JPS63274657A - Oxide superconductive material - Google Patents

Oxide superconductive material

Info

Publication number
JPS63274657A
JPS63274657A JP62111615A JP11161587A JPS63274657A JP S63274657 A JPS63274657 A JP S63274657A JP 62111615 A JP62111615 A JP 62111615A JP 11161587 A JP11161587 A JP 11161587A JP S63274657 A JPS63274657 A JP S63274657A
Authority
JP
Japan
Prior art keywords
superconducting material
oxygen
superconductive material
oxide superconducting
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62111615A
Other languages
Japanese (ja)
Other versions
JPH0579605B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62111615A priority Critical patent/JPS63274657A/en
Publication of JPS63274657A publication Critical patent/JPS63274657A/en
Publication of JPH0579605B2 publication Critical patent/JPH0579605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve heat resistance of a superconductive material and stability thereof during preservation in vacuum by filling a part or the whole of oxygen vacancy with an oxide superconductive material after adding elementary halogen to the superconductive material. CONSTITUTION:To an oxide superconductive material expressed by the formula (wherein x is 0-1; y is 2-4; z is 1-4; w is 4-10; A is an element of the group IIIa of the periodic table; B is an element of the group IIa of the periodic table), an elementary halogen (e.g. Br) is incorporated. Concrete examples for A are Y, Gd, Yb, Eu, Tb, etc., and concrete examples for B are Ba, Sr, Ca, Mg, etc. Thus, surface characteristics, particularly, are improved and stabilized. It is appropriate to incorporate the elementary halogen by 1/100-200% concn. of the oxygen vacancy formed in the oxide superconductive material.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物超電導(超伝導ともいうがここでは超電
導という)材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to oxide superconducting (also referred to as superconducting, but hereinafter referred to as superconducting) materials.

本発明は、酸化物超電導材料の表面を用いるディバイス
において、特に重要な表面近傍の物性の改良を施さんと
するものである。さらにバルク(内部)利用の超電導マ
グネット等への応用を図る酸化物超電導材料に対し、安
定化、特に酸素ベイカンシに関する安定化を図らんとす
るものである。
The present invention aims to improve the physical properties near the surface, which are particularly important in devices using the surface of an oxide superconducting material. Furthermore, the aim is to stabilize oxide superconducting materials that are intended to be applied to bulk (internal) superconducting magnets, etc., particularly with respect to oxygen vacancy.

「従来の技術」 最近、酸化物超電導材料が注目されている。これはIB
Mチューリンヒ研究所においてなされた8a−La−C
u−0系の酸化物超電導材料の開発にその端を発してい
る。これに加えて、イフトリエーム系の酸化物超電導材
料も知られ、液体窒素温度での固体電子ディバイスの応
用の可能性が明らかになった。
"Prior Art" Recently, oxide superconducting materials have been attracting attention. This is IB
8a-La-C made at the M. Züring Institute
Its origins lie in the development of u-0-based oxide superconducting materials. In addition, iftriem-based oxide superconducting materials have become known, revealing the potential for applications in solid-state electronic devices at liquid nitrogen temperatures.

他方、Nb2Ge等の金属を用いた超電導材料がこれま
でによく知られている。そしてこの金属の超電導材料を
用いて、ジョセフソン素子等の固体電子ディバイスを構
成させる試みがなされている。
On the other hand, superconducting materials using metals such as Nb2Ge are well known. Attempts have been made to construct solid-state electronic devices such as Josephson elements using this metallic superconducting material.

この金%を用いたジョセフソン素子は士数年の研究によ
りほぼ実用化が近くなった。しかし、この超電導体はT
co(電気抵抗が零となる温度)が23にときわめて低
く、液体へリュームを用いなければならず、実用性は十
分ではない。
The Josephson element using this gold % was almost ready for practical use after years of research. However, this superconductor has T
co (temperature at which electrical resistance becomes zero) is extremely low at 23, requiring the use of liquid helium, and is not sufficiently practical.

他方、この金属の超電導材料は、材料のすべてが金属で
あるため、その材料の成分を表面においても、また内部
(バルク)においてもまったく均一に作ることができる
On the other hand, since this metallic superconducting material is made entirely of metal, it is possible to make the material components completely uniform both on the surface and in the interior (bulk).

