 (en) * 2016-03-31 2017-10-05 コニカミノルタ株式会社 Three-dimensionally shaped product production method and production device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439843A (en) * 1977-09-06 1979-03-27 Fuji Electric Co Ltd Ac power source
JPS5935841A (en) * 1982-08-21 1984-02-27 Nitto Shoko Kk Wire straightener
JPS5935069A (en) * 1982-08-23 1984-02-25 川崎製鉄株式会社 Manufacture of carbon-containing refractories
GB2151221B (en) * 1983-12-14 1987-09-23 Hitco High strength oxidation resistant carbon/carbon composites

Also Published As

Publication number Publication date
JPS63107862A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
US3936535A (en) Method of producing fiber-reinforced composite members
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
US10336655B2 (en) Process for producing shaped bodies of carbon fiber reinforced carbon
CN102659441A (en) Composite structure prestressed tendon reinforced ceramic matrix composite and producing method thereof
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0242790B2 (en)
JP2625783B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH0143621B2 (en)
JP2743397B2 (en) Carbon fiber reinforced carbon composite material and method of using the same
JPH0455991B2 (en)
JPS6316357B2 (en)
JPH02167859A (en) Production of carbon fiber-reinforced carbon composite material
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JP2699443B2 (en) Carbon fiber reinforced carbon composite material bonded to metal and method for producing the same
JPH03197362A (en) Production of carbon fiber-reinforced carbon composite material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JPH068214B2 (en) Carbon fiber reinforced carbon composite material
JPH03247566A (en) Production of carbon fiber-reinforced carbon material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term