JPS63294621A - Manufacture of oxide superconductor thin film - Google Patents
Manufacture of oxide superconductor thin filmInfo
- Publication number
- JPS63294621A JPS63294621A JP62129541A JP12954187A JPS63294621A JP S63294621 A JPS63294621 A JP S63294621A JP 62129541 A JP62129541 A JP 62129541A JP 12954187 A JP12954187 A JP 12954187A JP S63294621 A JPS63294621 A JP S63294621A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- oxide
- oxides
- oxide superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 23
- 239000002887 superconductor Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000758 substrate Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims 2
- 229910052772 Samarium Inorganic materials 0.000 claims 2
- 229910052775 Thulium Inorganic materials 0.000 claims 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- 238000001771 vacuum deposition Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910002976 CaZrO3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910017702 MgZr Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001602 chrysoberyl Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高い臨界磁場を有する酸化物超伝導体薄膜の作
製方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconductor thin film having a high critical magnetic field.
Y−Ba−Cu酸化物をはじめ、電気抵抗が完全に零と
なる温度(以下Tcと略す)が90Kをこえる材料を薄
膜化することは高感度磁束計(いわゆる5QUID)、
電磁波検出および電子計算機回路等に幅広い応用が可能
なジョセフソン素子を作る上できわめて重要である。ま
たこれらの薄膜が得られれば液体窒素中で使用する集積
回路の配線として使用することができ、集積回路の高速
化、高密度化が期待できる。Making thin films of materials such as Y-Ba-Cu oxide whose temperature at which the electrical resistance becomes completely zero (hereinafter abbreviated as Tc) exceeds 90K is a method of using a high-sensitivity magnetometer (so-called 5QUID).
This is extremely important in creating Josephson devices that can be widely applied to electromagnetic wave detection and electronic computer circuits. Moreover, if these thin films can be obtained, they can be used as wiring for integrated circuits used in liquid nitrogen, and it is expected that integrated circuits will become faster and more dense.
ところが90Kを越える酸化物超伝導材料の構成元素の
中には活性はBaさらに希土°類が入っており、薄膜を
作製した際に基板と反応し、酸化物超伝導体中に基板材
料が溶は込んだり、酸化物超伝導材料に組成ずれを生じ
たりしてTcが60に程度に低下する欠点を有していた
(鈴木他 昭和62年度春期第34回応用物理学会超伝
導ワークシ目ツブ)。However, among the constituent elements of the oxide superconducting material that exceeds 90K, there is active Ba and rare earths, which react with the substrate when a thin film is made, and the substrate material is mixed into the oxide superconductor. It had the disadvantage that Tc decreased to about 60 due to melt penetration and compositional deviation in the oxide superconducting material (Suzuki et al. ).
本発明の目的は高温超伝導体薄膜が基板と反応し、臨界
温度Tcが低下する点を解決した高臨界温度Tcを有す
る高温超伝導薄膜の製造方法を提供することにある。An object of the present invention is to provide a method for manufacturing a high-temperature superconducting thin film having a high critical temperature Tc, which solves the problem that the high-temperature superconducting thin film reacts with a substrate and lowers the critical temperature Tc.
C問題点を解決するための手段〕
本発明は、Baや希土類と反応しない化学的に安定なM
gO,Bed、 CaZr0.、 BeZrOs、 M
gZrOs、 CaAlzOa。Means for Solving Problem C] The present invention provides chemically stable M that does not react with Ba or rare earths.
gO, Bed, CaZr0. , BeZrOs, M
gZrOs, CaAlzOa.
BeA1.O,のいずれか一つの基板上にスパッタ法あ
るいは蒸着法で高温超伝導薄膜を形成することを最も主
要な特徴とする。従来の技術とは、使用する基板が異な
る。BeA1. The most important feature is that a high temperature superconducting thin film is formed on any one of the substrates by sputtering or vapor deposition. The substrate used is different from the conventional technology.
(実施例1)
Y、 Ba、 Cuをそれぞれ1:2:3の原子比で莫
着装置のWボート中へ入れ、Si基基板1英英基板サフ
ァイヤ基板、 MgO基板、 BeO基板、 CaZr
0z基板、 BeZrOs基板、 MgZrO3基板、
CaAlz04基板。(Example 1) Y, Ba, and Cu were put into a W boat of a bonding device at an atomic ratio of 1:2:3, respectively, and were prepared by placing a Si-based substrate, an English-English substrate, a sapphire substrate, an MgO substrate, a BeO substrate, and a CaZr substrate.
0z substrate, BeZrOs substrate, MgZrO3 substrate,
CaAlz04 substrate.
BeA1z04基板上へ全量蒸着する。The entire amount is evaporated onto the BeA1z04 substrate.
なお、Y、 Ba、 Cuの組成比は原子比でそれぞれ
10〜20%、20〜40%、40〜60%の組成範囲
で全量100%となるような組成であればY、 Ba、
Cuをそれぞれ1:2:3とした場合とほぼ同等であ
る。Note that the composition ratios of Y, Ba, and Cu are such that the total amount is 100% in the composition range of 10 to 20%, 20 to 40%, and 40 to 60% in atomic ratio, respectively.
This is almost equivalent to the case where the Cu ratio is 1:2:3, respectively.
こうして作製した薄膜を、酸素を流した炉の中で900
°Cで30分間熱処理することにより酸化物薄膜とし、
これをゆっくり室温まで温度を下げる。なお熱処理温度
は700″C以上でないと効果がない。The thin film thus prepared was placed in an oxygen-filled furnace for 900 min.
An oxide thin film is formed by heat treatment at °C for 30 minutes,
Slowly lower the temperature to room temperature. Note that there is no effect unless the heat treatment temperature is 700''C or higher.
この結果得られたY+BazCu:+Ox (x 〜7
)の薄膜の臨界温度Tcを表1に示す、St基板では
超伝導を示さず、石英基板サファイヤ基板ではそれぞれ
30に、65にであるのに対し、MgO基板、 Be
O基板、 CaZrO3基板、 BeZr0.基板、
MgZr0.基板。The resulting Y+BazCu:+Ox (x ~7
) is shown in Table 1. The St substrate does not show superconductivity, and the quartz and sapphire substrates have a critical temperature Tc of 30 and 65, respectively, whereas the MgO substrate and the Be
O substrate, CaZrO3 substrate, BeZr0. substrate,
MgZr0. substrate.
CaA1.O,基板、 BeAl2O4基板では87〜
90にのTcを示した。これらの結果から明らかなよう
に酸化物超伝導体Fi1mのTcは上記の基板を用いる
ことにより、87〜90にという高い値が得られるこ表
1
(実施例2)
BeO基板上に表2に示す各種組成のターゲットを用い
てスパッタ法により薄膜を形成した。BeO基板を70
0″Cに加熱し、アルゴンと酸素の混合ガス(Ar:0
2= 1 : 1 )を3Paの圧力にしてtoowの
出力で行った。CaA1. O, substrate, 87~ for BeAl2O4 substrate
It showed a Tc of 90. As is clear from these results, the Tc of the oxide superconductor Fi1m can be as high as 87 to 90 by using the above substrate. Thin films were formed by sputtering using targets with the various compositions shown. 70 BeO substrates
Heated to 0″C, mixed gas of argon and oxygen (Ar:0
2=1:1) at a pressure of 3 Pa and an output of too much.
このようにして作製した各種薄膜のTcを表2に示す。Table 2 shows the Tc of various thin films produced in this manner.
すべて85〜90にの高いTcが得られる。A high Tc of 85-90 can be obtained in all cases.
なおここで用いる基板としてSt基板で行うと全く超伝
導を示さず、石英基板では40に以下、サファイア基板
では70に以下のTCLか示さなかった一方表1に示し
たその他の基板ではBeO基板を用いた時と同様に良好
な特性が得られた。Note that when using the St substrate as the substrate used here, no superconductivity was shown at all; the quartz substrate showed a TCL of less than 40, and the sapphire substrate showed a TCL of less than 70. On the other hand, for the other substrates shown in Table 1, the BeO substrate showed no superconductivity. Good characteristics were obtained as in the case of use.
