JPH01137685A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH01137685A
JPH01137685A JP62296593A JP29659387A JPH01137685A JP H01137685 A JPH01137685 A JP H01137685A JP 62296593 A JP62296593 A JP 62296593A JP 29659387 A JP29659387 A JP 29659387A JP H01137685 A JPH01137685 A JP H01137685A
Authority
JP
Japan
Prior art keywords
thin film
silicon nitride
film
rare earth
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296593A
Other languages
Japanese (ja)
Inventor
Yutaka Taguchi
豊 田口
Kazuo Eda
江田 和生
Tetsuji Miwa
哲司 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62296593A priority Critical patent/JPH01137685A/en
Publication of JPH01137685A publication Critical patent/JPH01137685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent a rare earth group oxide superconductor thin film from deteriorating for preventing the film from losing the superconductivity thereof by a method wherein, after forming the rare earth oxide superconductor thin film, a silicon nitride thin film as a buffer film is provided. CONSTITUTION:An Ln-Ae-Cu oxide superconductor is formed on a substrate by sputtering process, vacuum evaporation, etc., and then a silicon nitride thin film is formed as a protective film. This silicon nitride film as the protective film prevents the environment especially such as steam or water content from affecting the rare earth group oxide superconductor thin film. For example, a specimen in composition of (Y:Ba:Cu)=(1:2:3) after filming process is heat treated in oxygen atmosphere at 600-950 deg.C for one hour to be cooled down in a furnace in the atmosphere. Later, the silicon nitride film as the protective film is formed by sputtering process. In the above-mentioned expression, Ln represents Y, rare earth group, Ae represents alkali earth group. On the other hand, the rare earth group represents at least one of La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu while the alkali earth group represents at least one of Sr, Ba and Ca.

Description

【発明の詳細な説明】 産業上の利用分野・ 本発明は集積回路等の配線に用いる超電導薄膜の形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a superconducting thin film used for wiring of integrated circuits and the like.

従来の技術 従来集積回路等の配線にはAu、AI、Cu等が用いら
れ、超電N1LTil膜は殆ど用いられることはなかっ
た。これは従来の超電導薄膜(たとえばN b 、N 
b a G e等)が液体ヘリウムで冷却しなければ超
電導状態とならず冷却コストが非常に高かったためであ
る。ところが液体窒素温度で超電導状態となる希土類酸
化物超電導体の発見により配線材料として超電導薄膜を
利用できるようになった。
2. Description of the Related Art Conventionally, materials such as Au, AI, and Cu have been used for wiring in integrated circuits, and superconductor N1LTil films have rarely been used. This is similar to conventional superconducting thin films (e.g. N b , N
b a G e etc.) cannot become superconducting unless cooled with liquid helium, and the cooling cost is extremely high. However, the discovery of rare earth oxide superconductors that become superconducting at liquid nitrogen temperatures has made it possible to use superconducting thin films as wiring materials.

発明が解決しようとする問題点 しかしながらこの希土類酸化物超電導体は環境、とくに
酸素および水蒸気、水分にたいして敏感で不安定な物質
である。
Problems to be Solved by the Invention However, this rare earth oxide superconductor is an unstable substance that is sensitive to the environment, particularly to oxygen, water vapor, and moisture.

本発明はこのような欠点を解消するためのもので環境の
変化に対応できるような希土類酸化物超電導体を形成す
ることを目的とする。
The present invention is intended to eliminate these drawbacks and aims to form a rare earth oxide superconductor that can respond to changes in the environment.

問題点を解決するための手段 上記問題点を解決するために本発明の希土類酸化物超電
導体形成方法は基板上に希土類酸化物超電導体をスパッ
タリング、蒸着等の方法で形成しその後窒化シリコン薄
膜を保護膜として形成するものである。この保1il!
である窒化シリコン薄膜が環境、特に水蒸気や水分が希
土類酸化物超電導体薄膜に影響を及ぼさないようにする
Means for Solving the Problems In order to solve the above problems, the method for forming a rare earth oxide superconductor of the present invention involves forming a rare earth oxide superconductor on a substrate by a method such as sputtering or vapor deposition, and then forming a silicon nitride thin film. It is formed as a protective film. This protection is 1il!
The silicon nitride thin film prevents the environment, especially water vapor and moisture, from affecting the rare earth oxide superconductor thin film.

作用 本発明は上記した構成により希土類酸化物超電導体薄膜
が環境の変化、特に水蒸気および水分を含む環境下にお
いても特性の劣化をおこさないようにするものである。
Function: The present invention uses the above-described structure to prevent the characteristics of the rare earth oxide superconductor thin film from deteriorating even under changes in the environment, particularly in an environment containing water vapor and moisture.

実施例 以下本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

実施例1 基板としてチタン酸ストロンチウム基板を用い、Lnと
してYを、AeとしてBaを用いてY−Ba−Cu酸化
物の粉体をターゲットとして高周波マグネトロンスパッ
タリングにより形成した。
Example 1 A strontium titanate substrate was used as a substrate, Y was used as Ln, Ba was used as Ae, and Y--Ba--Cu oxide powder was used as a target by high-frequency magnetron sputtering.

雰囲気ガスもアルゴン+酸素(10%)として反応性雰
囲気でおこなった。成膜後の組成比は(Y:Ba:Cu
)= (1:2:3)となっていた、この試料を超電導
薄膜とするために酸素雰囲気中で920℃で1時間熱処
理を行い、その後炉内で100℃/ h rで酸素雰囲
気のまま冷却した。
The atmosphere was also a reactive atmosphere with argon + oxygen (10%). The composition ratio after film formation is (Y:Ba:Cu
) = (1:2:3). In order to make this sample into a superconducting thin film, it was heat-treated at 920°C for 1 hour in an oxygen atmosphere, and then left in an oxygen atmosphere at 100°C/hr in a furnace. Cooled.

その後、保護膜として窒化シリコン薄膜をスパッタリン
グにより形成した。比較のため保護膜の窒化シリコン薄
膜を形成していないものも作成した。
Thereafter, a silicon nitride thin film was formed as a protective film by sputtering. For comparison, a device without a silicon nitride thin film as a protective film was also created.

この薄膜の電気特性を測定したところ、液体ヘリウム温
度(4,2K)ではもちろん、液体窒素温度でも電気抵
抗が0Ωとなり超電導性膜となった。
When the electrical properties of this thin film were measured, it was found that the electrical resistance was 0Ω not only at liquid helium temperatures (4.2 K) but also at liquid nitrogen temperatures, making it a superconducting film.

この窒化シリコン薄膜を形成していないものと形成した
ちの2種類の希土類酸化物超電導体薄膜を室温で放置し
たところ、保護膜として窒化シリコン薄膜を形成してい
ないほうは14日後に超電導性を失った。が保護膜を形
成したほうはまだ超電導性を示した。
When two types of rare earth oxide superconductor thin films, one without the silicon nitride thin film and the other with the silicon nitride thin film, were left at room temperature, the one without the silicon nitride thin film as a protective film showed superconductivity after 14 days. lost. The one on which a protective film was formed still showed superconductivity.

実施例2 つぎに実施例1の条件でYを特許請求範囲第(1)項記
載の希土類(La、Nd、Sm、Eu、Cd。
Example 2 Next, under the conditions of Example 1, Y was replaced with a rare earth metal (La, Nd, Sm, Eu, Cd) as described in claim (1).

Tb、 Dy、 Ho、 Er、 Tm、 Yb、 L
u)に変更した0組成も実施例1と同様に(Ln:Ba
:Cu)−(1:2:3)であった、これらの組成の膜
・はすぺで少な(とも液体ヘリウム温度(4,2K)で
超電導性を示した。この試料に保護膜として窒化シリコ
ン薄膜を形成していないものと形成したもの2種類の希
土類酸化物超電導体薄膜を作成し、室温で放置したとこ
ろ、実施例1と同様に保i1膜として窒化シリコン薄膜
を形成していないほうが超電導性を失なっても保護膜を
形成したほうはまだ超電導性を示した。
Tb, Dy, Ho, Er, Tm, Yb, L
The 0 composition changed to u) was the same as in Example 1 (Ln:Ba
:Cu)-(1:2:3), both of which exhibited superconductivity at liquid helium temperatures (4.2 K). Two types of rare earth oxide superconductor thin films were created, one without and one with a silicon thin film, and left at room temperature. As in Example 1, the silicon nitride thin film without the silicon nitride thin film was better than the other with no silicon nitride thin film. Even though the superconductivity was lost, the one with the protective film still showed superconductivity.

実施例3 次に実施例1のYをLaに、BaをS「およびCaにか
えた場合を示す、基板は実施例1と同様にチタン酸スト
ロンチウム基板を用い、その他の条件も実施例1と同様
にしておこなった。組成は(L al、a S ra、
t ) Cu、  (L al、s Cao、x ) 
Cuであった。この試料に保護膜として窒化シリコン薄
膜を形成していないものと形成したもの2種類の希土類
酸化物超電導体薄膜を作成し、室温で放置したところ、
実施例1と同様に保護膜として窒化シリコンTRI膜を
形成していないほうが超電導性を失なっても保il膜を
形成したほうはまだ超電導性を示した。
Example 3 Next, a case will be shown in which Y in Example 1 is replaced with La, Ba is replaced with S and Ca, the same strontium titanate substrate as in Example 1 is used, and the other conditions are the same as in Example 1. It was carried out in the same manner.The composition was (L al, a S ra,
t) Cu, (L al, s Cao, x)
It was Cu. Two types of rare earth oxide superconductor thin films were created on this sample, one without and one with a silicon nitride thin film formed as a protective film, and left at room temperature.
As in Example 1, even though the case in which the silicon nitride TRI film was not formed as a protective film lost its superconductivity, the case in which the protective film was formed still showed superconductivity.

実施例4 次に実施例1の条件で熱処理温度を600℃〜950℃
に変更してみた。どの温度においても希土類酸化物超電
導体薄膜は超電導性を示した。この試料に保護膜として
窒化シリコン薄膜を形成していないものと形成したちの
2種類の希土類酸化物超電導体薄膜を作成し、室温で放
置したところ、実施例1と同様に保護膜として窒化シリ
コン薄膜を形成していないほうが超電導性を失なっても
保護膜を形成したほうはまだ超電導性を示した。
Example 4 Next, the heat treatment temperature was changed to 600°C to 950°C under the conditions of Example 1.
I tried changing it to . The rare earth oxide superconductor thin film exhibited superconductivity at any temperature. Two types of rare earth oxide superconductor thin films were prepared on this sample, one without and one with a silicon nitride thin film as a protective film, and left at room temperature.As in Example 1, silicon nitride was used as a protective film. Even though the one without the thin film lost its superconductivity, the one with the protective film still showed superconductivity.

実施例5 実施例1の条件で(Y:Ba:Cu)の組成比を(Y+
−、Ba、)Cu  x=0.4〜0.8と変更した。
Example 5 Under the conditions of Example 1, the composition ratio of (Y:Ba:Cu) was changed to (Y+
−, Ba, )Cu x=0.4 to 0.8.

いずれの組成においても少なくとも液体ヘリウム温度(
4,2K)において超電導性を示した。
In any composition, at least the liquid helium temperature (
It showed superconductivity at 4.2 K).

この試料に保護膜として窒化シリコン薄膜を形成してい
ないものと形成したもの2種類の希土類酸化物超電導体
薄膜を作成し、室温で放置したところ、実施例1と同様
に保護膜として窒化シリコン薄膜を形成していないほう
が超電導性を失なっても保護膜を形成したほうはまだ超
電導性を示した。
Two types of rare earth oxide superconductor thin films were prepared on this sample, one without and one with a silicon nitride thin film as a protective film, and left at room temperature.As in Example 1, a silicon nitride thin film was formed as a protective film. Even though the one without the protective film lost its superconductivity, the one with the protective film still showed superconductivity.

実施例6 実施例1の条件でLn−Ae−Cu酸化物TR膜の形成
に真空蒸着法を用いた0組成も実施例1と同じ<  (
Y:Ba :Cu)−(1: 2 : 3)となるよう
にした、この希土類酸化物超電導体薄膜も実施例1と同
じく液体ヘリウム温度(4゜2K)ではもちろんのこと
液体窒素温度(77K)でも超電導性を示した。この試
料に保護膜として窒化シリコン薄膜を形成していないも
のと形成したちの2種類の希土類酸化物超電導体薄膜を
作成し、室温で放置したところ、実施例1と同様に保護
膜として窒化シリコン薄膜を形成していないほうが超電
導性を失なっても保護膜を形成したほうはまだ超電導性
を示した。
Example 6 The vacuum evaporation method was used to form the Ln-Ae-Cu oxide TR film under the conditions of Example 1. The composition was also the same as Example 1.
This rare earth oxide superconductor thin film, which has a ratio of Y:Ba:Cu)-(1:2:3), can be used not only at liquid helium temperature (4°2K) but also at liquid nitrogen temperature (77K), as in Example 1. ) also showed superconductivity. Two types of rare earth oxide superconductor thin films were prepared on this sample, one without and one with a silicon nitride thin film as a protective film, and left at room temperature.As in Example 1, silicon nitride was used as a protective film. Even though the one without the thin film lost its superconductivity, the one with the protective film still showed superconductivity.

実施例7 実施例1の条件で窒化シリコン薄膜を蒸着法により形成
した。蒸着室内に窒素を導入し反応性の雰囲気で蒸着を
行い、窒化シリコン薄膜を形成した。このY−Ba−C
u希土類酸化物超電導体の電気特性を測定したところ、
液体ヘリウム温度(4,2K)ではもちろん、液体窒素
温度でも電気抵抗が0Ωとなり超電導性膜となった。こ
の保護膜として窒化シリコン薄膜を形成していないもの
と形成したもの2種類の希土類酸化物超電導体薄膜を室
温で放置したところ、保!f膜として窒化シリコン薄膜
を形成していないほうは14日後に超電導性を失なった
。が保護膜を形成したほうはま、  だ超電導性を示し
た。
Example 7 A silicon nitride thin film was formed by vapor deposition under the conditions of Example 1. Nitrogen was introduced into the deposition chamber and deposition was performed in a reactive atmosphere to form a silicon nitride thin film. This Y-Ba-C
When we measured the electrical properties of the u rare earth oxide superconductor, we found that
The electrical resistance was 0Ω not only at liquid helium temperature (4.2 K) but also at liquid nitrogen temperature, making it a superconducting film. When two types of rare earth oxide superconductor thin films, one without and one with a silicon nitride thin film formed as a protective film, were left at room temperature, the results showed that the protection was maintained. The one in which the silicon nitride thin film was not formed as the f film lost its superconductivity after 14 days. However, the material that formed a protective film showed superconductivity.

発明の効果 以上のように本発明は希土類酸化物超電導体薄膜を形成
した後に緩衝膜として窒化シリコン薄膜を設けることに
より膜の劣化を防ぐことができ、超電導性を失うことが
ないようにすることができる。
Effects of the Invention As described above, the present invention provides a silicon nitride thin film as a buffer film after forming a rare earth oxide superconductor thin film, thereby preventing deterioration of the film and preventing loss of superconductivity. Can be done.

Claims (8)

【特許請求の範囲】[Claims] (1)基板上にLn−Ae−Cu酸化物(ただしLnは
Y、希土類、Aeはアルカリ土類)の薄膜を形成し、酸
素を有する雰囲気中で熱処理を行った後、窒化シリコン
薄膜を保護膜として形成する超電導薄膜の形成方法。
(1) Form a thin film of Ln-Ae-Cu oxide (Ln is Y, rare earth, and Ae is alkaline earth) on the substrate, heat-treat it in an atmosphere containing oxygen, and then protect the silicon nitride thin film. A method of forming a superconducting thin film as a film.
(2)希土類として、La、Nd、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Luの少なくと
も1つを用いたことを特徴とする特許請求の範囲第(1
)頂記載の超電導薄膜の形成方法。
(2) Rare earths include La, Nd, Sm, Eu, Gd,
Claim 1, characterized in that at least one of Tb, Dy, Ho, Er, Tm, Yb, and Lu is used.
) Method for forming the superconducting thin film described at the top.
(3)アルカリ土類としてSr、Ba、Caの少なくと
も1つを含むことを特徴とする特許請求の範囲第(1)
項記載の超電導薄膜の形成方法。
(3) Claim (1) characterized in that the alkaline earth element contains at least one of Sr, Ba, and Ca.
A method for forming a superconducting thin film as described in .
(4)熱処理温度として600℃〜950℃としたこと
を特徴とする特許請求の範囲第(1)項記載の超電導薄
膜の形成方法。
(4) The method for forming a superconducting thin film according to claim (1), wherein the heat treatment temperature is 600°C to 950°C.
(5)Ln−Ae−Cu酸化物薄膜の形成方法としてス
パッタリング法により形成することを特徴とする特許請
求の範囲第(1)項記載の超電導薄膜の形成方法。
(5) A method for forming a superconducting thin film according to claim (1), wherein the Ln-Ae-Cu oxide thin film is formed by a sputtering method.
(6)Ln−Ae−Cu酸化物薄膜の形成方法として真
空蒸着法により形成することを特徴とする特許請求の範
囲第(1)項記載の超電導薄膜の形成方法。
(6) A method for forming a superconducting thin film according to claim (1), wherein the Ln-Ae-Cu oxide thin film is formed by a vacuum evaporation method.
(7)窒化シリコン薄膜の形成方法としてスパッタリン
グ法を用いることを特徴とした特許請求の範囲第(1)
項記載の超電導薄膜の形成方法。
(7) Claim (1) characterized in that a sputtering method is used as the method for forming the silicon nitride thin film.
A method for forming a superconducting thin film as described in .
(8)窒化シリコン薄膜の形成方法として蒸着法を用い
ることを特徴とした特許請求の範囲第(1)項記載の超
電導薄膜の形成方法。
(8) The method for forming a superconducting thin film according to claim (1), wherein a vapor deposition method is used as the method for forming the silicon nitride thin film.
JP62296593A 1987-11-25 1987-11-25 Formation of superconducting thin film Pending JPH01137685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296593A JPH01137685A (en) 1987-11-25 1987-11-25 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296593A JPH01137685A (en) 1987-11-25 1987-11-25 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01137685A true JPH01137685A (en) 1989-05-30

Family

ID=17835552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296593A Pending JPH01137685A (en) 1987-11-25 1987-11-25 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01137685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275407A (en) * 1988-04-26 1989-11-06 Seiko Epson Corp High temperature superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275407A (en) * 1988-04-26 1989-11-06 Seiko Epson Corp High temperature superconductor

Similar Documents

Publication Publication Date Title
JPH029719A (en) Superconductive material
JP2711253B2 (en) Superconducting film and method for forming the same
JPH0259467A (en) Stable superconductive substance and its production
JPH0474714A (en) Tl superconductor material
EP0292340B1 (en) Process for preparing superconducting material
US4900710A (en) Process of depositing an alkali metal layer onto the surface of an oxide superconductor
US4968664A (en) Single-crystal wafer having a superconductive ceramic thin film formed thereon
JPH01137685A (en) Formation of superconducting thin film
JPH01140683A (en) Formation of superconducting thin film
US5272133A (en) Passivation of thin film oxide superconductors
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
US5114910A (en) Passivation of thin film oxide superconductors
JPH01111719A (en) Process for forming superconductive thin film
JPH01111718A (en) Process for forming superconductive thin film
JPH0292809A (en) Production of thin film of oxide superconductor
Kúš et al. Preparation of Gd-Ba-Cu-O superconducting thin films on silicon substrates by magnetron sputtering
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPS63303810A (en) Ceramic superconductor
JPS63294621A (en) Manufacture of oxide superconductor thin film
JPH01232776A (en) Superconducting thin film element
JPH01276779A (en) Formation of superconducting thin film
JPS63274657A (en) Oxide superconductive material
JPH01212215A (en) Production of thin film of high temperature oxide superconductor
Shams et al. Preparation of a superconducting Tl 2 Ca 2 Ba 2 Cu 3 O x 2 O 3 vapor
JPH01122921A (en) Method for treating oxide superconductor