JPH0517272A - Deterioration preventive film for oxide superconducting material - Google Patents

Deterioration preventive film for oxide superconducting material

Info

Publication number
JPH0517272A
JPH0517272A JP3094823A JP9482391A JPH0517272A JP H0517272 A JPH0517272 A JP H0517272A JP 3094823 A JP3094823 A JP 3094823A JP 9482391 A JP9482391 A JP 9482391A JP H0517272 A JPH0517272 A JP H0517272A
Authority
JP
Japan
Prior art keywords
superconducting material
oxide superconducting
oxygen
halogen element
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3094823A
Other languages
Japanese (ja)
Other versions
JP2709379B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3094823A priority Critical patent/JP2709379B2/en
Publication of JPH0517272A publication Critical patent/JPH0517272A/en
Application granted granted Critical
Publication of JP2709379B2 publication Critical patent/JP2709379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent the phenomenon that oxygen is removed from the inside of a superconducting material and the superconducting material is made nonsuperconducting by adding a halogen element into the superconducting material to reform the material to the material from which the oxygen is hardly removable and coating this material onto an oxide superconducting material. CONSTITUTION:The halogen element (e.g. fluorine) is added into the oxide superconducting material (e.g.: YBa2Cu3O6-8) by an ion implantation method, etc. The superconducting material is otherwise reformed to the material from which the oxygen is hardly removable by a method of previously adding a halogen compd. (e.g.: YF3) to the starting material of the oxide superconducting material to produce the oxide superconducting material. The adequate amt. of the halogen element to be added is the amt. to attain 1/100 to 200% concn. of the oxygen vacancy contained in the oxide superconducting material. The reformed superconducting material obtd. in such a manner is then coated as the deterioration preventive film on the oxide superconducting material. The oxide superconducting material which can maintain high reliability stably over a long period of time is thereby obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導(超伝導と
もいうがここでは超電導という)材料用劣化防止膜に関
する。本発明は、酸化物超電導材料の表面を用いるディ
バイスにおいて、特に重要な表面近傍の物性の改良を施
さんとするものである。さらにバルク( 内部)利用の超
電導マグネット等への応用を図る酸化物超電導材料に対
し、安定化、特に酸素ベイカンシに関する安定化を図ら
んとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deterioration preventing film for oxide superconducting (also referred to as superconducting but also referred to as superconducting here) material. The present invention intends to improve particularly important physical properties in the vicinity of the surface of a device using the surface of an oxide superconducting material. Furthermore, it aims to stabilize the oxide superconducting material that is intended to be applied to the superconducting magnet etc. using bulk (internal), especially for the oxygen vacancy.

【0002】尚、本明細書における元素周期表は理化学
辞典(岩波書店 1963年4月1日発行)によるものであ
る。
The periodic table of the elements in this specification is based on the dictionary of physics and chemistry (Iwanami Shoten, published April 1, 1963).

【0003】[0003]

【従来の技術】最近、酸化物超電導材料が注目されてい
る。これはIBM チュ−リッヒ研究所においてなされたBa
-La-Cu-O系の酸化物超電導材料の開発にその端を発して
いる。これに加えて、イットリュ−ム系の酸化物超電導
材料も知られ、液体窒素温度での固体電子ディバイスの
応用の可能性が明らかになった。
2. Description of the Related Art Recently, oxide superconducting materials have attracted attention. This is a Ba done at the IBM Zurich Institute
-La-Cu-O-based oxide superconducting material has its origin in the development. In addition to this, an yttrium oxide superconducting material is also known, and the possibility of application of a solid-state electron device at liquid nitrogen temperature has been clarified.

【0004】他方、Nb3Ge 等の金属を用いた超電導材料
がこれまでによく知られている。そしてこの金属の超電
導材料を用いて、ジョセフソン素子等の固体電子ディバ
イスを構成させる試みがなされている。 この金属を用
いたジョセフソン素子は十数年の研究によりほぼ実用化
が近くなった。しかし、この超電導体はTco(電気抵抗が
零となる温度) が23K ときわめて低く、液体ヘリュ−ム
を用いなければならず、実用性は十分ではない。
On the other hand, superconducting materials using metals such as Nb 3 Ge have been well known so far. Attempts have been made to construct solid-state electronic devices such as Josephson devices by using this metallic superconducting material. The Josephson device using this metal has been put to practical use almost for decades of research. However, this superconductor has a very low Tco (temperature at which the electric resistance becomes zero) of 23K, and a liquid helium must be used, which is not practical.

【0005】他方、この金属の超電導材料は、材料のす
べてが金属であるため、その材料の成分を表面において
も、また内部( バルク) においてもまったく均一に作る
ことができる。
On the other hand, in this metallic superconducting material, since all of the materials are metals, the components of the material can be made to be quite uniform both on the surface and inside (bulk).

【0006】[0006]

【発明が解決しようとする課題】しかし、最近注目され
ている酸化物超電導材料は、その特性を調べていくと、
表面近傍(表面より概略200 Åまでの深さ) が内部に比
べて特性の劣化( 信頼性の低下) がおきやすいことがわ
かった。
However, when the characteristics of the oxide superconducting material, which has been attracting attention recently, is investigated,
It was found that the characteristics (deterioration of reliability) near the surface (depth up to about 200 Å from the surface) are more likely to deteriorate than in the inside.

【0007】その原因として、酸化物超電導材料におけ
る酸素が、表面近傍においてはきわめて容易に脱気して
しまうことが判明した。さらに真空中で250〜500 ℃で
加熱すると、内部の酸素すら容易に脱気し、必要以上に
酸素ベイカンシ( 原子レベルにおける原子が正規の配置
より抜け出る穴を空口またはベイカンシという) を発生
させてしまうことが判明した。この酸素が理想状態にあ
るかまたは不足状態にあるかは、その材料にとって、超
電導特性を有せしめ得るか、または単に常電導特性を有
するにすぎないかの根本的な問題であることが判明し
た。
As a cause of this, it has been found that oxygen in the oxide superconducting material is extremely easily degassed in the vicinity of the surface. Furthermore, when heated at 250 to 500 ° C in vacuum, even the internal oxygen is easily degassed, and oxygen vacancy (a hole where atoms at the atomic level escape from the regular arrangement is called a void or vacancy) is generated more than necessary. It has been found. The ideal or deficient state of this oxygen proved to be a fundamental issue for the material, whether it could have superconducting properties or just normal conducting properties. .

【0008】本発明はこのため、この酸化物超電導材料
の表面または表面近傍においても、また内部において
も、超電導特性を有せしめ、さらに理想状態の酸素ベイ
カンシの濃度を有し、耐熱性、耐プロセス性( 真空中の
保存でも安定である等) を有すべくなされたものであ
る。
Therefore, according to the present invention, the superconducting property is provided on the surface of the oxide superconducting material, in the vicinity of the surface thereof, and in the inside thereof, and further, it has an oxygen vacancy concentration of an ideal state, heat resistance and process resistance. It is designed to have properties (such as being stable even when stored in a vacuum).

【0009】[0009]

【課題を解決するための手段】本発明は、酸化物超電導
材料中にハロゲン元素を添加せしめ、酸素ベイカンシの
一部または全部に充填し相殺せしめんとする。特にこの
酸素ベイカンシをある程度を有し、Tco の最も高い超電
導特性を有する状態でこのベイカンシに対し弗素等のハ
ロゲン元素を添加し、埋めることにより、この分子がペ
ロブスカイト構造をより安定にすることが可能である。
その結果、耐熱性、耐プロセス性を有し、特に表面面積
の大きい薄膜材料に対して有効である。本発明はイオン
注入法等の方法によりハロゲン元素、特に弗素を添加す
るとともに、これら全体を熱処理せしめ、添加された弗
素を適正な原子配置に配設せしめる。
According to the present invention, a halogen element is added to an oxide superconducting material to fill a part or all of oxygen vacancies to make a counterbalance. In particular, by adding a halogen element such as fluorine to this vacancy while having a certain degree of this oxygen vacancy and having the highest superconducting property of Tco, this molecule can make the perovskite structure more stable. Is.
As a result, it has heat resistance and process resistance, and is particularly effective for thin film materials having a large surface area. In the present invention, a halogen element, particularly fluorine, is added by a method such as an ion implantation method, and at the same time, the whole of them is heat-treated so that the added fluorine is arranged in an appropriate atomic arrangement.

【0010】本発明では、酸化物超電導材料としてタブ
レット構成を有するもの、また薄膜構成を有するものの
いずれに対しても有効である。特にこれらのうち薄膜構
成を有せしめる場合、その酸化物超電導材料はスクリ−
ン印刷法、スパッタ法、MBE(モレキュラ・ビ−ム・エピ
タキシャル)法、CVD(気相反応) 法、光CVD 法等を用い
て形成させる。
The present invention is effective for any of oxide superconducting materials having a tablet structure and a thin film structure. In particular, in the case of having a thin film structure among these, the oxide superconducting material is
It is formed by using a printing method, a sputtering method, an MBE (molecular beam epitaxial) method, a CVD (vapor phase reaction) method, an optical CVD method, or the like.

【0011】酸化物超電導材料の成分の1例としてここ
では(A1-xBx)yCuzOw(x =0〜1,y=2.0 〜4.0 好まし
くは2.5 〜3.5,z=1〜4好ましくは1.5 〜3.5,W=4
〜10好ましくは6〜8を有する) をあげる。AはY(イッ
トリウム),Gu( ガドリニウム),Yb( イッテルビウム),Eu
( ユ−ロピウム),Tb( テルビウム),Dy(ジスプロシウ
ム),Ho( ホルミウム),Er( エルビウム),Tm( ツリウム),
Lu( ルテチウム),Sc( スカンジウム) またはその他の元
素周期表3a族の1つまたは複数種類より選ばれる。B
はRa( ラジウム),Ba( バリウム),Sr( ストロンチウム),
Ca( カルシウム),Mg( マグネシウム),Be( ベリリウム)
の元素周期表2a族より選ばれる。特にその具体例とし
て(YBa2)Cu3O68 を用いた。またAとして元素周期表
における前記した元素以外のランタニド元素またはアク
チニド元素を用い得る。本発明においては、弗素の如き
ハロゲン元素を前記した酸化物超電導材料中にベイカン
シの1/100 〜200%の濃度添加し、耐熱性、耐プロセス性
の向上を図るに加え、この材料中からさらに本来材料中
に存在すべき酸素の脱気を防ぐため、劣化防止膜( パッ
シベイション膜) をこの表面に形成させる。
As an example of the components of the oxide superconducting material, (A 1-x Bx) yCuzOw (x = 0 to 1, y = 2.0 to 4.0, preferably 2.5 to 3.5, z = 1 to 4, preferably 1.5 to 3.5, W = 4
-10, preferably 6-8). A is Y (yttrium), Gu (gadolinium), Yb (ytterbium), Eu
(Europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium),
Lu (lutetium), Sc (scandium) or other elements are selected from one or more of the group 3a of the periodic table. B
Is Ra (Radium), Ba (Barium), Sr (Strontium),
Ca (calcium), Mg (magnesium), Be (beryllium)
Is selected from Group 2a of the Periodic Table of Elements. Especially used as a specific example (YBa 2) Cu 3 O 6 ~ 8. Further, as A, a lanthanide element or actinide element other than the above-mentioned elements in the periodic table can be used. In the present invention, a halogen element such as fluorine is added to the above oxide superconducting material at a concentration of 1/100 to 200% of vacancy to improve heat resistance and process resistance. A deterioration prevention film (passivation film) is formed on this surface in order to prevent degassing of oxygen that should originally exist in the material.

【0012】絶縁膜として、5〜50Åのトンネル電流を
流し得る厚さとすると、この絶縁膜の上面に他の超電導
材料を配設してジョフセソン素子を構成せしめ得る。
If the thickness of the insulating film is such that a tunnel current of 5 to 50 Å can flow, another superconducting material can be disposed on the upper surface of this insulating film to form a Josephson element.

【0013】またパッシベイション用被膜として100 〜
20000 Åの厚さとして、劣化防止用被膜ともし得る。
Further, as a passivation film, 100-
With a thickness of 20000 Å, it can also be used as a deterioration preventing film.

【0014】即ち、本発明は弗素の如きハロゲン元素も
酸化物超電導材料中に添加した後、これらを不活性気
体、空気または酸素中に250 〜500 ℃例えば500 ℃に加
熱処理を2〜50時間例えば5時間施す。かくすることに
より、イオン注入法により添加された弗素または弗素に
加えて添加された酸素を適正な配位に配置させ得、表面
をも安定な超電導材料とし得る。このように比較的低温
に設定したのはかかる低温度において超電導材料中より
脱酸素化がおきやすく、ひいては酸素が抜ける空口(ベ
イカンシ)中に弗素が配設されやすいためである。 そ
の結果、液体窒素温度に保持した際、この表面の酸素濃
度も理想状態を保持し得る。即ちパッシベイションフィ
ルムを作り得る。
That is, according to the present invention, after a halogen element such as fluorine is added to the oxide superconducting material, these are heated in an inert gas, air or oxygen at 250 to 500 ° C., for example 500 ° C., for 2 to 50 hours. For example, it is applied for 5 hours. By doing so, fluorine added by the ion implantation method or oxygen added in addition to fluorine can be arranged in an appropriate coordination, and the surface can be a stable superconducting material. The reason why the temperature is set to a relatively low temperature as described above is that deoxidization is more likely to occur than in the superconducting material at such a low temperature, and fluorine is more likely to be disposed in the void (vacancy) through which oxygen escapes. As a result, when kept at the liquid nitrogen temperature, the oxygen concentration on this surface can also keep an ideal state. That is, a passivation film can be made.

【0015】[0015]

【作用】以上のごとく、これまで酸化物超電導材料の表
面近傍で原因不明で超電導状態が消えてしまうという信
頼性低下問題がなくなり、長期間安定に超電導状態を有
効利用することができるようになった。
[Operation] As described above, there is no problem of reliability deterioration that the superconducting state disappears near the surface of the oxide superconducting material for unknown reasons, and it becomes possible to effectively use the superconducting state for a long period of time. It was

【0016】現在、確かに高いTco 、電流密度が得られ
る様にはなったが、これまでは真空中での放置や、大電
流を流し続けることによる劣化が起きてしまう。本発明
に示すハロゲン元素を酸素ベイカンシを相殺する程度(
ベイカンシの1/100 〜200%の濃度) にハロゲン元素を添
加した劣化防止膜を表面に形成することにより、内部に
おける、Tco の安定化を図ることができた。
At present, it is possible to obtain a high Tco and a high current density, but until now, deterioration occurs due to being left in a vacuum or continuing to flow a large current. The degree to which the halogen element shown in the present invention offsets the oxygen vacancy (
It was possible to stabilize Tco inside by forming a deterioration prevention film with a halogen element added to the concentration of 1/100 to 200% of vacancy).

【0017】その結果、超伝導装置、特に超伝導マグネ
ットを長期間安定して高信頼性を有して動作させること
ができるようになった。
As a result, it has become possible to operate a superconducting device, particularly a superconducting magnet, stably for a long period of time with high reliability.

【0018】以下に図面に従って本発明を説明する。The present invention will be described below with reference to the drawings.

【0019】[0019]

【実施例】【Example】

「実施例1」図1は本発明の実施例の製造工程およびそ
れに関する酸素濃度分布の相対特性を示す。
Example 1 FIG. 1 shows the relative characteristics of the oxygen concentration distribution relating to the manufacturing process of the example of the present invention.

【0020】図1(A) では酸化物超電導材料のー例とし
てYBa2Cu3O6 8 を示す。銅の成分は3またはそれ以下
になり得る。かかる超電導性材料をタブレットまたは薄
膜上に単結晶または多結晶構造を有して形成し、出発材
料(図1(A)(1)) とした。
FIG. 1A shows YBa 2 Cu 3 O 6 to 8 as an example of the oxide superconducting material. The copper composition can be 3 or less. Such a superconducting material was formed on a tablet or a thin film so as to have a single crystal or polycrystal structure and used as a starting material (FIGS. 1 (A) (1)).

【0021】これを真空装置に保持し、雰囲気を真空引
きすると、その表面近傍(1')の酸素が脱気し、概略200
Åまでの範囲の電気特性に劣化がおきてしまう。 即
ち、図1(A) と対応した酸素濃度を図1(D) に示す。図
面において、領域(1) は正常の酸素濃度を有する。また
領域(1')は不足の領域を示す。この深さは超電導材料の
種類、構造、緻密さにもよるが、50〜1000Å、一般には
約200 Å程度である。
When this is held in a vacuum apparatus and the atmosphere is evacuated, oxygen in the vicinity of the surface (1 ') is degassed, and the atmosphere is reduced to about 200
The electrical characteristics in the range up to Å will deteriorate. That is, the oxygen concentration corresponding to FIG. 1 (A) is shown in FIG. 1 (D). In the figure, region (1) has a normal oxygen concentration. The area (1 ') indicates an insufficient area. This depth depends on the type, structure, and density of the superconducting material, but is 50 to 1000Å, generally about 200Å.

【0022】これらの上面に窒化珪素膜を光CVD 法( 紫
外光またはレ−ザ光を用いて反応性気体を光により励起
して被形成面上に被膜形成をさせる)により5〜50Å例
えば20Åの厚さに形成した。さらにこれに対し、イオン
注入を行った。加速電圧を10〜30KVと弱くし、酸素濃度
が一定となるように添加した。ここで熱処理を350 ℃で
2時間行った。さらに本発明のハロゲン元素である弗素
を加速電圧を10〜500KV と可変し、平均添加濃度として
酸素ベイカンシの1/100 〜200%例えば3×1021cm-3ド−
プした。
5 to 50Å, for example, 20Å for example, a silicon nitride film is formed on the upper surface of the silicon nitride film by the photo-CVD method (reactive gas is excited by light using ultraviolet light or laser light to form a film on the surface to be formed). Formed to a thickness of. Furthermore, ion implantation was performed on this. The accelerating voltage was weakened to 10 to 30 KV and added so that the oxygen concentration became constant. Here, heat treatment was performed at 350 ° C. for 2 hours. Further, the accelerating voltage of fluorine, which is a halogen element of the present invention, is varied from 10 to 500 KV, and the average addition concentration is 1/100 to 200% of the oxygen vacancy, for example, 3 × 10 21 cm -3 d
I pushed.

【0023】さらにこれら全体を酸素中で250 〜500
℃、例えば350 ℃で加熱処理を約30分行った。
Furthermore, the whole of these is 250 to 500 in oxygen.
The heat treatment was carried out at ℃, for example 350 ℃ for about 30 minutes.

【0024】かかる加熱処理を行うことにより、図1
(E) に示す如く酸素の抜けを防ぐことが可能となり、内
部においてもこのペロブスカイト構造の酸化物超電導材
料の構造劣化をより起きにくくさせることができた。
By performing such heat treatment, FIG.
As shown in (E), it was possible to prevent oxygen from escaping, and it was possible to make structural deterioration of the oxide superconducting material having this perovskite structure less likely to occur inside.

【0025】この実施例で作られた試料を加熱状態より
取り出し、再び真空中に350 ℃、5時間保存してみた。
するとこの弗素の添加により超電導材料の表面近傍お
よびバルクにおいて、酸素が欠乏することがなく、高信
頼性の素子を作ることができた。
The sample prepared in this example was taken out of the heated state and stored again in vacuum at 350 ° C. for 5 hours.
Then, by adding this fluorine, oxygen was not deficient near the surface of the superconducting material and in the bulk, and a highly reliable element could be manufactured.

【0026】[0026]

【発明の効果】本発明に示す如く、作製した酸化物超電
導材料の表面は電子顕微鏡的にはきわめてミクロな凹部
を有し、その凹部は内部まで空隙が存在してしまってい
る。そのため見掛け上表面がきわめて大きくなってしま
う。この表面の不動態化をさせるため、電気陰性度の最
も大きい弗素を単層に、また散在させて、コ−ティング
することは耐熱性の向上のためきわめて有効であった。
加えて、これら表面上およびミクロなベイカンシにハロ
ゲン元素を充填させることができる。それに密接した超
電導材料の改質を行う方法は、その製造工程をより簡単
にできるため、きわめて有効であった。
As shown in the present invention, the surface of the produced oxide superconducting material has extremely microscopic recesses in terms of an electron microscope, and the recesses have voids inside. Therefore, the surface becomes apparently very large. In order to passivate the surface, it was extremely effective to coat the surface with fluorine, which has the highest electronegativity, in a single layer or in a scattered manner to improve the heat resistance.
In addition, halogen elements can be filled on these surfaces and on the microscopic vacancy. The method of closely modifying the superconducting material was extremely effective because the manufacturing process could be simplified.

【0027】この結果、かかる弗素が添加された酸化物
超電導材料用劣化防止膜によって、周囲をコーティング
したバルク状の酸化物超電導材料を真空中に300 ℃で5
時間放置した。劣化防止膜でコーティングされていない
酸化物材料にあっては、超電導特性がまったくなくなっ
てしまった。しかし本発明の弗素が添加された被膜にお
いては、Tco を79K として安定して超電導を保持してい
た。
As a result, the bulk oxide superconducting material whose periphery is coated with the fluorine-containing deterioration preventing film for oxide superconducting material is heated at 300 ° C. for 5 hours in vacuum.
Left for hours. In the oxide material not coated with the deterioration preventing film, the superconducting property was completely lost. However, in the fluorine-containing coating of the present invention, the superconductivity was stably maintained with Tco of 79K.

【0028】本発明において、酸化物超電導材料という
言葉を用いた。しかしその結晶構造は多結晶であって
も、また単結晶であってもよいことは、本発明の技術思
想において明らかである。
In the present invention, the term oxide superconducting material is used. However, it is clear from the technical idea of the present invention that the crystal structure may be polycrystalline or single crystal.

【0029】本発明の実施例において、ハロゲン元素と
して弗素の例を示した。しかしヨウ素、臭素においても
弗素と同様に添加してよい。
In the examples of the present invention, fluorine was used as the halogen element. However, iodine and bromine may be added in the same manner as fluorine.

【0030】尚、これまでは被膜を形成した後にイオン
注入法等により酸素を超電導材料に注入した。しかし逆
に、予め超電導材料の表面またはその近傍に酸素をイオ
ン注入法等により添加し、その後に被膜を形成し、さら
に加熱酸化処理により添加された酸素を超電導を構成す
るに適性な原子配位に配設することも有効である。
Heretofore, oxygen has been injected into the superconducting material by an ion implantation method or the like after forming the film. However, conversely, oxygen is previously added to the surface of the superconducting material or its vicinity by an ion implantation method, etc., then a film is formed, and the oxygen added by the heat oxidation treatment is suitable for atomic coordination to constitute superconductivity. It is also effective to arrange them in the.

【0031】本発明において、弗素はすでに形成されて
しまっている材料に新たに加える例を示した。しかしこ
の超電導材料を作製するに際し、一般には酸化イットリ
ウム、炭酸バリウム、酸化銅の微細粒材料を用い、これ
をブレンドし焼成を繰り返し、タブレットとする。また
薄膜にする場合はこのタブレットをスパッタ法のタ−ゲ
ットとして被形成面に形成する。しかしかかる出発材料
中にYF3,YbF3, TbF3,LaF3 を一部または全部に用いて弗
素を予め添加してもよい。またこの弗化物の替わりに塩
化物、臭素化物を用いてもよい。
In the present invention, an example has been shown in which fluorine is newly added to a material that has already been formed. However, when manufacturing this superconducting material, generally, fine grain materials of yttrium oxide, barium carbonate, and copper oxide are used, which are blended and repeatedly fired to form tablets. In the case of forming a thin film, this tablet is formed on the surface to be formed as a sputtering target. However, YF 3 , YbF 3 , TbF 3 , and LaF 3 may be partially or entirely used in the starting material and fluorine may be added in advance. Further, chloride or bromide may be used instead of the fluoride.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作製方法および酸素濃度の分布を示
す。
FIG. 1 shows a manufacturing method of the present invention and an oxygen concentration distribution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 8936−5G H01L 39/02 ZAA B 8728−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01B 13/00 565 D 8936-5G H01L 39/02 ZAA B 8728-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化物超伝導材料と概略同一主成分からな
る酸化物超伝導材料用劣化防止膜であって、前記酸化物
超電導材料構成物と同一の材料中にハロゲン元素を添加
したことを特徴とする酸化物超電導材料用劣化防止膜。
1. A deterioration preventive film for an oxide superconducting material, which comprises substantially the same main component as that of the oxide superconducting material, wherein a halogen element is added to the same material as the constituent material of the oxide superconducting material. A featured deterioration prevention film for oxide superconducting materials.
【請求項2】請求項1において、ハロゲン元素は弗素よ
りなることを特徴とする酸化物超電導材料用劣化防止
膜。
2. The deterioration preventing film for an oxide superconducting material according to claim 1, wherein the halogen element is fluorine.
【請求項3】請求項1において、ハロゲン元素は酸化物
超電導材料中に含まれる酸素ベイカンシの1/100 〜200%
の濃度に添加されたことを特徴とする酸化物超電導材料
用劣化防止膜。
3. The halogen element according to claim 1, wherein the oxygen vacancy contained in the oxide superconducting material is 1/100 to 200%.
A film for preventing deterioration of an oxide superconducting material, which is added at a concentration of 10%.
JP3094823A 1991-04-01 1991-04-01 Deterioration prevention film for oxide superconducting materials Expired - Fee Related JP2709379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094823A JP2709379B2 (en) 1991-04-01 1991-04-01 Deterioration prevention film for oxide superconducting materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094823A JP2709379B2 (en) 1991-04-01 1991-04-01 Deterioration prevention film for oxide superconducting materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62111615A Division JPS63274657A (en) 1987-05-06 1987-05-06 Oxide superconductive material

Publications (2)

Publication Number Publication Date
JPH0517272A true JPH0517272A (en) 1993-01-26
JP2709379B2 JP2709379B2 (en) 1998-02-04

Family

ID=14120779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094823A Expired - Fee Related JP2709379B2 (en) 1991-04-01 1991-04-01 Deterioration prevention film for oxide superconducting materials

Country Status (1)

Country Link
JP (1) JP2709379B2 (en)

Also Published As

Publication number Publication date
JP2709379B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4916116A (en) Method of adding a halogen element into oxide superconducting materials by ion injection
US5268311A (en) Method for forming a thin dielectric layer on a substrate
US5002927A (en) Fluorine-stabilized superconductor materials
EP0292958A2 (en) Method for preparing thin film of compound oxide superconductor
Hong et al. Superconducting Tl‐Ba‐Ca‐Cu‐O films by sputtering
EP0436668A4 (en) Passivation layers for high temperature superconductors
EP0292340B1 (en) Process for preparing superconducting material
JPH0577314B2 (en)
JPH0638525B2 (en) Method for manufacturing superconducting device
Adachi et al. Highly oriented Hg‐Ba‐Ca‐Cu‐O superconducting thin films
JPH0517272A (en) Deterioration preventive film for oxide superconducting material
JPH06314609A (en) Abacuo based superconducting coil and its manufacture
JPH0579605B2 (en)
JPH0577313B2 (en)
JPH0440284B2 (en)
US5137868A (en) Method for preparing a superconducting device
JPH0825742B2 (en) How to make superconducting material
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
Peng et al. Low‐energy oxygen ion bombardment effect on BaTiO3 thin films grown by multi‐ion‐beam reactive sputtering technique
US5051377A (en) Method for forming a thin dielectric layer on a substrate
EP0301689B1 (en) Method of stabilizing high tc superconducting material and the material so stabilized
US5232903A (en) Oxide superconducting device having uniform oxygen concentration
JPH01203203A (en) Formation of superconducting material layer
Wu et al. Microstructures of mercury-based cuprate thin films
JPH0662359B2 (en) Manufacturing method of superconducting material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees