JPH03197362A - Production of carbon fiber-reinforced carbon composite material - Google Patents

Production of carbon fiber-reinforced carbon composite material

Info

Publication number
JPH03197362A
JPH03197362A JP1337082A JP33708289A JPH03197362A JP H03197362 A JPH03197362 A JP H03197362A JP 1337082 A JP1337082 A JP 1337082A JP 33708289 A JP33708289 A JP 33708289A JP H03197362 A JPH03197362 A JP H03197362A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
surface treatment
treatment
carbonizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337082A
Other languages
Japanese (ja)
Inventor
Takatoo Mizoguchi
溝口 孝遠
Akira Kiuchi
木内 晃
Ikuo Iwata
岩田 育穂
Noboru Nakao
昇 中尾
Morihiko Sugino
守彦 杉野
Yoshio Inoue
井上 良男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1337082A priority Critical patent/JPH03197362A/en
Publication of JPH03197362A publication Critical patent/JPH03197362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbon fiber-reinforced carbon composite material having high density and excellent flexural strength, etc., by preparing a prepreg by using a carbon fiber with no surface treatment, subjecting to a carbonizing treatment, further impregnating with a carbonizable material applying a hot hydrostatic pressure and carbonizing. CONSTITUTION:A carbon fiber aggregate composed of carbon fiber with no surface treatment and generating functional group such as carboxyl group or hydroxyl group, or carbon fiber having no functional group generated by a surface treatment, is prepared. In the next, said carbon fiber aggregate and a carbonizable material (e.g. phenolic resin) are used to form a prepreg, and the carbonizable material is carbonized. Then, a resultant prepreg is further impregnated with a carbonizable material same as or different from the above- mentioned carbonizable material by a hot hydrostatic pressure treatment and the carbonizable material is carbonized to afford the objective highly densified carbon fiber-reinforced carbon composite material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維と炭化性物質からなるプリプレグに更
に炭化性物質を含浸させた後、該炭化性物質を炭化する
ことによって高密度の炭素繊維強化炭素複合材料(以下
C/C複合材料と略す)を製造する方法に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention impregnates a prepreg made of carbon fibers and a carbonizable material with a carbonizable material, and then carbonizes the carbonizable material to produce high-density carbon. The present invention relates to a method for manufacturing a fiber-reinforced carbon composite material (hereinafter abbreviated as C/C composite material).

[従来の技術] C/C複合材料は比強度が高い他、耐熱性に優れており
、特に1500℃以上における強度特性は他に例をみな
い、そこで、これらの特性を利用して航空・宇宙分野に
おける耐熱材料として使用されている。
[Prior art] C/C composite materials have high specific strength and excellent heat resistance, and their strength characteristics especially at temperatures above 1500°C are unparalleled. Used as a heat-resistant material in the space field.

C/C複合材料は通常第1図に示す工程を経て製造され
る。即ち、炭素繊維集合体と炭化性物質、例えば熱硬化
性高分子材料或はピッチ等を、例えば含浸等の方法によ
って複合化させることによりプリプレグを作製する。つ
いで該プリプレグを積層して多層体を作り、加圧成形に
より一体化した後、焼成して炭化性物質を炭化或は更に
進んで黒鉛化してC/C複合材料を製造する。尚、必要
があれば上記炭化性物質と同一または異なる炭化性物質
の含浸と炭化或は黒鉛化を繰り返し密度の向上が図られ
ることもある。
C/C composite materials are normally manufactured through the steps shown in FIG. That is, a prepreg is produced by combining a carbon fiber aggregate and a carbonizable substance, such as a thermosetting polymer material or pitch, by a method such as impregnation. Next, the prepregs are laminated to form a multilayer body, which is integrated by pressure molding, and then fired to carbonize the carbonizable material or further graphitize it to produce a C/C composite material. Incidentally, if necessary, the density may be improved by repeating impregnation with a carbonizable substance that is the same as or different from the above carbonizable substance and carbonization or graphitization.

ところで、炭素繊維集合体を構成する炭素繊維としては
、通常カルボキシル基や水酸基等の官能基を生成させる
表面処理の施された炭素繊維が用いられ、炭素繊維とマ
トリックスの接着性の向上図られている。しかしこの場
合には前記熱処理時に炭化性物質が熱分解することによ
って体積が収縮する為、炭素繊維とマトリックスの界面
に熱応力が発生する。その結果界面に割れが生じ易くな
り、割れが内部に生じた場合にはその後含浸処理によっ
ても割れを埋めることはできず強度低下の原因となる。
By the way, as the carbon fibers constituting the carbon fiber aggregate, carbon fibers that have been surface-treated to produce functional groups such as carboxyl groups and hydroxyl groups are usually used to improve the adhesion between the carbon fibers and the matrix. There is. However, in this case, the volume shrinks due to thermal decomposition of the carbonizable substance during the heat treatment, so thermal stress is generated at the interface between the carbon fiber and the matrix. As a result, cracks are likely to occur at the interface, and if cracks occur inside, the cracks cannot be filled even with subsequent impregnation treatment, resulting in a decrease in strength.

