JPS63261769A - Manufacture of superconducting device - Google Patents

Manufacture of superconducting device

Info

Publication number
JPS63261769A
JPS63261769A JP62095856A JP9585687A JPS63261769A JP S63261769 A JPS63261769 A JP S63261769A JP 62095856 A JP62095856 A JP 62095856A JP 9585687 A JP9585687 A JP 9585687A JP S63261769 A JPS63261769 A JP S63261769A
Authority
JP
Japan
Prior art keywords
oxygen
film
ceramic
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62095856A
Other languages
Japanese (ja)
Other versions
JPH0577313B2 (en
Inventor
Kiyoshi Takeuchi
潔 竹内
Yoichi Okabe
洋一 岡部
Hideomi Koinuma
秀臣 鯉沼
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62095856A priority Critical patent/JPS63261769A/en
Publication of JPS63261769A publication Critical patent/JPS63261769A/en
Publication of JPH0577313B2 publication Critical patent/JPH0577313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the vicinity of the surface of a superconductive ceramic with the same superconducting characteristics as those or the interior of the ceramic, by a method wherein a film is formed on the surface of the ceramic and with the film oxidized to be modified into an insulating film, a solid phase- solid phase diffusion is performed in the oxygen of the film to be dissolved a state of shortage of oxygen in the vicinity of the ceramic surface. CONSTITUTION:A superconductive ceramic is formed and is used is a starting material 1. For example, an atmosphere is once evacuated to a vacuum state to deair the oxygen in the vicinity 1 ' of the surface. Then, an Al film 2 is formed on the upper surface in a thickness of 30 Angstrom by a vacuum deposition method. Moreover, the whole is heated in oxygen in a state, such as in a pressing state for 5 hours at 600 deg.C. The Al film 2 is oxidized and is modified into an Al oxide film 3 and at the same time, oxygen is diffused in the superconductive material from the interior of the Al oxide film. As a result, the oxygen concentration in the vicinity of the surface becomes the same oxygen concentration as that in the interior in spite of a fact that the oxygen is ready- deaired.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明はセラミックス系超電導材料を用いた固体素子(
ディバイス)の作製方法に関する。
[Detailed Description of the Invention] "Field of Application of the Invention" The present invention relates to a solid-state device (
device).

本発明は、酸化物超電導材料の表面を用いるディバイス
において、特に重要な表面近傍の物性の改良を施し、表
面利用型素子の高信頼性化を図らんとするものである。
The present invention aims to improve the particularly important physical properties near the surface of a device using the surface of an oxide superconducting material, thereby increasing the reliability of the surface-based element.

「従来の技術」 最近、セラミックス系超電導材料が注目されている。こ
れは18Mチューリッヒ研究所においてなされたBa−
La−Cu−0系の酸化物超電導材料の開発にその端を
発している。これに加えて、イットリューム系の超電導
セラミックスも知られ、液体窒素温度での固体電子ディ
バイスの応用の可能性が明らかになった。
"Prior Art" Ceramic superconducting materials have recently attracted attention. This was done at the 18M Zurich Institute.
Its origins lie in the development of La-Cu-0-based oxide superconducting materials. In addition, yttrium-based superconducting ceramics have become known, and their potential for application in solid-state electronic devices at liquid nitrogen temperatures has become clear.

他方、NA、Ge等の金属署用いた超電導材料がこれま
でによく知られている。そしてこの金属の超電導材料を
用いて、ジョセフソン素子等の固体電子ディバイスを構
成させる試みがなされている。
On the other hand, superconducting materials using metals such as NA and Ge are well known. Attempts have been made to construct solid-state electronic devices such as Josephson elements using this metallic superconducting material.

この金属を用いたジョセフソン素子は士数年の研究によ
りほぼ実用化が近くなった。しかし、この超電導体はT
co(電気抵抗が零となる温度)が23にときわめて低
く、液体へリュームを用いなければならず、実用性は十
分ではない。
A Josephson element using this metal was almost ready for practical use after several years of research. However, this superconductor has T
co (temperature at which electrical resistance becomes zero) is extremely low at 23, requiring the use of liquid helium, and is not sufficiently practical.