「従来の問題点」 しかし、最近注目されている酸化物超電導材料は、その
特性を調べてい(と、表面近傍(表面より概略200人
までの深さ)が内部に比べて特性の劣化(信頼性の低下
)がおきやすいことがわかった。
``Conventional problems'' However, the properties of oxide superconducting materials, which have been attracting attention recently, have been investigated (and the reliability of the properties deteriorated near the surface (approximately 200 m depth below the surface) compared to the inside). It was found that a decrease in sexual performance is likely to occur.

その原因として、酸化物超電導材料における酸素が、表
面近傍においてはきわめて容易に脱気してしまうことが
判明した。さらに真空中で250〜500℃で加熱する
と、内部の酸素すら容易に脱気し、必要以上に酸素ベイ
カンシ(原子レベルにおける原子が正規の配置より抜は
出るあなを空口またはベイカンシという)を発生させて
しまうことが判明した。この酸素が理想状態にあるかま
たは不足状態にあるかは、その材料にとって、超電導特
性を有せしめ得るか、または単に常電導特性を有するに
すぎないかの根本的な問題であることが判明した。
It has been found that the reason for this is that oxygen in the oxide superconducting material is extremely easily degassed near the surface. Furthermore, when heated at 250 to 500°C in a vacuum, even the oxygen inside is easily degassed, creating more oxygen vacancies than necessary. It turned out that it was. It has been found that whether this oxygen is in an ideal state or in a deficient state is a fundamental issue in determining whether a material can have superconducting properties or merely have normal conducting properties. .

本発明はこのため、この酸化物超電導材料の表面または
表面近傍においても、また内部においても、超電導特性
を有せしめ、さらに理想状態の酸素ベイカンシの濃度を
有し、耐熱性、耐プロセス性(真空中の保存でも安定で
ある等)を有すべくなされたものである。
For this reason, the present invention provides superconducting properties on or near the surface of this oxide superconducting material, as well as inside the material, and also has an ideal oxygen vacancy concentration, heat resistance, process resistance (vacuum resistance), etc. It was designed to be stable even when stored inside the room.

「問題を解決する手段」 本発明は、酸化物超電導材料中にハロゲン元素を添加せ
しめ、酸素ベイカンシの一部または全部に充填し相殺せ
しめんとする。特にこの酸素ベイカンシをある程度を有
し、Tcoの最も高い超電導特性を有する状態でこのベ
イカンシに対し弗素等のハロゲン元素を添加し、埋める
ことにより、この分子がベルブスカイト構造をより安定
にすることが可能である。その結果、耐熱性、耐プロセ
ス性を有し、特に表面面積の大きい薄膜材料に対してを
効である0本発明はイオン注入法等の方法によりハロゲ
ン元素特に弗素を添加するとともに、これら全体を熱処
理せしめ、添加された弗素を適正な原子配置に配設せし
める。
"Means for Solving the Problem" According to the present invention, a halogen element is added to an oxide superconducting material, and the halogen element is filled into part or all of the oxygen vacancy to offset it. In particular, by adding a halogen element such as fluorine to this vacancy in a state where it has a certain degree of oxygen vacancy and has the highest Tco superconducting property and filling it, it is possible for this molecule to make the vervskite structure more stable. It is. As a result, it has heat resistance and process resistance, and is particularly effective for thin film materials with a large surface area.In the present invention, a halogen element, particularly fluorine, is added by a method such as ion implantation, and the entire Heat treatment is performed to arrange the added fluorine in a proper atomic configuration.

本発明では、酸化物超電導材料としてタブレット構成を
有するもの、またti膜構成を有するもののいずれに対
しても有効である。特にこれらのうち薄膜構成を有せし
める場合、その酸化物超電導材料はスクリーン印刷法、
ユバフタ法、MBE (モレキュラ・ビーム・エピタキ
シャル)法、CVD (気相反応)法、光CVD法等を
用いて形成させる。
The present invention is effective for both oxide superconducting materials having a tablet structure and those having a Ti film structure. In particular, when the oxide superconducting material has a thin film structure, the screen printing method,
It is formed using a Yubafta method, MBE (molecular beam epitaxial) method, CVD (vapor phase reaction) method, photo-CVD method, or the like.