そこで上記官能基を生成させるための表面処理を施して
いない、又は該表面処理によっていったん生成した官能
基を取り除いた炭素繊維を用いて熱処理時の割れを防止
することも試みられている。しかしこの場合には炭素繊
維とマトリックスの接着性が悪く、高密度化処理の行な
われていないC/C複合材料の場合は曲げ試験を行なう
と圧縮側で繊維の座屈による破壊が生じ、表面処理を施
していない炭素繊維を用いた場合より強度が低くなると
いう欠点を有している。そこで前述の如く高密度化を図
って含浸・炭化処理を繰り返すことも検討されているが
、現状では時間を要する割には、十分な高密度化を達成
することが難しいとされている。
Therefore, attempts have been made to prevent cracking during heat treatment by using carbon fibers that have not been subjected to surface treatment to generate the above-mentioned functional groups, or from which functional groups once generated by the surface treatment have been removed. However, in this case, the adhesion between the carbon fibers and the matrix is poor, and in the case of C/C composite materials that have not been subjected to densification treatment, when a bending test is performed, fracture occurs due to fiber buckling on the compression side, and the surface This has the disadvantage that the strength is lower than when untreated carbon fiber is used. Therefore, as mentioned above, it has been considered to repeat the impregnation and carbonization treatment to increase the density, but it is currently considered difficult to achieve a sufficient increase in density despite the time it takes.

[発明が解決しようとする課題] 本発明は炭素繊維とマトリックスの間に割れの生じにく
い、即ち表面処理の施されていない、又は表面処理によ
り生成した官能基を取り除いた炭素繊維を用いる方法に
おいて、C/C複合材料を効果的に高密度化する方法を
提供し、ひいては優れた強度を有するC/C複合材料の
製造方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention provides a method using carbon fibers that are less likely to cause cracks between the carbon fibers and the matrix, that is, carbon fibers that have not been subjected to surface treatment or from which functional groups generated by surface treatment have been removed. The present invention aims to provide a method for effectively densifying a C/C composite material, and furthermore, to provide a method for manufacturing a C/C composite material having excellent strength.

[課題を解決するための手段] 本発明のC/C複合材料の製造方法は、官能基を生成さ
せる表面処理を施していない、又は前記表面処理によっ
て生成した官能基を取り除いた炭素繊維より成る炭素繊
維集合体と炭化性物質を用いてプリプレグを作った後、
該炭化性物質を炭化させ、更に前記炭化性物質と同一ま
たは異なる炭化性物質を含浸しこれを炭化させて炭素複
合材料を製造する方法において、該炭化性物質の含浸を
熱間静水圧加圧処理により行なうことに要旨かある。
[Means for Solving the Problems] The method for producing a C/C composite material of the present invention comprises carbon fibers that have not been subjected to a surface treatment that generates functional groups, or that are made of carbon fibers from which functional groups generated by the surface treatment have been removed. After making prepreg using carbon fiber aggregate and carbonizable material,
In a method of manufacturing a carbon composite material by carbonizing the carbonizable substance, further impregnating the carbonizable substance with the same or different carbonizable substance, and carbonizing the same, the impregnation with the carbonizable substance is carried out by hot isostatic pressing. The gist lies in what is done through processing.

[作用及び実施例] 本発明に用いられる炭素繊維としては、官能基を生成さ
せる表面処理の施されていない、又は該表面処理により
生成した官能基を取り除いたPAN系或はピッチ系等の
炭素繊維が用いられる。生成した官能基を取り除く方法
としては、例えば不活性ガス雰囲気下で1000℃以上
に加熱する方法等がある。
[Operations and Examples] Carbon fibers used in the present invention include PAN-based or pitch-based carbon that has not been subjected to surface treatment to generate functional groups, or that has had functional groups generated by the surface treatment removed. Fibers are used. As a method for removing the generated functional groups, there is, for example, a method of heating to 1000° C. or higher in an inert gas atmosphere.

炭化性物質としては特に限定されず、フェノール樹脂や
エポキシ樹脂、フラン樹脂等の熱硬化性高分子樹脂或は
ピッチ類が適宜用いられ、必要により熱可塑性高分子樹
脂を併用することもある。
The carbonizable substance is not particularly limited, and thermosetting polymer resins such as phenol resins, epoxy resins, and furan resins, or pitches are used as appropriate, and thermoplastic polymer resins may be used in combination if necessary.