この金属の超電導材料においては、材料のすべてが金属
であるため、その材料の成分を表面においても、また内
部(バルク)においてもまったく均一に作ることができ
る。
In this metallic superconducting material, since all of the material is metal, the components of the material can be made completely uniform both on the surface and in the interior (bulk).

「従来の問題点」 しかし、最近注目されている酸化物セラミックスの超電
導材料は、その特性を調べていくと、表面およびその近
傍(表面より概略200人までの深さ)が内部(バルク
)に比べて特性の劣化(信頼性の低下)がおきることが
わかった。
``Conventional Problems'' However, when examining the properties of oxide ceramic superconducting materials, which have been attracting attention recently, it has been found that the surface and its vicinity (approximately 200 mm deep from the surface) are internal (bulk). It was found that the characteristics deteriorated (reliability decreased) compared to the conventional method.

その原因として、酸化物セラミックスにおける酸素が表
面近傍においてはきわめて容易に脱気してしまうことが
実験的に確かめることができた。
It was experimentally confirmed that the cause of this is that oxygen in the oxide ceramic is extremely easily degassed near the surface.

この酸素が理想状態にあるかまたは不足状態にあるかは
、その材料にとって、超電導特性を有するかまたは単に
常電導特性を有するにすぎない、との根本的な問題を提
供することが判明した。
It has been found that whether this oxygen is ideal or deficient presents a fundamental problem for the material, which has superconducting properties or only normal conducting properties.

本発明はこのため、この酸化物セラミックスの表面また
は表面近傍においても、超電導特性を有せしめるべく、
その表面にブロッキング用の被膜(パッシベイション用
液膜)を形成するとともに、その内側の酸素欠乏型にな
りやすいセラミックス中に酸素を添加し、表面近傍にお
いても内部と同様に超電導特性を有せしめんとする方法
を提供せんとするものである。
Therefore, the present invention aims to provide superconducting properties to the surface or near the surface of this oxide ceramic.
A blocking film (passivation liquid film) is formed on the surface, and oxygen is added to the ceramic inside which tends to be oxygen-deficient, so that the near surface has the same superconducting properties as the inside. The aim is to provide a method for doing so.

「問題を解決する手段」 本発明は、超電導性セラミックスの表面に被膜を形成し
、これをより完全なブロッキング層とするとともに、こ
の被膜を金属または半導体においては酸化し、絶縁膜に
変成する。さらにこの被膜の酸素を固相−固相拡散(固
体の被膜から他の固体であるセラミックス中べの酸素の
拡散)を行わしめることにより、表面またはその近傍、
一般には約200人の深さまでの領域の酸素濃度を適性
にせんとするものである。
"Means for Solving the Problem" The present invention forms a film on the surface of a superconducting ceramic to make it a more complete blocking layer, and oxidizes the film in the case of a metal or semiconductor to transform it into an insulating film. Furthermore, by performing solid phase-solid phase diffusion (diffusion of oxygen from the solid coating into another solid ceramic), the oxygen on the surface or near the surface,
Generally, the aim is to optimize the oxygen concentration in a region up to a depth of about 200 people.

このために用いる被膜は、酸化アルミニューム、酸化タ
ンタル、酸化チタン等の酸化物絶縁膜であってもよい。
The film used for this purpose may be an oxide insulating film of aluminum oxide, tantalum oxide, titanium oxide, or the like.

またこの被膜としては、酸化処理後、酸化物絶縁膜にな
る金属または半導体をも用い得る。即ち金属にあっては
、アルミニューム、チタン、タンタル、銅、バリューム
、イットリューム、また半導体にあってはシリコンまた
はゲルマニュームである。これらは酸化により酸化アル
ミニューム、酸化チタン、酸化タンタル、酸化銅、酸化
バリューム、酸化イットリュームとすることができる。
Further, as this film, a metal or a semiconductor which becomes an oxide insulating film after oxidation treatment can also be used. That is, metals include aluminum, titanium, tantalum, copper, valium, and yttrium, and semiconductors include silicon and germanium. These can be converted into aluminum oxide, titanium oxide, tantalum oxide, copper oxide, barium oxide, and yttrium oxide by oxidation.

またシリコンは酸化珪素に、ゲルマニュームは酸化ゲル
マニュームとし得る。
Further, silicon may be replaced with silicon oxide, and germanium may be replaced with germanium oxide.

本発明では、スクリーン印刷法、スパッタ法、MBB 
(モレキュラ・ビーム・エピタキシャル)法、CVD(
気相反応)法等を用いて超電導材料を形成させる。この
1例として、(A+−x Bx)ycuzow、x =
 0〜1. y =2.0〜4.0好ましくは2.5〜
3.5. Z = 1〜4好ましくは1.5〜3.5.
W=4〜10好ましくは6〜8を有する。AはY(イッ
トリューム)、Gu(ガドリニューム)、Yb(イフテ
ルビューム)、Eu(ユーロピューム)、Tb(テルビ
ューム)、Dy(ジスプロシューム)、Ho(ホルミウ
ム)、Er(エルビウム)、Tm(ツリウム)、Lu(
ルテチウム)、Sc(スカンジウム)またはその他の元
素周期表Ua族の1つまたは複数種類より選ばれる。B
はRa(ラジューム)、Ba(バリューム)、Sr(ス
トロンチューム)、Ca(カルシューム)、Mg(マグ
ネシューム)、Be(ベリリューム)の元素周期表Ua
族より選ばれる。特にその具体例として(YBaz)C
u:rob〜8を用いた。またAとして元素周期表にお
ける前記した元素以外のランタニド元素またはアクチニ
ド元素を用い得る。
In the present invention, screen printing method, sputtering method, MBB
(molecular beam epitaxial) method, CVD (
A superconducting material is formed using a gas phase reaction method or the like. An example of this is (A+-x Bx)ycuzow, x =
0-1. y = 2.0~4.0 preferably 2.5~
3.5. Z = 1-4, preferably 1.5-3.5.
W=4 to 10, preferably 6 to 8. A is Y (yttrium), Gu (gadolinium), Yb (ifterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (
lutetium), Sc (scandium), or one or more of the other elements in group Ua of the periodic table. B
is the periodic table of elements Ua of Ra (radium), Ba (valume), Sr (strontium), Ca (calcium), Mg (magnesium), Be (beryllium)
chosen from the tribe. In particular, as a specific example, (YBaz)C
u: rob~8 was used. Further, as A, a lanthanide element or an actinide element other than the above-mentioned elements in the periodic table of elements can be used.

本発明においては、この酸化熱処理により形成された絶
縁膜を5〜50人のトンネル電流を流し得る厚さとする
と、この絶縁膜の上面に他の超電導材料を配設してジョ
フソン素子を構成せしめ得る。
In the present invention, if the insulating film formed by this oxidation heat treatment is made thick enough to allow the tunneling current of 5 to 50 people to flow, another superconducting material can be disposed on the top surface of this insulating film to form a Joffson element. .

またパッシベイション用被膜として100〜3000人
の厚さとして、劣化防止用被膜ともし得る。
It can also be used as a passivation film with a thickness of 100 to 3,000 thick, and as a deterioration prevention film.

即ち、被膜を超電導セラミックス上に形成した後、これ
らを空気または酸素中に400〜1000℃例えば60
0℃に加熱処理を1〜100時間例えば5時間施すこと
により、この被膜を完全な絶縁膜とし得る。さらにかか
る高温においては、この絶縁膜の酸素がセラミックス中
に拡散(固相−固相拡散)し、この表面またはその近傍
の酸素欠乏状態に対し酸素を供給し、この表面またはそ
の近傍においても超電導特性を十分保持し得る。その結
果、液体窒素温度に保持した際、この表面の酸素濃度も
理想状態を保持し得る。即ちパッシベイションフィルム
を作り得る。
That is, after coatings are formed on superconducting ceramics, they are heated in air or oxygen at 400 to 1000°C, e.g. 60°C.
By performing a heat treatment at 0° C. for 1 to 100 hours, for example, 5 hours, this film can be made into a complete insulating film. Furthermore, at such high temperatures, the oxygen in this insulating film diffuses into the ceramic (solid phase-solid phase diffusion), supplies oxygen to the oxygen-deficient state at or near this surface, and superconducting also occurs at or near this surface. Characteristics can be sufficiently maintained. As a result, when the temperature is maintained at liquid nitrogen temperature, the oxygen concentration on this surface can also be maintained at an ideal state. That is, a passivation film can be made.

「作用」 かくすることにより、これまで酸化物超電導セラミック
スの表面近傍で原因不明で超電導状態が消えてしまうと
いう信頼性低下問題がなくなり、長期間安定に表面の超
電導状態を有効利用することができるようになった。
``Operation'' This eliminates the problem of reduced reliability, where the superconducting state disappears for unknown reasons near the surface of oxide superconducting ceramics, and the superconducting state on the surface can be used effectively and stably for a long period of time. It became so.

その結果、この表面を用いるディバイス特にジョセフソ
ン素子を長期間安定して高信頼性を有して動作させるこ
とができるようになった。
As a result, it has become possible to operate devices using this surface, particularly Josephson elements, stably and with high reliability for a long period of time.

以下に図面に従って本発明を説明する。The present invention will be explained below with reference to the drawings.

「実施例1」 第1図は本発明の実施例の製造工程およびそれに関する
酸素濃度分布の相対特性を示す。
"Example 1" FIG. 1 shows the manufacturing process of an example of the present invention and the relative characteristics of the oxygen concentration distribution related thereto.

第1図(A)は超電導セラミックス、例えばYBa z
Cu306〜8である。銅の成分は3またはそれ以下に
なり得る。かかる超電導性セラミックスをタブレットま
たは薄膜上に単結晶または多結晶構造を有して形成し、
出発材料(第1図(A)(1))とした。
Figure 1 (A) shows superconducting ceramics, such as YBaz
Cu306-8. The copper content can be 3 or less. Forming such superconducting ceramics on a tablet or thin film with a single crystal or polycrystalline structure,
This was used as a starting material (Fig. 1 (A) (1)).

これを真空装置に保持し、雰囲気を真空引きすると、そ
の表面近傍(1゛)の酸素が脱気し、概略200人まで
の範囲の電気特性に劣化がおきてしまう。
If this is held in a vacuum device and the atmosphere is evacuated, the oxygen near the surface (1°) will be degassed, causing deterioration in the electrical characteristics of the area up to about 200 people.

即ち、第1図(A)と対応した酸素濃度を第1図(D)
に示す。図面において、領域(1)は正常の酸素濃度を
有する。また領域(1゛)は不足の領域を示す。この深
さは超電導材料の種類、構造、緻密さにもよるが、50
〜1000人、°一般には約200 人程度である。
That is, the oxygen concentration corresponding to FIG. 1(A) is shown in FIG. 1(D).
Shown below. In the figure, region (1) has normal oxygen concentration. Further, the area (1゛) indicates an insufficient area. This depth depends on the type, structure, and density of the superconducting material, but
~1000 people, °generally about 200 people.

これらの上面にアルミニューム(2)を真空蒸着法で3
0人の厚さに形成した。
3. Aluminum (2) is applied to the top surface of these by vacuum evaporation method.
It was formed to a thickness of 0 people.

さらにこれら全体を酸素中で400〜1000℃、例え
ば600°Cで加熱処理を1〜100時間例えば5時間
行った。この加熱処理は減圧状態ではなく、大気圧また
は加圧状態が好ましい。
Further, the whole was heat-treated in oxygen at 400 to 1000°C, for example, 600°C, for 1 to 100 hours, for example, 5 hours. This heat treatment is preferably performed under atmospheric pressure or under increased pressure, rather than under reduced pressure.

かかる酸化雰囲気での加熱処理を長時間行うことにより
、この金属(2)は酸化され、酸化アルミニューム(3
)に変成する。さらに酸化アルミニューム中より酸素が
超電導材料中に拡散する。その結果、第1図(E)に示
す如く、内部と酸素の濃度が同じとすることができた。
By performing heat treatment in such an oxidizing atmosphere for a long time, this metal (2) is oxidized and becomes aluminum oxide (3).
) is transformed into. Furthermore, oxygen diffuses into the superconducting material from the aluminum oxide. As a result, as shown in FIG. 1(E), it was possible to make the concentration of oxygen the same as that inside.

この実施例で作られた試料を加熱状態より取り出し、再
び真空中に保存してみた。するとこのプロッキンク層(
3)により超電導材料の表面または近傍において、酸素
が欠乏することがなく、高信頼性の素子を作ることがで
きた。
The sample made in this example was removed from the heated state and stored again in a vacuum. Then this Prockink layer (
3), it was possible to produce a highly reliable device without oxygen deficiency on or near the surface of the superconducting material.

この絶縁膜はパッシベイション膜としてきわめて有効で
あった。
This insulating film was extremely effective as a passivation film.

「効果」 本発明に示す如く、酸化物超電導体を作製し、その表面
にパッシベイション膜を形成し、さらにそれを緻密化ま
たは酸化絶縁化することにより、この膜をより完全な状
態にすると同時に、それに密接した超電導材料の改質を
行う方法は、その製造工程をより簡単にできるため、き
わめて有効であった。
"Effect" As shown in the present invention, by producing an oxide superconductor, forming a passivation film on its surface, and further densifying it or making it oxidized and insulated, this film can be made into a more perfect state. At the same time, the method of modifying superconducting materials closely related to superconducting materials was extremely effective because the manufacturing process could be simplified.

本発明において、超電導性セラミックスという言葉を用
いた。しかしこれは超電導材料が酸化物であることによ
る。その結晶構造は多結晶であっても、また単結晶であ
ってもよいことは、本発明の技術思想において明らかで
ある。特に単結晶構造の場合には、超電導材料を用いる
に際し、基板上にエピタキシアル成長をさせればよい。
In the present invention, the term superconducting ceramics is used. However, this is due to the fact that the superconducting material is an oxide. It is clear from the technical concept of the present invention that the crystal structure may be polycrystalline or single crystalline. In particular, in the case of a single crystal structure, when using a superconducting material, epitaxial growth may be performed on the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の作製方法および不純物濃度を示す。 (A) (Cン (1”) 訛(1コ FIG. 1 shows the manufacturing method and impurity concentration of the present invention. (A) (C-n (1”) Accent (1)

Claims (1)

【特許請求の範囲】 1、超電導性セラミックスの上面に被膜を形成する工程
と、これら全体を酸化性雰囲気で熱処理を施し酸素を添
加することにより前記被膜下の前記セラミックス上部の
酸素欠乏状態を除去することを特徴とする超電導装置の
作製方法。 2、特許請求の範囲第1項において、被膜として絶縁膜
を形成することを特徴とする超電導装置の作製方法。 3、特許請求の範囲第1項において、被膜として酸化後
絶縁物となる金属または半導体を形成することを特徴と
する超電導装置の作製方法。 4、特許請求の範囲第2項において、絶縁膜は酸化アル
ミニューム、酸化珪素、酸化チタンまたは酸化タンタル
よりなることを特徴とする超電導装置の作製方法。 5、特許請求の範囲第3項において、金属または半導体
はアルミニューム、チタン、タンタル、銅、バリューム
、イットリュームまたはシリコンよりなることを特徴と
する超電導装置の作製方法。
[Claims] 1. Step of forming a film on the upper surface of the superconducting ceramic, and removing the oxygen-deficient state in the upper part of the ceramic under the film by heat-treating the entire film in an oxidizing atmosphere and adding oxygen. A method for manufacturing a superconducting device characterized by: 2. A method for manufacturing a superconducting device according to claim 1, characterized in that an insulating film is formed as a coating. 3. A method for manufacturing a superconducting device according to claim 1, characterized in that a metal or semiconductor that becomes an insulator after oxidation is formed as a coating. 4. A method for manufacturing a superconducting device according to claim 2, wherein the insulating film is made of aluminum oxide, silicon oxide, titanium oxide, or tantalum oxide. 5. A method for manufacturing a superconducting device according to claim 3, wherein the metal or semiconductor is made of aluminum, titanium, tantalum, copper, barium, yttrium, or silicon.
JP62095856A 1987-04-18 1987-04-18 Manufacture of superconducting device Granted JPS63261769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095856A JPS63261769A (en) 1987-04-18 1987-04-18 Manufacture of superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095856A JPS63261769A (en) 1987-04-18 1987-04-18 Manufacture of superconducting device

Publications (2)

Publication Number Publication Date
JPS63261769A true JPS63261769A (en) 1988-10-28
JPH0577313B2 JPH0577313B2 (en) 1993-10-26

Family

ID=14149010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095856A Granted JPS63261769A (en) 1987-04-18 1987-04-18 Manufacture of superconducting device

Country Status (1)

Country Link
JP (1) JPS63261769A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
WO1990006286A1 (en) * 1988-12-05 1990-06-14 Massachusetts Institute Of Technology Methods for processing superconducting materials
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors
US5166131A (en) * 1988-12-05 1992-11-24 Massachusetts Institute Of Technology Methods for processing superconducting materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047478A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Josephson junction element
JPS60250682A (en) * 1984-05-28 1985-12-11 Hitachi Ltd Superconductive element
JPS61181178A (en) * 1985-02-06 1986-08-13 Rikagaku Kenkyusho Josephson junction element and manufacture thereof
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047478A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Josephson junction element
JPS60250682A (en) * 1984-05-28 1985-12-11 Hitachi Ltd Superconductive element
JPS61181178A (en) * 1985-02-06 1986-08-13 Rikagaku Kenkyusho Josephson junction element and manufacture thereof
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410512A (en) * 1987-07-01 1989-01-13 Matsushita Electric Ind Co Ltd Superconductor structure
JPH07106895B2 (en) * 1987-07-01 1995-11-15 松下電器産業株式会社 Superconductor structure
WO1990006286A1 (en) * 1988-12-05 1990-06-14 Massachusetts Institute Of Technology Methods for processing superconducting materials
US5166131A (en) * 1988-12-05 1992-11-24 Massachusetts Institute Of Technology Methods for processing superconducting materials
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors

Also Published As

Publication number Publication date
JPH0577313B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
EP0137196B1 (en) Process for making high dielectric constant nitride based materials and devices using the same
US4916116A (en) Method of adding a halogen element into oxide superconducting materials by ion injection
JP2711253B2 (en) Superconducting film and method for forming the same
JPH01305815A (en) Production of superconductive oxide film using nitrogen before oxygen
US20040156164A1 (en) Novel gate dielectric
US4959345A (en) Method of adding oxygen into oxide superconducting materials by ion injection
JPS63261770A (en) Manufacture of superconducting device
JPS63261769A (en) Manufacture of superconducting device
US5137868A (en) Method for preparing a superconducting device
JPS63261771A (en) Manufacture of josephson device
US5232903A (en) Oxide superconducting device having uniform oxygen concentration
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH0825742B2 (en) How to make superconducting material
JPH01203203A (en) Formation of superconducting material layer
JPH01111718A (en) Process for forming superconductive thin film
JPS63274657A (en) Oxide superconductive material
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPS63274682A (en) Preparation of oxide superconducting material
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH01106481A (en) Superconductive material structure
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH01202875A (en) Manufacture of superconductive material structure
JP2582380B2 (en) Superconducting material structure
JP2598043B2 (en) Method for manufacturing semiconductor device
JPH0517272A (en) Deterioration preventive film for oxide superconducting material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees