JPS63274682A - Preparation of oxide superconducting material - Google Patents

Preparation of oxide superconducting material

Info

Publication number
JPS63274682A
JPS63274682A JP62111614A JP11161487A JPS63274682A JP S63274682 A JPS63274682 A JP S63274682A JP 62111614 A JP62111614 A JP 62111614A JP 11161487 A JP11161487 A JP 11161487A JP S63274682 A JPS63274682 A JP S63274682A
Authority
JP
Japan
Prior art keywords
film
oxide superconducting
superconducting material
added
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62111614A
Other languages
Japanese (ja)
Other versions
JPH0440284B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62111614A priority Critical patent/JPS63274682A/en
Priority to US07/190,352 priority patent/US4916116A/en
Publication of JPS63274682A publication Critical patent/JPS63274682A/en
Publication of JPH0440284B2 publication Critical patent/JPH0440284B2/ja
Priority to US08/022,440 priority patent/US5364835A/en
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To maintain a stable superconducting characteristic even on or near the surface of an oxide superconducting material or in the inside thereof by adding a halogen element into the above-mentioned material and forming a film, then subjecting the material to a heat treatment. CONSTITUTION:The halogen element is added into the oxide superconducting material (e.g.: YBa2Cu3O6-8) to fill part or the whole of oxygen vacancy. The halogen element such as F element is added to the vacancy having some oxygen vacancy in particular and having the superconducting characteristic of the highest Tco (temp. at which electric resistance is zero) to fill the vacancy, by which the perovskite structure of the molecules is more stabilized. The film such as silicon nitride film is simultaneously formed on the surface of the oxide superconducting material and F is particularly added to the surface or near the same and the part thereof is heat-treated to dispose the added F in the adequate atomic configuration. In addition, the film is heat-treated to form the more complete blocking layer and the insulating film is denatured by oxidizing said film in the metal or semiconductor.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物超電導(超伝導ともいうがここでは超電
導という)材料の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a method for producing an oxide superconducting (also referred to as superconducting, but hereinafter referred to as superconducting) material.

本発明は、酸化物超電導材料の表面を用いるディバイス
において、特に重要な表面近傍の物性の改良を施さんと
するものである。さらにバルク(内部)利用の超電導マ
グネット等への応用を図る酸化物超電導材料に対し、安
定化、特に酸素ベイカンシに関する安定化を図らんとす
るものである。
The present invention aims to improve the physical properties near the surface, which are particularly important in devices using the surface of an oxide superconducting material. Furthermore, the aim is to stabilize oxide superconducting materials that are intended to be applied to bulk (internal) superconducting magnets, etc., particularly with respect to oxygen vacancy.

「従来の技術」 最近、酸化物超電導材料が注目されている。これはIB
M8Mチューリッヒ所においてなされたBa−La−C
u−0系の酸化物超電導材料の開発にその端を発してい
る。これに加えて、イントリューム系の酸化物超電導材
料も知られ、液体窒素温度での固体電子ディバイスの応
用の可能性が明らかになった。
"Prior Art" Recently, oxide superconducting materials have been attracting attention. This is IB
Ba-La-C made at M8M Zurich
Its origins lie in the development of u-0-based oxide superconducting materials. In addition, intoleum-based oxide superconducting materials are also known, and their potential for application in solid-state electronic devices at liquid nitrogen temperatures has become clear.

他方、NblGe等の金属を用いた超電導材料がこれま
でによく知られている。そしてこの金属の超電導材料を
用いて、ジョセフソン素子等の固体電子ディバイスを構
成させる試みがなされている。
On the other hand, superconducting materials using metals such as NblGe are well known. Attempts have been made to construct solid-state electronic devices such as Josephson elements using this metallic superconducting material.

この金属を用いたジョセフソン素子は士数年の研究によ
りほぼ実用化が近くなった。しかし、この超電導体はT
ca c=気低抵抗雰となる温度)が23にときわめて
低く、液体へリュームを用いなければならず、実用性は
十分ではない。
A Josephson element using this metal was almost ready for practical use after several years of research. However, this superconductor has T
ca c (temperature at which a low resistance atmosphere occurs) is extremely low at 23, necessitating the use of liquid helium, and is not sufficiently practical.

他方、この金属の超電導材料は、材料のすべてが金属で
あるため、その材料の成分を表面においても、また内部
(バルク)においてもまったく均一に作ることができる
On the other hand, since this metallic superconducting material is made entirely of metal, it is possible to make the material components completely uniform both on the surface and in the interior (bulk).

「従来の問題点」 しかし、最近注目されている酸化物超電導材料は、その
特性を調べていくと、表面近傍(表面より概略200人
までの深さ)が内部に比べて特性の劣化(信頼性の低下
)がおきやすいことがわかった。
``Conventional problems'' However, when examining the properties of oxide superconducting materials, which have been attracting attention recently, it was found that the properties near the surface (approximately 200 m depth from the surface) deteriorated (reliability) compared to the inside. It was found that a decrease in sexual performance is likely to occur.

その原因として、酸化物超電導材料における酸素が、表
面近傍においてはきわめて容易に脱気してしまうことが
判明した。さらに真空中で250〜500℃で加熱する
と、内部の酸素すら容易に脱気し、必要以上に酸素ベイ
カンシ(原子レベルにおける原子が正規の配置より抜は
出るあなを空白またはベイカンシという)を発生させて
しまうことが判明した。この酸素が理想状態にあるかま
たは不足状態にあるかは、その材料にとって、超電導特
性を有せしめ得るか、または単に常電導特性を有するに
すぎないかの根本的な問題であることが判明した。
It has been found that the reason for this is that oxygen in the oxide superconducting material is extremely easily degassed near the surface. Furthermore, when heated at 250 to 500°C in a vacuum, even the oxygen inside is easily degassed, causing more oxygen vacancy (a hole in which atoms at the atomic level are pulled out of their normal arrangement is called a void or vacancy). It turned out that it was. It has been found that whether this oxygen is in an ideal state or in a deficient state is a fundamental issue in determining whether a material can have superconducting properties or merely have normal conducting properties. .

本発明はこのため、この酸化物超電導材料の表面または
表面近傍においても、また内部においても、超電導特性
を有せしめ、さらに理想状態の酸素ベイカンシの濃度を
有し、耐熱性、耐プロセス性(真空中の保存でも安定で
ある等)を有すべくなされたものである。
For this reason, the present invention provides superconducting properties on or near the surface of this oxide superconducting material, as well as inside the material, and also has an ideal oxygen vacancy concentration, heat resistance, process resistance (vacuum resistance), etc. It was designed to be stable even when stored inside a container.

「問題を解決する手段」 本発明は、酸化物超電導材料中にハロゲン元素を添加せ
しめ、酸素ベイカンシの一部または全部に充填し相殺せ
しめんとする。特にこの酸素ベイカンシをある程度を有
し、TCOの最も高い超電導特性を有する状態でこのベ
イカンシに対し弗素等のハロゲン元素を添加し、埋める
ことにより、この分子がベルブスカイト構造をより安定
にすることが可能である。その結果、耐熱性、耐プロセ
ス性を有し、特に表面面積の大きい薄膜材料に対して有
効である0本発明は同時に酸化物超電導材料の表面に被
膜を形成する。この工程の前または後に、表面またはそ
の近傍にイオン注入法、熱酸化法等の方法によりハロゲ
ン元素特に弗素を添加するとともに、これら全体を熱処
理せしめ、添加された弗素を適正な原子配置に配設せし
める。加えてこの被膜を熱処理により、より完全なプロ
7キング層とするとともに、この被膜を金属または半導
体においては酸化し、絶縁膜に変成する。さらにこの被
膜の酸素を固相−固相拡散(固体の被膜から他の固体で
ある酸化物超電導材料中への酸素の拡散)を行わしめる
ことにより、表面またはその近傍、−iには約200人
の深さまでの領域の酸素濃度を適性にせんとするもので
ある。
"Means for Solving the Problem" According to the present invention, a halogen element is added to an oxide superconducting material, and the halogen element is filled into part or all of the oxygen vacancy to offset it. In particular, by adding a halogen element such as fluorine to this vacancy and filling it with a certain degree of oxygen vacancy, which has the highest TCO superconducting property, it is possible for this molecule to make the vervskite structure more stable. It is. As a result, the present invention, which has heat resistance and process resistance and is particularly effective for thin film materials with a large surface area, simultaneously forms a film on the surface of the oxide superconducting material. Before or after this process, a halogen element, especially fluorine, is added to the surface or its vicinity by a method such as ion implantation or thermal oxidation, and the whole is heat-treated to arrange the added fluorine in an appropriate atomic arrangement. urge In addition, this film is subjected to heat treatment to form a more complete blocking layer, and in the case of a metal or semiconductor, this film is oxidized and transformed into an insulating film. Furthermore, by performing solid phase-solid phase diffusion (diffusion of oxygen from the solid coating into the other solid oxide superconducting material) of the oxygen in this coating, on or near the surface, -i, approximately 200 The aim is to optimize the oxygen concentration in areas up to the depth of a person.

このために用いる被膜は、窒化珪素、窒化アルミニュー
ム、酸化アルミニューム、酸化タンタル、酸化チタン等
の絶縁膜であってもよい。
The film used for this purpose may be an insulating film of silicon nitride, aluminum nitride, aluminum oxide, tantalum oxide, titanium oxide, or the like.

またこの被膜としては、酸化処理後、酸化物絶縁膜にな
る金属または半導体をも用い得る。即ち金属にあっては
、アルミニューム、チタン、タンタル、銅、バリューム
、イントリューム、また半導体にあってはシリコンまた
はゲルマニュームである。これらは酸化により酸化アル
ミニューム、酸化チタン、酸化タンタル、酸化銅、酸化
バリューム、酸化イフトリュームとすることができる。
Further, as this film, a metal or a semiconductor which becomes an oxide insulating film after oxidation treatment can also be used. That is, metals include aluminum, titanium, tantalum, copper, valume, and intrium, and semiconductors include silicon and germanium. These can be converted into aluminum oxide, titanium oxide, tantalum oxide, copper oxide, barium oxide, and ifthurium oxide by oxidation.

またシリコンは酸化珪素に、ゲルマニュームは酸化ゲル
マニュームとし得る。
Further, silicon may be replaced with silicon oxide, and germanium may be replaced with germanium oxide.

本発明では、酸化物超電導材料としてタブレフト構成を
有するもの、また薄膜構成を有するもののいずれに対し
ても有効である。特にこれらのうち薄膜構成を有せしめ
る場合、その酸化勃起ft導材料はスクリーン印刷法、
スパッタ法、MBE (モレキュラ・ビーム・エピタキ
シャル)法、CvD(気相反応)法、光CVO法等を用
いて形成させる。
The present invention is effective for both oxide superconducting materials having a table left structure and those having a thin film structure. In particular, when these materials have a thin film structure, the oxidized erectile ft conductive material can be formed by screen printing,
It is formed using a sputtering method, an MBE (molecular beam epitaxial) method, a CvD (vapor phase reaction) method, a photo-CVO method, or the like.

酸化物超電導材料の成分の1例としてここでは(AI−
X Bx)ycuzOi+(x = O〜1.1〜2.
0〜4.0好ましくは2.5〜3.5. z = 1〜
4好ましくは1.5〜3゜5、W=4〜IO好ましくは
6〜8を存する)をあげる。AはY(インドリウム)、
Gu(ガドリニウム)、Yb(イッテルビウム)、Eu
(ユーロピウム)、Tb(テルビウム)、Dy(ジスプ
ロシウム)、Ho(ホルミウム)。
As an example of the components of the oxide superconducting material, (AI-
X Bx)ycuzOi+(x=O~1.1~2.
0-4.0 preferably 2.5-3.5. z = 1~
4, preferably 1.5 to 3°5, W=4 to IO, preferably 6 to 8). A is Y (indolium),
Gu (gadolinium), Yb (ytterbium), Eu
(europium), Tb (terbium), Dy (dysprosium), Ho (holmium).

Er(エルビウム)、Tm(ツリウム)、Lu(ルテチ
ウム)。
Er (erbium), Tm (thulium), Lu (lutetium).

Sc(スカンジウム)またはその他の元素周期表■a族
の1つまたは複数種類より選ばれる。BはRa(ラジウ
ム)、Ba(バリウム)、Sr(ストロンチウム)。
Selected from Sc (scandium) or one or more of the other elements in Group A of the Periodic Table. B is Ra (radium), Ba (barium), and Sr (strontium).

Ca(カルシウム)、Mg(マグネシウム)、Be(ベ
リリウム)の元素周期表IIa族より選ばれる。特にそ
の具体例として(YBaz)CusOi〜。を用いた。
It is selected from group IIa of the periodic table of elements Ca (calcium), Mg (magnesium), and Be (beryllium). In particular, (YBaz)CusOi~ is a specific example thereof. was used.

またAとして元素周期表における前記した元素以外のラ
ンクニド元素またはアクチニド元素を用い得る。
Further, as A, a rank nide element or an actinide element other than the above-mentioned elements in the periodic table of elements can be used.

本発明においては、弗素の如きハロゲン元素を前記した
酸化物超電導材料中にベイカンシの1/100〜200
χの濃度添加し、耐熱性、耐プロセス性の向上を図るに
加え、この材料中からさらに本来材料中に存在すべき酸
素の脱気を防ぐため、劣化防止膜(バフシベイション膜
)をこの表面に形成させる。
In the present invention, a halogen element such as fluorine is added to the oxide superconducting material in an amount of 1/100 to 200 of the vacancy.
In addition to adding a concentration of χ to improve heat resistance and process resistance, we also added a deterioration prevention film (buffsivation film) to the surface of this material to prevent degassing of oxygen that should originally exist in the material. Let it form.

絶縁膜として、5〜50人のトンネル電流を流し得る厚
さとすると、この絶縁膜の上面に他の超電導材料を配設
してジョフソン素子を構成せしめ得る。
If the thickness of the insulating film is such that a tunnel current of 5 to 50 people can flow through it, another superconducting material can be disposed on the top surface of this insulating film to form a Joffson element.

またパンシベイション用被膜として100〜20000
人の厚さとして、劣化防止用被膜ともし得る。
Also, as a coating for pansivation, it costs 100 to 20,000.
It can be used as a film to prevent deterioration as it is human-thick.

即ち、本発明は弗素の如きハロゲン元素も酸化物超電導
材料中に添加した後、これらを不活性気体、空気または
酸素中に250〜500℃例えば500℃に加熱処理を
2〜50時間例えば5時間施す。かくすることにより、
イオン注入法により添加された弗素または弗素に加えて
添加された酸素を適正な配位に配置させ得、表面をも安
定な超電導材料とし得る。このように比較的低温に設定
したのはかかる低温度において超電導材料中より脱酸素
化がおきやすく、ひいては酸素が抜ける空白(ベイカン
シ)中に弗素が配設されやすいためである。
That is, in the present invention, after a halogen element such as fluorine is also added to an oxide superconducting material, these are heat-treated in an inert gas, air, or oxygen at 250 to 500°C, for example, 500°C, for 2 to 50 hours, for example, 5 hours. give By doing so,
Fluorine added by ion implantation or oxygen added in addition to fluorine can be arranged in an appropriate coordination, and the surface can also be made into a stable superconducting material. The reason why the temperature is set at such a relatively low temperature is that at such a low temperature, deoxygenation occurs more easily than in the superconducting material, and fluorine is more likely to be disposed in the vacancy through which oxygen escapes.

その結果、液体窒素温度に保持した際、この表面の酸素
濃度も理想状態を保持し得る。即ちパッシベイションフ
ィルムを作り得る。
As a result, when the temperature is maintained at liquid nitrogen temperature, the oxygen concentration on this surface can also be maintained at an ideal state. That is, a passivation film can be made.

「作用」 以上のごとく、これまで酸化物超電導材料の表面近傍で
原因不明で超電導状態が消えてしまうという(ε軸性低
下問題がなくなり、長期間安定に表面の超電導状態を有
効利用することができるようになった。
``Effect'' As described above, it has been reported that the superconducting state disappears for unknown reasons near the surface of oxide superconducting materials (epsilon axis deterioration problem is eliminated, and the superconducting state on the surface can be effectively used stably for a long period of time. I can now do it.

また内部にまで均一に添加することにより、それ以前に
得られていた超電導特性を固定できる。
Furthermore, by uniformly adding it to the inside, the superconducting properties previously obtained can be fixed.

超?!導特性としてはTCOがより高く、かつ電流密度
のより高い状態での使用が可能であることが重要である
。しかしかかる十分に高いTCO 、電流密度を得ても
、これまでは真空中での放置、大電流を流し続けること
による劣化が起きてしまう。本発明に示すハロゲン元素
を酸素ベイカンシを相殺する程度(ベイカンシの1/1
00〜200χの濃度)にハロゲン元素を添加すること
により、、 TCOの安定化を図ることができた。また
′@、流密度も1500A/cm”以上と無添加の3倍
にまで高め、それを保存させることができた。
Hyper? ! In terms of conductive properties, it is important that the TCO is higher and that it can be used at higher current densities. However, even if such sufficiently high TCO and current density are obtained, deterioration occurs due to being left in a vacuum or continuing to flow a large current. The halogen element shown in the present invention is used to an extent that offsets oxygen vacancy (1/1 of vacancy).
By adding a halogen element (at a concentration of 00 to 200x), it was possible to stabilize the TCO. In addition, the flow density was increased to over 1500 A/cm'', three times that without additives, and it was possible to preserve it.

その結果、この表面を用いるディバイス特にジョセフソ
ン素子を長期間安定して高信頼性を有して動作させるこ
とができるようになった。
As a result, it has become possible to operate devices using this surface, particularly Josephson elements, stably and with high reliability for a long period of time.

以下に図面に従って本発明を説明する。The present invention will be explained below with reference to the drawings.

「実施例1」 第1図は本発明の実施例の製造工程およびそれに関する
酸素濃度分布の相対特性を示す。
"Example 1" FIG. 1 shows the manufacturing process of an example of the present invention and the relative characteristics of the oxygen concentration distribution related thereto.

第1図(A)では酸化物超電導材料の一例としてYBa
zCu106〜.を示す。銅の成分は3またはそれ以下
になり得る。かかる超電導性材料をタブレ。
In Figure 1 (A), YBa is an example of an oxide superconducting material.
zCu106~. shows. The copper content can be 3 or less. Tablet such superconducting materials.

トまたは薄膜上に単結晶または多結晶構造を有し7て形
成し、出発材料(第1図(A) (1))とした=これ
を真空装置に保持し、雰囲気を真空引きすると、その表
面近傍(1°)の酸素が脱気し、概略200人までの範
囲の電気特性に劣化がおきてしまう。
The starting material (Fig. 1 (A) (1)) was formed by forming a monocrystalline or polycrystalline structure 7 on a sheet or thin film. When this was held in a vacuum device and the atmosphere was evacuated, its Oxygen near the surface (1°) is degassed, causing deterioration in electrical characteristics within the range of approximately 200 people.

即ち、第1図(A)と対応した酸素濃度を第1図(D)
に示す。図面において、領域(1)は正常の酸素濃度を
存する。また領域(1゛)は不足の領域を示す。この深
さは超電導材料の種類、構造、緻密さにもよるが、50
〜1000人、−mには約200 人程度である。
That is, the oxygen concentration corresponding to FIG. 1(A) is shown in FIG. 1(D).
Shown below. In the figure, region (1) has a normal oxygen concentration. Further, the area (1゛) indicates an insufficient area. This depth depends on the type, structure, and density of the superconducting material, but
-1000 people, -m about 200 people.

これらの上面に窒化珪素膜を光CVO法(紫外光または
レーザ光を用いて反応性気体を光により励起して被形成
面上に被膜形成をさせる)により5〜50人例えば20
人の厚さに形成した。さらにこれに対し、イオン注入を
行った。加速電圧を10〜30KVと弱くし、酸素濃度
が一定となるように添加した。ここで熱処理を350℃
で2時間行った。さらに本発明のハロゲン元素である弗
素を加速電圧を10〜500KVと可変し、平均添加濃
度として酸素ベイカンシの1/100〜200χ例えば
3 XIO”cm−’ドープした。
A silicon nitride film is applied to the upper surfaces of these by a photo-CVO method (exciting a reactive gas using ultraviolet light or laser light to form a film on the surface to be formed) by 5 to 50 people, for example 20 people.
Formed to the thickness of a person. Furthermore, ion implantation was performed on this. The accelerating voltage was lowered to 10 to 30 KV, and oxygen was added to keep the oxygen concentration constant. Heat treatment at 350℃
I went there for 2 hours. Further, fluorine, which is a halogen element of the present invention, was doped with an acceleration voltage of 10 to 500 KV and an average doping concentration of 1/100 to 200x of the oxygen vacancy, for example, 3 XIO"cm.

さらにこれら全体を酸素中で250〜500℃、例えば
350℃で加熱処理を約30分行った。
Furthermore, the whole was heat-treated in oxygen at 250 to 500°C, for example, 350°C, for about 30 minutes.

かかる加熱処理を行うことにより、第1図(E)に示す
如く、内部においても酸素ベイカンシに弗素が進入し、
このベルブカイト構造の酸化物超電導材料の構造劣化を
より起きにくくさせることができた。
By carrying out such heat treatment, fluorine enters the oxygen vacancy inside as well, as shown in FIG. 1(E).
We were able to make structural deterioration of the oxide superconducting material with the verbucite structure less likely to occur.

この実施例で作られた試料を加熱状態より取り出し、再
び真空中に350℃、5時間保存してみた。
The sample prepared in this example was removed from the heated state and stored again in vacuum at 350°C for 5 hours.

するとこの弗素の添加により超電導材料の表面近傍およ
びバルクにおいて、酸素が欠乏することがなく、高信頼
性の素子を作ることができた。
The addition of fluorine prevented oxygen depletion near the surface and in the bulk of the superconducting material, making it possible to create a highly reliable device.

「効果」 本発明に示す如く、作製した酸化物部′:4導材料の表
面は電子顕微鏡的にはきわめてミクロな凹部を有し、そ
の凹部は内部まで空隙が存在してしまっている。そのた
め見掛は上表面がきわめて大きくなってしまう、この表
面の不動態化をさせるため、電気陰性度の最も大きい弗
素を単層に、また散在させて、コーティングすることは
耐熱性の向上のためきわめて有効であった。加えて、こ
れら表面上およびミクロなベイカンシにハロゲン元素を
充填させることができる。それに密接した超電導材料の
改質を行う方法は、その製造工程をより簡単にできるた
め、きわめて有効であった。
"Effects" As shown in the present invention, the surface of the produced oxide part':4 conductive material has extremely microscopic recesses when viewed under an electron microscope, and voids exist deep inside the recesses. Therefore, the upper surface appears to be extremely large.In order to passivate this surface, it is necessary to coat fluorine, which has the highest electronegativity, in a single layer or in a scattered manner to improve heat resistance. It was extremely effective. In addition, these surfaces and microscopic cavities can be filled with halogen elements. A method of modifying superconducting materials closely related to this has been extremely effective because it can simplify the manufacturing process.

この結果、かかる弗素が添加された酸化物超電導材料を
真空中に300℃で5時間放置した。弗素が添加されて
いない酸化物材料にあっては、超電導特性がまったくな
くなってしまった。しかし本発明の弗素が添加された被
膜においては、TCOを79にとして安定して超電導を
保持していた。
As a result, the fluorine-added oxide superconducting material was left in vacuum at 300° C. for 5 hours. Oxide materials without fluorine have no superconducting properties at all. However, in the film to which fluorine was added according to the present invention, superconductivity was stably maintained at a TCO of 79.

本発明において、酸化物超電導材料という言葉を用いた
。しかしその結晶構造は多結晶であっても、また単結晶
であってもよいことは、本発明の技術思想において明ら
かである。
In the present invention, the term oxide superconducting material is used. However, it is clear from the technical concept of the present invention that the crystal structure may be polycrystalline or single crystalline.

本発明の実施例において、ハロゲン元素として弗素の例
を示した。しかしヨウ素、臭素においても弗素と同様に
添加してよい。
In the examples of the present invention, fluorine was shown as an example of the halogen element. However, iodine and bromine may also be added in the same way as fluorine.

なお、これまでは被膜を形成した後にイオン注入法等に
より酸素を超電導材料に注入した。しかし逆に、予め超
電導材料の表面またはその近傍に酸素をイオン注入法等
により添加し、その後に被膜を形成し、さらに加熱酸化
処理により添加された酸素を超電導を構成するに適性な
原子配位に配設することも有効である。
Note that in the past, oxygen was injected into the superconducting material by ion implantation or the like after forming a film. However, on the contrary, oxygen is added to the surface of the superconducting material in advance by ion implantation, etc., then a film is formed, and then the added oxygen is heated and oxidized to form an atomic coordination suitable for forming superconductivity. It is also effective to place the

本発明において、弗素はすでに形成されてしまっている
材料に新たに加える例を示した。しかしこの超電導材料
を作製するに際し、−mには酸化イツトリウム、炭酸バ
リウム、酸化銅の微細粒材料を用い、これをブレンドし
焼成を繰り返し、タブレフトとする。また薄膜にする場
合はこのタブレットをスパッタ法のターゲットとして被
形成面に形成する。しかしかかる出発材料中にYFs、
YbFs。
In the present invention, an example is shown in which fluorine is newly added to a material that has already been formed. However, when producing this superconducting material, fine grain materials of yttrium oxide, barium carbonate, and copper oxide are used for -m, and these are blended and fired repeatedly to form a table left. When forming a thin film, the tablet is used as a sputtering target to form a thin film on the surface to be formed. However, in such starting materials YFs,
YbFs.

TbF、、LaF、を一部または全部に用いて弗素を予
め添加してもよい。またこの弗化物の替わりに塩化物、
臭素化物を用いてもよい。
Fluorine may be added in advance using TbF, LaF, in part or in whole. Also, instead of this fluoride, chloride,
Brominated compounds may also be used.

しかし本発明は超電導を構成するのに必要な酸素ベイカ
ンシこそ必要な温度に作り、それに対しハロゲン元素を
添加することを思想としている。
However, the idea of the present invention is to create the oxygen vacancy necessary to form superconductivity at the required temperature, and then add a halogen element to it.

このため、TCOを高くするためには酸化物超電導材料
を形成した後に添加する方がより好ましい。
Therefore, in order to increase the TCO, it is more preferable to add it after forming the oxide superconducting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の作製方法および酸素濃度の分布を示す
。 (A) CC) (E) 翠11〕
FIG. 1 shows the manufacturing method of the present invention and the distribution of oxygen concentration. (A) CC) (E) Midori 11]

Claims (1)

【特許請求の範囲】 1、酸化物超電導材料にハロゲン元素を添加する工程と
、該工程の前または後に被膜を前記酸化物材料上に形成
する工程と、前工程の後、熱処理を施す工程とを有する
ことを特徴とする酸化物超電導材料の作製方法。 2、特許請求の範囲第1項において、ハロゲン元素であ
る弗素の添加はイオン注入法により行うことを特徴とす
る酸化物超電導材料の作製方法。 3、特許請求の範囲第1項において、熱処理は250〜
500℃の温度で行うことを特徴とする酸化物超電導材
料の作製方法。 4、特許請求の範囲第1項において、酸化物超電導材料
はハロゲン元素を添加する以前において十分高いT_C
_Oまたは最も高い電流密度を有し、かかる酸化物超電
導材料に対しハロゲン元素を添加することを特徴とする
酸化物超電導材料の作製方法。
[Claims] 1. A step of adding a halogen element to an oxide superconducting material, a step of forming a film on the oxide material before or after the step, and a step of performing heat treatment after the previous step. A method for producing an oxide superconducting material, characterized by having the following. 2. A method for producing an oxide superconducting material according to claim 1, characterized in that fluorine, which is a halogen element, is added by an ion implantation method. 3. In claim 1, the heat treatment is performed at a temperature of 250 to 250
A method for producing an oxide superconducting material, characterized in that it is carried out at a temperature of 500°C. 4. In claim 1, the oxide superconducting material has a sufficiently high T_C before adding a halogen element.
A method for producing an oxide superconducting material having _O or the highest current density, characterized by adding a halogen element to the oxide superconducting material.
JP62111614A 1987-05-06 1987-05-06 Preparation of oxide superconducting material Granted JPS63274682A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62111614A JPS63274682A (en) 1987-05-06 1987-05-06 Preparation of oxide superconducting material
US07/190,352 US4916116A (en) 1987-05-06 1988-05-05 Method of adding a halogen element into oxide superconducting materials by ion injection
US08/022,440 US5364835A (en) 1987-05-06 1993-02-16 Method of adding a halogen element into oxide superconducting materials by ion injection or thermal diffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111614A JPS63274682A (en) 1987-05-06 1987-05-06 Preparation of oxide superconducting material

Publications (2)

Publication Number Publication Date
JPS63274682A true JPS63274682A (en) 1988-11-11
JPH0440284B2 JPH0440284B2 (en) 1992-07-02

Family

ID=14565799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111614A Granted JPS63274682A (en) 1987-05-06 1987-05-06 Preparation of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPS63274682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production

Also Published As

Publication number Publication date
JPH0440284B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
US4916116A (en) Method of adding a halogen element into oxide superconducting materials by ion injection
Ezhilvalavan et al. Conduction mechanisms in amorphous and crystalline Ta 2 O 5 thin films
US4784975A (en) Post-oxidation anneal of silicon dioxide
US5268311A (en) Method for forming a thin dielectric layer on a substrate
US6294444B1 (en) Method for manufacturing silicon carbide semiconductor device
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
Neugebauer et al. Vapor‐Deposited Superconductive Films of Nb, Ta, and V
Cho et al. Structural and electrical characteristics of Y 2 O 3 films grown on oxidized Si (100) surface
JPS63275191A (en) Manufacture of superconductive device
JPS63261770A (en) Manufacture of superconducting device
Hillenbrand et al. Superconducting Nb3Sn cavities with high quality factors and high critical flux densities
JPS63274682A (en) Preparation of oxide superconducting material
Safa High field behavior of SCRF cavities
JPS63261769A (en) Manufacture of superconducting device
JPS63274657A (en) Oxide superconductive material
US5137868A (en) Method for preparing a superconducting device
US5232903A (en) Oxide superconducting device having uniform oxygen concentration
Peng et al. Low‐energy oxygen ion bombardment effect on BaTiO3 thin films grown by multi‐ion‐beam reactive sputtering technique
US5051377A (en) Method for forming a thin dielectric layer on a substrate
JPH0517272A (en) Deterioration preventive film for oxide superconducting material
JPH0577317B2 (en)
Park et al. Optimization of the annealing process for the (Ba, Sr) TiO3 thin films grown by low-temperature (420 C) metalorganic chemical vapor deposition
Gavaler et al. Superconducting properties as a function of thickness in NbN films
JPH01203203A (en) Formation of superconducting material layer
US5139869A (en) Thin dielectric layer on a substrate