本発明の製造過程において採用される方法、即ちプリプ
レグの作製方法や積層方法、炭化処理条件、黒鉛化処理
条件等は特に限定されるものではなく常法により行なわ
れる。
The methods employed in the manufacturing process of the present invention, ie, prepreg manufacturing method, lamination method, carbonization treatment conditions, graphitization treatment conditions, etc., are not particularly limited and may be carried out by conventional methods.

本発明は高密度化の為に繰り返し行なわれる含浸・炭化
(黒鉛化まで進行する場合を含む)工程における含浸処
理の条件を特定したことを要点とするものである。そこ
で以下、実施例に基づいて含浸処理における熱間静水圧
加圧処理の好適条件及び作用について説明する。
The main point of the present invention is to specify the conditions for impregnation treatment in the impregnation/carbonization (including the case where it progresses to graphitization) process that is repeatedly performed for densification. Therefore, the preferred conditions and effects of the hot isostatic pressing treatment in the impregnation treatment will be described below based on Examples.

実施例1及び比較例1.2 第1表に示す3 f1類の条件でピッチによる含浸処理
と炭化処理を繰り返し行ないC/C複合材料を作製し、
その時の密度と曲げ強度を測定した。
Example 1 and Comparative Example 1.2 A C/C composite material was prepared by repeatedly performing pitch impregnation treatment and carbonization treatment under the conditions of 3 f1 shown in Table 1.
The density and bending strength at that time were measured.

第  1  表 炭化性物X:フェノール樹脂 炭素繊維 ;高弾性繊維 炭素繊維集合体:平織りクロス 第2図に密度と含浸回数の関係を示す0図に示されるよ
うに高圧で含浸処理を行なった実施例1では大気圧で含
浸処理を行なった比較例1よりもかなりの高密度化が可
能であった。また同じ高圧下含浸であっても、表面処理
を施していない炭素!amを用いた実施例1の方が表面
処理を施した比較例2よりも高密度化が可能であった。
1st Table Carbonizable material In Example 1, it was possible to achieve a considerably higher density than in Comparative Example 1, in which the impregnation treatment was carried out at atmospheric pressure. Also, even though it is impregnated under the same high pressure, carbon without surface treatment! In Example 1 using am, higher density was possible than in Comparative Example 2 in which surface treatment was performed.

この原因は実施例1では炭素繊維とマトリックスの接着
性が悪い為、炭化過程でマトリックスが収縮した際に両
者の界面に微細な空隙が一様に生じ、該空隙に高圧下で
ピッチが含浸したのに対し、比較例2では炭素繊維とマ
トリックスの接着性が良いため、炭化過程での割れが界
面に局部的に生じ、高圧下で含浸処理を行なっても内部
に生じた割れにはピッチが浸入できなかった為であると
考えられる。
The reason for this is that in Example 1, the adhesion between the carbon fiber and the matrix was poor, and when the matrix contracted during the carbonization process, fine voids were uniformly formed at the interface between the two, and the voids were impregnated with pitch under high pressure. On the other hand, in Comparative Example 2, the adhesion between the carbon fiber and the matrix is good, so cracks occur locally at the interface during the carbonization process, and even if impregnation treatment is performed under high pressure, the cracks that occur inside are not caused by pitch. This is thought to be because they were unable to penetrate.

第3図に曲げ強度と密度の関係を示す、密度が低いとき
には表面処理を施したものの方が強度が高いが、密度が
高くなると表面処理を施さないものの方が強度が高くな
る。これは表面処理を施さないものは、密度が低い時に
は炭素繊維とマトリックスの接着力が弱いので座屈を生
じるが、密度が高くなるにつれて物理的補強により強度
が増加するのに対して、表面処理を施したものは、接着
力が強いため密度が低いときでもあまり座屈を生じない
が、密度が高くなっても物理的補強効果が少なくあまり
曲げ強度が増加しない為、ある程度以上高密度になった
ときには表面処理を施さないものの方が曲げ強度が高く
なったものと考えられる。
FIG. 3 shows the relationship between bending strength and density. When the density is low, the surface-treated material has higher strength, but as the density increases, the surface-treated material has higher strength. This is because when the density is low, the adhesive force between the carbon fibers and the matrix is weak in the case of non-surface-treated carbon fibers, which causes buckling, but as the density increases, the strength increases due to physical reinforcement, whereas the surface-treated Since the adhesive strength is strong, buckling does not occur much even when the density is low, but even when the density becomes high, the physical reinforcement effect is small and the bending strength does not increase much, so the density becomes higher than a certain point. It is thought that the bending strength of the specimen without surface treatment was higher than that of the specimen without surface treatment.

以上のことより、表面処理を施していない炭素繊維を用
いる場合には高密度化する必要があり、高密度化するた
めには静水圧加圧処理がたいへん有効であることがわか
る。
From the above, it can be seen that when carbon fibers without surface treatment are used, it is necessary to increase the density, and hydrostatic pressure treatment is very effective for increasing the density.

実施例2.3及び4 実施例1の含浸圧力のみを変えてC/C複合材料を作製
した。含浸圧力は夫々10気圧(実施例2)、100気
圧(実施例3)、2000気圧(実施例4)とした、第
4図に実施例キ及び比較例中における各々の密度と含浸
回数の関係を示す。第4図より、100気圧でもかなり
効果がある一方、1000気圧以上は含浸圧力を上げて
も効果が小さいことがわかる。また10気圧でも大気圧
よりはかなり改善されている。
Examples 2.3 and 4 C/C composite materials were produced by changing only the impregnation pressure in Example 1. The impregnation pressure was 10 atm (Example 2), 100 atm (Example 3), and 2000 atm (Example 4), respectively. Figure 4 shows the relationship between density and number of impregnations in Example K and Comparative Example. shows. From FIG. 4, it can be seen that while the impregnation pressure is quite effective even at 100 atm, the effect is small above 1000 atm even if the impregnation pressure is increased. Also, even at 10 atmospheres, it is considerably improved compared to atmospheric pressure.

[発明の効果] 熱間静水圧加圧処理によりC/C複合材料を高密度化す
ることが可能となり、表面処理を施していない炭素繊維
と組み合わせることによって優れた曲げ強度を有するC
/C複合材料を提供することが可能となった。
[Effects of the invention] Hot isostatic pressing makes it possible to increase the density of the C/C composite material, and by combining it with carbon fibers that have not been subjected to surface treatment, C/C has excellent bending strength.
/C composite material can now be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はC/C複合材料の製造工程を示すブロック図、
第2図は製造条件が異なる場合の含浸回数と密度の関係
を示すグラフ、第3図は密度と曲げ強度の関係を示すグ
ラフ、第4図は含浸圧力が異なる場合の含浸回数と密度
の関係を示すグラフである。
Figure 1 is a block diagram showing the manufacturing process of C/C composite material.
Figure 2 is a graph showing the relationship between the number of impregnations and density when the manufacturing conditions are different, Figure 3 is a graph showing the relationship between density and bending strength, and Figure 4 is the relationship between the number of impregnations and density when the impregnation pressure is different. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] 官能基を生成させる表面処理を施していない、又は前記
表面処理によって生成した官能基を取り除いた炭素繊維
より成る炭素繊維集合体と炭化性物質を用いてプリプレ
グを作った後、該炭化性物質を炭化させ、更に前記炭化
性物質と同一または異なる炭化性物質を含侵しこれを炭
化させて炭素複合材料を製造する方法において、該炭化
性物質の含浸を熱間静水圧加圧処理により行なうことを
特徴とする炭素繊維強化炭素複合材料の製造方法。
After making a prepreg using a carbonizable material and a carbon fiber aggregate made of carbon fibers that have not been subjected to surface treatment to generate functional groups or from which functional groups generated by the surface treatment have been removed, the carbonizable material is In the method of producing a carbon composite material by carbonizing the material, and further impregnating it with a carbonizing substance that is the same as or different from the carbonizing substance, and carbonizing the same, the impregnation with the carbonizing substance is carried out by hot isostatic pressure treatment. A method for producing a carbon fiber-reinforced carbon composite material.
JP1337082A 1989-12-25 1989-12-25 Production of carbon fiber-reinforced carbon composite material Pending JPH03197362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337082A JPH03197362A (en) 1989-12-25 1989-12-25 Production of carbon fiber-reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337082A JPH03197362A (en) 1989-12-25 1989-12-25 Production of carbon fiber-reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPH03197362A true JPH03197362A (en) 1991-08-28

Family

ID=18305268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337082A Pending JPH03197362A (en) 1989-12-25 1989-12-25 Production of carbon fiber-reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH03197362A (en)

Similar Documents

Publication Publication Date Title
US5071700A (en) Carbon fiber-reinforced carbon composite material
US5057254A (en) Process for producing carbon/carbon composites
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH03150266A (en) Production of carbon/carbon composite material
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JPH03197362A (en) Production of carbon fiber-reinforced carbon composite material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JP2002255664A (en) C/c composite material and production method therefor
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3109928B2 (en) Method for producing carbon fiber reinforced carbon composite material
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
KR0143614B1 (en) A method for densifying a multi-direction proform of carbon fiber
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material
JPH03197363A (en) Production of carbon fiber-reinforced carbon composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPH05139832A (en) Production of carbon material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JP2000264744A (en) Production of laminated body comprising carbon/carbon composite material