表 2
なお、ターゲットとしては表2に示したものも含め一般
的にはSc、 Y、 La、 Ce、 Pr、 Nd、
Pm、 Ss。Table 2 In addition, the targets include those shown in Table 2, and generally include Sc, Y, La, Ce, Pr, Nd,
Pm, Ss.
Eu、 Gd、Tb、口3’+ Ha、 Er、 Tj
+、 yb、 Lu、^lの酸化物のうち一種または複
数種、Ca、 Sr、 Baの酸化物のうち一種または
複数種およびCuの酸化物を原子比で各々10〜20%
、20〜40%、40〜60%の組成範囲で全量で10
0%となる酸化物の混合体を酸素を含む雰囲気中で焼成
したターゲットを用いることができる。Eu, Gd, Tb, mouth 3'+ Ha, Er, Tj
+, yb, Lu, one or more oxides of ^l, one or more oxides of Ca, Sr, Ba, and oxide of Cu in an atomic ratio of 10 to 20% each.
, 20-40%, 40-60% composition range, total amount 10
A target obtained by firing a mixture of oxides with a concentration of 0% in an atmosphere containing oxygen can be used.
(実施例3)
BeO基板上に電子ビーム蒸着装置により、YtOx、
BaO+ Cuの順に原子比で1:2:3となるように
蒸着する。この際各々10〜20%、20〜40%、4
0〜60%で全1100%になる組成範囲に入っていれ
ば特性上問題ない、このように作製した薄膜を900℃
で30分間、大気中で熱処理した後、ゆっくり室温まで
温度を下げる。(Example 3) YtOx,
BaO+Cu are deposited in this order at an atomic ratio of 1:2:3. At this time, 10-20%, 20-40%, 4
There is no problem in terms of properties as long as the composition is within the range of 0 to 60%, making the total 1100%.
After heat treatment in the air for 30 minutes, the temperature was slowly lowered to room temperature.
上記の方法で約89にのTcを有する酸化物超伝導体薄
膜が得られた。An oxide superconductor thin film having a Tc of about 89 was obtained by the above method.
以上説明したように基板として化学的に安定なMgO,
Bed、 CaZr0z、 BeZrOs、 MgZr
O3,CaAlzOn。As explained above, MgO, which is chemically stable as a substrate,
Bed, CaZr0z, BeZrOs, MgZr
O3, CaAlzOn.
BeA1z04のいずれか一つの基板を用いて酸化物超
伝導体薄膜を作製することにより、酸化物超伝導体と基
板の反応が抑えられることから、高い臨界温度を有する
酸化物超伝導体薄膜が得られる。By producing an oxide superconductor thin film using any one of the substrates of BeA1z04, the reaction between the oxide superconductor and the substrate can be suppressed, so an oxide superconductor thin film with a high critical temperature can be obtained. It will be done.
Claims (2)
3、MgZrO_3、CaAl_2O_4、BeAl_
2O_4のいずれか一つの基板上にSc、Y、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy
、Ho、Er、Tm、Yb、Lu、Alの元素またはそ
の酸化物のうち一種または複数種、Ca、Sr、Baの
元素またはその酸化物のうち一種または複数種およびC
uを原子比で各々10〜20%、20〜40%、40〜
60%の組成範囲で全量で100%となる組成の薄膜を
真空蒸着法によって形成した後、酸素を含む雰囲気中で
熱処理して、前記薄膜を酸化物薄膜にすることを特徴と
する酸化物超伝導体薄膜の製造方法。(1) MgO, BeO, CaZrO_3, BeZrO_
3, MgZrO_3, CaAl_2O_4, BeAl_
Sc, Y, La, C on any one substrate of 2O_4
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy
, Ho, Er, Tm, Yb, Lu, Al, one or more of the elements or their oxides, one or more of the elements Ca, Sr, Ba or their oxides, and C
The atomic ratio of u is 10 to 20%, 20 to 40%, and 40 to 40%, respectively.
An oxide super thin film characterized by forming a thin film having a composition of 100% in a composition range of 60% by a vacuum evaporation method, and then heat-treating the thin film in an oxygen-containing atmosphere to turn the thin film into an oxide thin film. Method for manufacturing conductor thin film.
3、MgZrO_3、CaAl_2O_4、BeAl_
2O_4のいずれか一つの基板上にSc、Y、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy
、Ho、Er、Tm、Yb、Lu、Alの酸化物のうち
一種または複数種、Ca、Sr、Baの酸化物のうち一
種または複数種およびCuの酸化物を原子比で各々10
〜20%、20〜40%、40〜60%の組成範囲で全
量で100%となる酸化物の混合体を酸素を含む雰囲気
中で焼成したターゲットを用いて、酸素を含むガス中で
スパッタリングすることにより酸化物薄膜を形成するこ
とを特徴とする酸化物超伝導体薄膜の製造方法。(2) MgO, BeO, CaZrO_3, BeZrO_
3, MgZrO_3, CaAl_2O_4, BeAl_
Sc, Y, La, C on any one substrate of 2O_4
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy
, Ho, Er, Tm, Yb, Lu, one or more of the oxides of Al, one or more of the oxides of Ca, Sr, Ba, and the oxide of Cu at an atomic ratio of 10
A mixture of oxides with a composition range of ~20%, 20-40%, and 40-60% with a total amount of 100% is sputtered in an oxygen-containing gas using a target fired in an oxygen-containing atmosphere. 1. A method for producing an oxide superconductor thin film, comprising: forming an oxide thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62129541A JPS63294621A (en) | 1987-05-26 | 1987-05-26 | Manufacture of oxide superconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62129541A JPS63294621A (en) | 1987-05-26 | 1987-05-26 | Manufacture of oxide superconductor thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63294621A true JPS63294621A (en) | 1988-12-01 |
Family
ID=15012074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62129541A Pending JPS63294621A (en) | 1987-05-26 | 1987-05-26 | Manufacture of oxide superconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63294621A (en) |
-
1987
- 1987-05-26 JP JP62129541A patent/JPS63294621A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01126205A (en) | Superconducting thin film and its formation | |
JPH01163058A (en) | Supercoductive thin film and its preparation | |
JP2711253B2 (en) | Superconducting film and method for forming the same | |
US5081070A (en) | Superconducting circuit board and paste adopted therefor | |
JPS63294621A (en) | Manufacture of oxide superconductor thin film | |
JPS63301424A (en) | Manufacture of oxide superconductor membrane | |
JPH02167820A (en) | Method for forming T1-based composite oxide superconductor thin film | |
JPS63233071A (en) | Preparation of superconductive ceramic | |
JPH01167221A (en) | Production of superconducting thin film | |
JP2501035B2 (en) | Superconducting thin film | |
JPH01140683A (en) | Formation of superconducting thin film | |
JP2579311B2 (en) | How to prevent deterioration of superconductors | |
JP2544759B2 (en) | How to make a superconducting thin film | |
JPH01111718A (en) | Process for forming superconductive thin film | |
JPH01111719A (en) | Process for forming superconductive thin film | |
JPH01137685A (en) | Formation of superconducting thin film | |
JPS63303810A (en) | Ceramic superconductor | |
JPH01125878A (en) | Thin film multilayer superconductor | |
JPH0569059B2 (en) | ||
JPH01246134A (en) | Superconductor | |
JPH01167218A (en) | Production of superconducting thin film | |
JPH01140622A (en) | Device having superconducting film | |
JPH01176216A (en) | Method for producing composite oxide superconducting thin film | |
JPH01286984A (en) | Method for preventing superconducting ceramics from deteriorating | |
JPH01227480A (en) | Manufacture of superconducting thin-film |