酸化物超電導材料の成分の1例としてここでは(^r−
x Bx)ycuzOw(x = 0 =1. Y =
2.0〜4.0好ましくは2.5〜3.5. z = 
1〜4好ましくは1.5〜3゜5、W−4〜10好まし
くは6〜8を有する)をあげる、AはV(イツトリウム
)、Gu(ガドリニウム)、Yb(インテルビウム)、
Eu(ユーロピウム)、Tb(テルビウム)、Dy(ジ
スプロシウム)、Ho(ホルミウム)1Er(エルビウ
ム)、Tm(ツリウム)、Lu(ルテチウム)。
Here, as an example of the components of the oxide superconducting material (^r-
x Bx) ycuzOw(x = 0 = 1. Y =
2.0-4.0 preferably 2.5-3.5. z=
A is V (yttrium), Gu (gadolinium), Yb (interbium),
Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium).

Sc(スカンジウム)またはその他の元素周期表■a族
の1つまたは複数種類より選ばれる。BはRa(ラジウ
ム)、Ha(バリウム)、Sr(ストロンチウム)。
Selected from Sc (scandium) or one or more of the other elements in Group A of the Periodic Table. B is Ra (radium), Ha (barium), and Sr (strontium).

Ca(カルシろム)、Mg(マグネシウム)、Be(ベ
リリウム)の元素周期表Ua族より選ばれる。特にその
具体例として(YBaz)Cu、0.〜.を用いた。ま
たAとして元素周期表における前記した元素以外のラン
タニド元素またはアクチニド元素を用い得る。
It is selected from the Ua group of the periodic table of elements including Ca (calcium), Mg (magnesium), and Be (beryllium). In particular, (YBaz)Cu, 0. ~. was used. Further, as A, a lanthanide element or an actinide element other than the above-mentioned elements in the periodic table of elements can be used.

本発明においては、弗素の如きハロゲン元素を前記した
酸化物超電導材料中にベイカンシの1/100〜200
χの濃度添加し、耐熱性、耐プロセス性の向上を図るに
加え、この材料中からさらに本来材料中に存在すべき酸
素の脱気を防ぐため、劣化防止膜(パンシベイション膜
)をこの表面に形成させる。
In the present invention, a halogen element such as fluorine is added to the oxide superconducting material in an amount of 1/100 to 200 of the vacancy.
In addition to improving heat resistance and process resistance by adding a concentration of Form on the surface.

絶縁膜として、5〜50人のトンネル電流を流し得る厚
さとすると、この絶縁膜の上面に他の超電導材料を配設
してジョフソン素子を構成せしめ得る。
If the thickness of the insulating film is such that a tunnel current of 5 to 50 people can flow through it, another superconducting material can be disposed on the top surface of this insulating film to form a Joffson element.

またパッシベイション用被膜として100〜20000
人の厚さとして、劣化防止用被膜ともし得る。
Also, as a passivation film, it is
It can be used as a film to prevent deterioration as it is human-thick.

即ち、本発明は弗素の如きハロゲン元素も酸化物超を導
材料中に添加した後、これらを不活性気体、空気または
酸素中に250〜500℃例えば500℃に加熱処理を
2〜50時間例えば5時間施す。かくすることにより、
イオン注入法により添加された弗素または弗素に加えて
添加された酸素を適正な配位に配置させ得、表面をも安
定な超電導材料とし得る。このように比較的低温に設定
したのはかかる低温度において超電導材料中よりa酸素
化がおきやすく、ひいては酸素が抜ける空白(ベイカン
シ)中に弗素が配設されやすいためである。
That is, in the present invention, after adding a halogen element such as fluorine or an oxide superconductor to a conductive material, they are heated in an inert gas, air, or oxygen at 250 to 500°C, for example, 500°C, for 2 to 50 hours. Apply for 5 hours. By doing so,
Fluorine added by ion implantation or oxygen added in addition to fluorine can be arranged in an appropriate coordination, and the surface can also be made into a stable superconducting material. The reason why the temperature is set at such a relatively low temperature is that at such a low temperature, a-oxygenation is more likely to occur in the superconducting material than in the superconducting material, and fluorine is more likely to be disposed in the vacancy where oxygen escapes.

その結果、液体窒素温度に保持した際、この表面の酸素
濃度も理想状態を保持し得る。即ちバンシベイションフ
イルムを作り得る。
As a result, when the temperature is maintained at liquid nitrogen temperature, the oxygen concentration on this surface can also be maintained at an ideal state. In other words, a vansivation film can be produced.

「作用」 以上のごとく、これまで酸化物超電導材料の表面近傍で
原因不明で超電導状態が消えてしまうという信頼性低下
問題がなくなり、長期間安定に表面の超電導状態を有効
利用することができるようになった。
``Effect'' As described above, the problem of deterioration in reliability, where the superconducting state disappears for unknown reasons near the surface of oxide superconducting materials, has been eliminated, and the superconducting state on the surface can be effectively used stably for a long period of time. Became.

また内部にまで均一に添加することにより、それ以前に
得られていた超電導特性を固定できる。
Furthermore, by uniformly adding it to the inside, the superconducting properties previously obtained can be fixed.

超電導特性としてはTcoがより高く、かつ電流密度の
より高い状態での使用が可能であることが重要である。
As for superconducting properties, it is important that Tco is higher and that it can be used at higher current densities.

しかしかかる十分に高いTco 、 を流密度を得ても
、これまでは真空中での放置、大電流を流し続けること
による劣化が起きてしまう0本発明に示すハロゲン元素
を酸素ベイカンシを相殺する程度(ベイカンシの1/1
00〜200χの濃度)にハロゲン元素を添加すること
により、Tcoの安定化を図ることができた。また電流
密度も500A/c++”以上と無添加の3倍にまで高
め、それを保存させることができた。
However, even if such a sufficiently high flow density is obtained, deterioration occurs due to being left in a vacuum or continuing to flow a large current. (1/1 of Bay Kanshi
By adding a halogen element at a concentration of 00 to 200x, Tco could be stabilized. In addition, the current density was increased to 500 A/c++'' or more, three times higher than that without additives, and the current density could be preserved.

その結果、この表面を用いるディバイス特にジョセフソ
ン素子を長期間安定して高信頼性を有して動作させるこ
とができるようになった。
As a result, it has become possible to operate devices using this surface, particularly Josephson elements, stably and with high reliability for a long period of time.

以下に図面に従って本発明を説明する。The present invention will be explained below with reference to the drawings.

「実施例1」 第1図は本発明の実施例の製造工程およびそれに関する
酸素濃度分布の相対特性を示す。
"Example 1" FIG. 1 shows the manufacturing process of an example of the present invention and the relative characteristics of the oxygen concentration distribution related thereto.

第1図(A)では酸化物超電導材料の一例として’fB
atcusOb〜、を示す、銅の成分は3またはそれ以
下になり得る。かかる超電導性材料をタブレットまたは
薄膜上に単結晶または多結晶構造を有して形成し、出発
材料(第1図(^)(1))とした。
In Figure 1 (A), 'fB' is an example of an oxide superconducting material.
AtcusOb~, the copper content can be 3 or less. Such a superconducting material was formed on a tablet or a thin film to have a single crystal or polycrystalline structure, and was used as a starting material (FIG. 1(^)(1)).

これを真空装置に保持し、雰囲気を真空引きすると、そ
の表面近傍(1′)の酸素が脱気し、概略200人まで
の範囲の電気特性に劣化がおきてしまう。
If this is held in a vacuum device and the atmosphere is evacuated, the oxygen near the surface (1') will be degassed, causing deterioration in the electrical characteristics of the area up to about 200 people.

即ち、第1図(A)と対応した酸素濃度を第1図(D)
に示す0図面において、領域(1)は正常の酸素濃度を
有する。また領域(lo)は不足の領域を示す、この深
さは超電導材料の種類、構造、緻密さにもよるが、50
〜1000人、−aには約200人程度である。
That is, the oxygen concentration corresponding to FIG. 1(A) is shown in FIG. 1(D).
In the 0 diagram shown in Figure 1, region (1) has a normal oxygen concentration. In addition, the region (lo) indicates the region of shortage, and this depth depends on the type, structure, and density of the superconducting material, but the depth is 50
-1000 people, about 200 people in -a.

これらの上面に窒化珪素膜を光CVD法(紫外光または
レーザ光を用いて反応性気体を光により励起して被形成
面上に被膜形成をさせる)により5〜50人例えば20
人の厚さに形成した。さらにこれに対し、イオン注入を
行った。加速電圧を10〜30KVと弱くし、酸素濃度
が一定となるように添加した。ここで熱処理を350℃
で2時間行った。さらに本発明のハロゲン元素である弗
素を加速電圧を10〜500KVと可変し、平均添加濃
度として酸素ベイカンシの1/100〜200χ例えば
3×10雪1c1!ドープした。
A silicon nitride film is deposited on these upper surfaces by photo-CVD method (exciting reactive gas using ultraviolet light or laser light to form a film on the surface to be formed) by 5 to 50 people, for example 20
Formed to the thickness of a person. Furthermore, ion implantation was performed on this. The accelerating voltage was lowered to 10 to 30 KV, and oxygen was added to keep the oxygen concentration constant. Heat treatment at 350℃
I went there for 2 hours. Furthermore, the accelerating voltage of fluorine, which is the halogen element of the present invention, is varied from 10 to 500 KV, and the average addition concentration is 1/100 to 200x of the oxygen vacancy, for example, 3 x 10 snow 1 c1! Doped.

さらにこれら全体を酸素中で250〜500℃、例えば
350℃で加熱処理を約30分行った。
Furthermore, the whole was heat-treated in oxygen at 250 to 500°C, for example, 350°C, for about 30 minutes.

かかる加熱処理を行うことにより、第1図(E)に示す
如く、内部においても酸素ベイカンシに弗素が進入し、
このベルブカイト構造の酸化物超電導材料の構造劣化を
より起きにくくさせることができた。
By carrying out such heat treatment, fluorine enters the oxygen vacancy inside as well, as shown in FIG. 1(E).
We were able to make structural deterioration of the oxide superconducting material with the verbucite structure less likely to occur.

この実施例で作られた試料を加熱状態より取り出し、再
び真空中に350℃、5時間保存してみた。
The sample prepared in this example was removed from the heated state and stored again in vacuum at 350°C for 5 hours.

するとこの弗素の添加により超電導材料の表面近傍およ
びバルクにおいて、酸素が欠乏することがなく、高信頼
性の素子を作ることができた。
The addition of fluorine prevented oxygen depletion near the surface and in the bulk of the superconducting material, making it possible to create a highly reliable device.

「効果」 本発明に示す如く、作製した酸化物超電導材料の表面は
電子顕微鏡的にはきわめてミクロな凹部を有し、その凹
部は内部まで空隙が存在してしまっている。そのため見
掛は上表面がきわめて大きくなってしまう、この表面の
不動態化をさせるため、電気陰性度の最も大きい弗素を
単層に、また散在させて、コーティングすることは耐熱
性の向上のためきわめて有効であった。加えて、これら
表面上およびミクロなベイカンシにハロゲン元素を充填
させることができる。それに密接した超電導材料の改質
を行う方法は、その製造工程をより簡単にできるため、
きわめて有効であった。
"Effects" As shown in the present invention, the surface of the produced oxide superconducting material has extremely microscopic recesses under an electron microscope, and the recesses have voids extending to the inside. Therefore, the upper surface appears to be extremely large.In order to passivate this surface, it is necessary to coat fluorine, which has the highest electronegativity, in a single layer or in a scattered manner to improve heat resistance. It was extremely effective. In addition, these surfaces and microscopic cavities can be filled with halogen elements. Methods of modifying superconducting materials closely related to this can simplify the manufacturing process, so
It was extremely effective.

この結果、かかる弗素が添加された酸化物超電導材料を
真空中に300℃で5時間放置した。弗素が添加されて
いない酸化物材料にあっては、超電導特性がまったくな
くなってしまった。しかし本発明の弗素が添加された被
膜においては、Tcoを79にとして安定して超電導を
保持していた。
As a result, the fluorine-added oxide superconducting material was left in vacuum at 300° C. for 5 hours. Oxide materials without fluorine have no superconducting properties at all. However, in the film to which fluorine was added according to the present invention, superconductivity was stably maintained at Tco of 79.

本発明において、酸化物超電導材料という言葉を用いた
。しかしその結晶構造は多結晶であっても、また単結晶
であってもよいことは、本発明の技術思想において明ら
かである。
In the present invention, the term oxide superconducting material is used. However, it is clear from the technical concept of the present invention that the crystal structure may be polycrystalline or single crystalline.

本発明の実施例において、ハロゲン元素として弗素の例
を示した。しかしヨウ素、臭素においても弗素と同様に
添加してよい。
In the examples of the present invention, fluorine was shown as an example of the halogen element. However, iodine and bromine may also be added in the same way as fluorine.

なお、これまでは被膜を形成した後にイオン注入法等に
より酸素を超電導材料に注入した。しかし逆に、予め超
電導材料の表面またはその近傍に酸素をイオン注入法等
により添加し、その後に被膜を形成し、さらに加熱酸化
処理により添加された酸素を超電導を構成するに適性な
原子配位に配設することも有効である。
Note that in the past, oxygen was injected into the superconducting material by ion implantation or the like after forming a film. However, on the contrary, oxygen is added to the surface of the superconducting material in advance by ion implantation, etc., then a film is formed, and then the added oxygen is heated and oxidized to form an atomic coordination suitable for forming superconductivity. It is also effective to place the

本発明において、弗素はすでに形成されてしまうでいる
材料に新たに加える例を示した。しかしこの超電導材料
を作製するに際し、−mには酸化インドリウム、炭酸バ
リウム、酸化銅の微細粒材料を用い、これをブレンドし
焼成を繰り返し、タブレフトとする。また薄膜にする場
合はこのタブレットをスパッタ法のターゲットとして被
形成面に形成する。しかしかかる出発材料中にyp、、
ybp、。
In the present invention, an example is shown in which fluorine is newly added to a material that has already been formed. However, when producing this superconducting material, fine grain materials of indium oxide, barium carbonate, and copper oxide are used for -m, and these are blended and fired repeatedly to form a table left. When forming a thin film, the tablet is used as a sputtering target to form a thin film on the surface to be formed. However, in such starting materials yp,
ybp,.

TbFz、LaF3を一部または全部に用いて弗素を予
め添加してもよい、またこの弗化物の替わりに塩化物、
臭素化物を用いてもよい。
TbFz, LaF3 may be used in part or in whole to add fluorine in advance, or instead of fluoride, chloride,
Brominated compounds may also be used.

しかし本発明は超電導を構成するのに必要な酸素ベイカ
ンシこそ必要な温度に作り、それに対しハロゲン元素を
添加することを思想としている。
However, the idea of the present invention is to create the oxygen vacancy necessary to form superconductivity at the required temperature, and then add a halogen element to it.

このため、Tcoを高くするためには酸化物超電導材料
を形成した後に添加する方がより好ましい。
Therefore, in order to increase Tco, it is more preferable to add it after forming the oxide superconducting material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の作製方法および酸素濃度の分布を示す
FIG. 1 shows the manufacturing method of the present invention and the distribution of oxygen concentration.

Claims (1)

【特許請求の範囲】 1、酸化物超電導材料であって、(A_1_−_xB_
x)_yCu_zO_w、x=0〜1、y=2.0〜4
.0、z=1〜4、w=4〜10を有し、Aは元素周期
表IIIa族の1つまたは複数種より選ばれた元素であり
、Bは元素周期表IIa族の1つまたは複数種より選ばれ
た元素であって、該材料中にハロゲン元素を添加したこ
とを特徴とする酸化物超電導材料。 2、特許請求の範囲第1項において、ハロゲン元素は弗
素よりなることを特徴とする酸化物超電導材料。 3、特許請求の範囲第1項において、ハロゲン元素は酸
化物超電導材料中に含まれる酸素ベイカンシの1/10
0〜200%の濃度に添加されたことを特徴とする酸化
物超電導材料。
[Claims] 1. An oxide superconducting material comprising (A_1_-_xB_
x)_yCu_zO_w, x=0~1, y=2.0~4
.. 0, z = 1 to 4, w = 4 to 10, A is one or more elements selected from Group IIIa of the Periodic Table of Elements, and B is one or more elements of Group IIa of the Periodic Table of Elements. An oxide superconducting material characterized in that a halogen element, which is an element selected from among species, is added to the material. 2. The oxide superconducting material according to claim 1, wherein the halogen element is fluorine. 3. In claim 1, the halogen element is 1/10 of the oxygen vacancy contained in the oxide superconducting material.
An oxide superconducting material characterized in that it is added at a concentration of 0 to 200%.
JP62111615A 1987-05-06 1987-05-06 Oxide superconductive material Granted JPS63274657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111615A JPS63274657A (en) 1987-05-06 1987-05-06 Oxide superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111615A JPS63274657A (en) 1987-05-06 1987-05-06 Oxide superconductive material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3094823A Division JP2709379B2 (en) 1991-04-01 1991-04-01 Deterioration prevention film for oxide superconducting materials

Publications (2)

Publication Number Publication Date
JPS63274657A true JPS63274657A (en) 1988-11-11
JPH0579605B2 JPH0579605B2 (en) 1993-11-04

Family

ID=14565822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111615A Granted JPS63274657A (en) 1987-05-06 1987-05-06 Oxide superconductive material

Country Status (1)

Country Link
JP (1) JPS63274657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production
US5607658A (en) * 1992-09-29 1997-03-04 Canon Kabushiki Kaisha Method of manufacturing metallic oxide and metallic oxide manufactured by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233066A (en) * 1987-03-20 1988-09-28 Fujikura Ltd Production of superconductive body
JPS63241825A (en) * 1987-03-30 1988-10-07 Fujikura Ltd Manufacture of superconductor
JPS63241824A (en) * 1987-03-30 1988-10-07 Fujikura Ltd Manufacture of superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233066A (en) * 1987-03-20 1988-09-28 Fujikura Ltd Production of superconductive body
JPS63241825A (en) * 1987-03-30 1988-10-07 Fujikura Ltd Manufacture of superconductor
JPS63241824A (en) * 1987-03-30 1988-10-07 Fujikura Ltd Manufacture of superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production
US5607658A (en) * 1992-09-29 1997-03-04 Canon Kabushiki Kaisha Method of manufacturing metallic oxide and metallic oxide manufactured by the same

Also Published As

Publication number Publication date
JPH0579605B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
US4916116A (en) Method of adding a halogen element into oxide superconducting materials by ion injection
JP2567460B2 (en) Superconducting thin film and its manufacturing method
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
CN1019251B (en) Method of mfg. superconducting oxide ceramic material film
Neugebauer et al. Vapor‐Deposited Superconductive Films of Nb, Ta, and V
US4959345A (en) Method of adding oxygen into oxide superconducting materials by ion injection
JPH0577314B2 (en)
JPS63274657A (en) Oxide superconductive material
US5374610A (en) Insulating composition
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH0440284B2 (en)
JPS63261769A (en) Manufacture of superconducting device
JPH0517272A (en) Deterioration preventive film for oxide superconducting material
Peng et al. Low‐energy oxygen ion bombardment effect on BaTiO3 thin films grown by multi‐ion‐beam reactive sputtering technique
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
US5137868A (en) Method for preparing a superconducting device
US5232903A (en) Oxide superconducting device having uniform oxygen concentration
JPH0662359B2 (en) Manufacturing method of superconducting material
JPH01203203A (en) Formation of superconducting material layer
JP2529347B2 (en) Preparation method of superconducting thin film
JPS63301426A (en) Manufacture of superconductive material
US6441394B2 (en) Intrinsic Josephson superconducting tunnel junction device
EP0442210B1 (en) Bi oxide superconductors
JP2668532B2 (en) Preparation method of superconducting thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor