JPS63293859A - Multilayer interconnection structure and manufacture thereof - Google Patents

Multilayer interconnection structure and manufacture thereof

Info

Publication number
JPS63293859A
JPS63293859A JP12811687A JP12811687A JPS63293859A JP S63293859 A JPS63293859 A JP S63293859A JP 12811687 A JP12811687 A JP 12811687A JP 12811687 A JP12811687 A JP 12811687A JP S63293859 A JPS63293859 A JP S63293859A
Authority
JP
Japan
Prior art keywords
wiring
layer
insulating film
layer wiring
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12811687A
Other languages
Japanese (ja)
Other versions
JP2515801B2 (en
Inventor
Ikuo Yoshida
吉田 育生
Natsuki Yokoyama
夏樹 横山
Kazunori Tsujimoto
和典 辻本
Hidekazu Murakami
英一 村上
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62128116A priority Critical patent/JP2515801B2/en
Publication of JPS63293859A publication Critical patent/JPS63293859A/en
Application granted granted Critical
Publication of JP2515801B2 publication Critical patent/JP2515801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent interconnections formed on the sidewalls of projections of an underlying layer from being peeled off without deteriorating adhesive strength at the sidewalls even if the interconnections have a very small width, by bonding the interconnections to the underlying insulating film principally at the sidewall regions of the interconnections. CONSTITUTION:The surface of a substrate 10 except its electrode extracting region is coated with an underlying insulating film 20 the surface of which is projected in a predetermined manner. A first conductor layer 30 is adhered on the surface insulating film 20, and is treated such that it is left only on the sidewalls of the projections of the insulating film 20, whereby first interconnection layers 30' are produced. An interlayer insulating film 40 is formed. The part of the film 40 where connection is to be carried out is removed by etching to form a contact hole 50 there. A second interconnection layer 60 is provided on the insulating film 40. The bottom and the sidewalls of the interconnections 30' are thus bonded to the insulating film 20 with sufficient bonding strength. Accordingly, the interconnections 30' can be prevented from being peeled off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路などの配線構造体、特に配線
橘造が2層以上におよぶ多層配線構造体ならびにその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wiring structure such as a semiconductor integrated circuit, particularly a multilayer wiring structure having two or more layers of wiring, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路、特に配線構造体は、第3図に示
すようにトランジスタなどの能動素子(図示せず)が形
成されたシリコン基板lo上に5iOzなどの絶縁膜2
0を気相成長法などによって形成した後、基板10とそ
の上の第1の絶縁膜20上に形成される第1層配線導体
層3oとの接続に必要な部分(図示せず)を周知のホト
リソグラフィおよびエツチング技術で除去し、その後ア
ルミニウムなどの第1の導体層30を全面に形成し、こ
れにホトリソグラフィおよびエツチング技術を用いて不
要部分の導体膜を除去し、所望の第1層配線30のパタ
ーンを得ている。次にこの第1層配線層30上に2層以
上の配線層を得るには、この上に5iOzなどから成る
第2の絶縁膜40を前記の方法あるいは高周波スパッタ
リング法などを用いて被着した後、その上に形成される
第2層配線60との接続に必要なコンタクト部分50の
絶縁膜を選択的に除去し、ついでアルミニウムなどの導
体層を高周波スパッタリング法などを用いて全面に被着
し、周知の方法により所望の第2層配線60パターンを
得ていた。なお、第2周溝体膜を被着する前に通常はス
パッタクリーニング処理を施し、コンタクト部に露出し
た第1層配線30表面を清浄化している。本処理は、第
1層配線30表面にできた酸化膜層などの不導体層を除
去し、第1層配線30と第2層配線60との電気的導通
特性を改善するためのものである。
Conventional semiconductor integrated circuits, particularly wiring structures, are made by forming an insulating film 2 of 5iOz or the like on a silicon substrate lo on which active elements (not shown) such as transistors are formed, as shown in FIG.
0 by a vapor phase growth method or the like, the portions (not shown) necessary for connection between the substrate 10 and the first wiring conductor layer 3o formed on the first insulating film 20 thereon are known. After that, a first conductor layer 30 of aluminum or the like is formed on the entire surface, and unnecessary portions of the conductor film are removed using photolithography and etching techniques to form the desired first layer. A pattern for the wiring 30 has been obtained. Next, in order to obtain two or more wiring layers on this first wiring layer 30, a second insulating film 40 made of 5iOz or the like is deposited thereon using the method described above or the high frequency sputtering method. After that, the insulating film of the contact portion 50 necessary for connection with the second layer wiring 60 formed thereon is selectively removed, and a conductive layer of aluminum or the like is then deposited on the entire surface using a high frequency sputtering method or the like. However, the desired second layer wiring pattern 60 was obtained by a well-known method. Note that before depositing the second circumferential trench film, a sputter cleaning process is usually performed to clean the surface of the first layer wiring 30 exposed to the contact portion. This treatment is for removing a nonconductor layer such as an oxide film layer formed on the surface of the first layer wiring 30 and improving the electrical conduction characteristics between the first layer wiring 30 and the second layer wiring 60. .

また、従来の配線構造体の製造方法として極度に微細な
配線の形成を可能とする方法に1±、特開昭61−14
1140号に記載の公知例がある。本方法は、基板上に
所定の寸法に加工したレジストを設け、全面に導体層を
付着した後、レジスト膜側壁部以外の導体層を除去し、
さらにレジスト膜も除去し所望の設定間隔の配線を得る
ものである。
In addition, as a conventional manufacturing method for wiring structures, a method that enables the formation of extremely fine wiring has been published in Japanese Patent Application Laid-Open No. 61-14.
There is a known example described in No. 1140. In this method, a resist processed to a predetermined size is provided on a substrate, a conductive layer is attached to the entire surface, and then the conductive layer other than the side wall portion of the resist film is removed.
Furthermore, the resist film is also removed to obtain wiring at desired set intervals.

〔発明が解決しようとする間層点〕[The interlayer point that the invention attempts to solve]

上記従来技術では、サブミクロン領域あるいはそれより
更に微細な配線パターンを作成しようとすると、次のよ
うな問題が発生する欠点がある。
The above-mentioned conventional technology has the drawback that the following problem occurs when attempting to create a wiring pattern in the submicron region or even finer than that.

つまり、第1M配線幅が前述のように狭くなると。In other words, if the width of the first M wiring becomes narrow as described above.

配線と下地絶縁膜との接着面が小さくなり、その接着力
が低下するため、配線パターンがはがれたり、たおれた
りする。前述した特開昭6]−141140の公知例で
示される配線の形成方法は、レジス1−の側壁に配線を
形成するものであり、微細パターンの形成を可能とする
ものであるが、レジストを除去した後で配線がはがれた
り、たおれたりすることの問題に対しては考慮されてい
ない。本問題は配線の高さが高くなる8(アスベスト比
が大きくなる程)顕著なものとなる。従って前述の方法
では配線幅は狭くできてもJ’7=さを増すことが困難
であって、配線の抵抗は著しく増加してしまう。
The bonding surface between the wiring and the underlying insulating film becomes smaller and the adhesive strength decreases, causing the wiring pattern to peel off or fall. The wiring formation method shown in the above-mentioned Japanese Patent Application Laid-open No. 6]-141140 forms the wiring on the side wall of the resist 1-, which enables the formation of a fine pattern. No consideration is given to the problem of the wiring peeling off or falling down after removal. This problem becomes more pronounced as the height of the wiring increases8 (as the asbestos ratio increases). Therefore, in the method described above, even if the wiring width can be narrowed, it is difficult to increase the width of J'7, and the resistance of the wiring increases significantly.

また配線材料膜の被着は、レジストの耐熱性の範囲内の
基板温度の下で行なわれねばならず、膜質の接着性の点
でも不利である。
Furthermore, the deposition of the wiring material film must be carried out at a substrate temperature within the range of heat resistance of the resist, which is also disadvantageous in terms of film adhesion.

また、前述の従来技術では5層間絶縁膜にコンタクト孔
形成のためのりソゲラフイエ程でマスクの位置合わせず
れが生じた場合、コンタク1−礼は第1層配線パターン
上からずれて形成される。スパッタクリーニング法では
通常コンタクト孔内に露出した第1層配線の上表面のみ
がクリーニングされるだけであるから、この場合には所
望の面積より必ず小さなコンタクト領域しか得られず、
コンタクト抵抗が増大することになる。本問題を回避す
るために、従来では第1層配線とコンタクト孔の合わせ
余裕を充分見込んだマスク設計が行なわれてきた。しか
しながら、この合わせ余裕を増やす方法は、配線ピッチ
縮少の妨げとなり集積回路の集積度向上の大きな問題と
なっている。特に本発明の様に幅が狭く厚い配線では、
上層配線との接続部面積が著しく小さくなり、不利とな
る。
Furthermore, in the prior art described above, if a misalignment of the mask occurs during the process of forming a contact hole in the five-layer insulating film, the contact 1 is formed deviating from the first layer wiring pattern. In the sputter cleaning method, only the upper surface of the first layer wiring exposed in the contact hole is usually cleaned, so in this case, the contact area is always smaller than the desired area.
Contact resistance will increase. In order to avoid this problem, conventionally, masks have been designed with sufficient allowance for alignment between the first layer wiring and the contact hole. However, this method of increasing the alignment margin hinders the reduction of the wiring pitch and poses a major problem in improving the degree of integration of integrated circuits. Especially with narrow and thick wiring like the present invention,
The area of connection with the upper layer wiring becomes significantly smaller, which is disadvantageous.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的のうち、アスペクト比の大きな微細配線パター
ンの形成は、段差を有する下地絶縁膜上に形成した導体
層のうち、下地段差側壁部に被着した部分を配線パター
ンとして利用することにより達成される。また、本技術
を採用すれば配線パターンを基板の主平面方向とは異な
る方向、つまり配線の側壁方向に2種以上の導体材料を
組み合わせて配置することが可能となる。そこで本技術
を用いて下層配線の側壁にガスプラズマ中もしくは反応
性ガス中のガスエッチ等で選択的エツチングが可能な材
料をあらかじめ被着した構造を実現すれば、上層配線を
コンタクト孔上に被着する前に下層配線の霞出面である
上表面および側壁面をガスプラズマによりクリーニング
処理することが可能となり、良好な導通特性を有するコ
ンタクトが実現される。
Among the above objectives, the formation of a fine wiring pattern with a large aspect ratio is achieved by using the portion of the conductor layer formed on the base insulating film having a step, which adheres to the side wall of the base step, as a wiring pattern. Ru. Further, if the present technology is adopted, it becomes possible to arrange a wiring pattern in a direction different from the main plane direction of the substrate, that is, in the direction of the side wall of the wiring, by combining two or more types of conductor materials. Therefore, if this technology is used to create a structure in which a material that can be selectively etched by gas etching in gas plasma or reactive gas is deposited on the sidewall of the lower layer wiring, the upper layer wiring can be coated over the contact hole. It becomes possible to clean the upper surface and the side wall surface, which are the hazy surfaces of the lower layer wiring, with gas plasma before contacting the contacts, thereby realizing a contact having good conduction characteristics.

〔作用〕[Effect]

前述の手段のうち、下地段差側壁部に形成する配線と下
地絶縁膜とは主に配線の側壁領域で接着している構造で
ある。したがって1本配線幅が微細になっても側壁部分
の接着性は劣化せず、配線がはがれたり、たおれたりす
ることはない。なお、配線の高さが高いほどつまり配線
のアスベスト比が大きいほど本作用は効果的に働く。
Among the above-mentioned means, the wiring formed on the side wall portion of the base step and the base insulating film are bonded to each other mainly in the side wall region of the wiring. Therefore, even if the width of one wire becomes fine, the adhesion of the side wall portion will not deteriorate, and the wire will not peel off or fall down. Note that this effect works more effectively as the height of the wiring increases, that is, as the asbestos ratio of the wiring increases.

また上記手段は、配線の側壁方向に2種以上の導体もし
くは化合物材料の組み合わせが達成できる。一方、ガス
プラズマ中の中性ラジカルによるドライエツチングもし
くは反応性ガス雰囲気中でのガスエツチングでは、配線
パターンの側壁面のエツチングにも適している。したが
って、前述の手段により、下地配線の側壁に構成する材
料を上記気相雰囲気中のエツチングで除去できるものを
選択すれば、コンタクト孔内に露出した第1層配線の上
表面および側壁面をクリーニングすることが容易となる
Further, the above means can achieve a combination of two or more types of conductors or compound materials in the direction of the sidewall of the wiring. On the other hand, dry etching using neutral radicals in gas plasma or gas etching in a reactive gas atmosphere is also suitable for etching side walls of wiring patterns. Therefore, by selecting a material that can be removed by etching the side wall of the underlying wiring in the gaseous atmosphere, the upper surface and side wall surface of the first layer wiring exposed in the contact hole can be cleaned using the above-mentioned method. It becomes easier to do so.

〔実施例〕〔Example〕

以下1本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 第1図(a)〜(d)は本発明の配線構造体および製造
工程の一実施例を示す断面概略図である。
Example 1 FIGS. 1(a) to 1(d) are schematic cross-sectional views showing an example of the wiring structure and manufacturing process of the present invention.

第1図(a)に示すようにトランジスタや抵抗などの素
子(図示せず)がつくり込まれているシリコン基板10
上に、電極引出し部分以外を被覆しかつ、所定の凹凸段
差を有する二酸化シリコン膜20を形成し、ついでアル
ミニウムから成る第1周溝体層30を全面に被着する。
As shown in FIG. 1(a), a silicon substrate 10 on which elements (not shown) such as transistors and resistors are built.
A silicon dioxide film 20 covering the area other than the electrode lead-out portion and having predetermined uneven steps is formed thereon, and then a first circumferential trench layer 30 made of aluminum is deposited over the entire surface.

ここで前述の二酸化シリコン膜は、800℃の温度でN
20 。
Here, the silicon dioxide film mentioned above is exposed to N at a temperature of 800°C.
20.

N2+S iH4(4%)を反応ガスとするCVL)法
で堆積した膜である。段差の形成は周知のホトリソグラ
フィ技術およびCF4をエツチングガスとするドライエ
ツチング法により行い溝の深さは約2μmとした。また
、アルミニウム膜は、トリイソブチルアルミニウム(T
IBAr、)を原料としたLPCVD法で形成した。7
I’ I BA I、の流量は50SCCM、基板温度
は250℃で、圧力は0 、5 Torrである。10
分間の堆積で約1μmのAM膜を形成した。なお、AQ
膜を被着させる前の処理として、本シリコン基板を基板
温度250℃、圧力0 、2 TorrのT i CQ
 4雰囲気に約1分間さらした。
This film was deposited by the CVL method using N2+SiH4 (4%) as a reaction gas. The step was formed by a well-known photolithography technique and a dry etching method using CF4 as an etching gas, and the depth of the groove was about 2 μm. In addition, the aluminum film is triisobutylaluminum (T
It was formed by the LPCVD method using IBAr, ) as a raw material. 7
The flow rate of I' I BA I is 50 SCCM, the substrate temperature is 250° C., and the pressure is 0.5 Torr. 10
An AM film of about 1 μm was formed by deposition for 1 minute. In addition, AQ
As a treatment before depositing the film, this silicon substrate was subjected to T i CQ at a substrate temperature of 250°C, a pressure of 0, and 2 Torr.
4 atmosphere for about 1 minute.

次に同図(b)に示すように下地絶縁膜の段差側壁部の
AQ膜だけが残るような条件で加工を行ない、第1層配
線30を形成した1本加工は、異方性ドライエツチング
によるものであり、BCQsに30%のCCQ &を混
合したものをエツチングガスとして圧力0 、 I T
orrの条件で行った。
Next, as shown in FIG. 6(b), processing was performed under conditions such that only the AQ film on the step sidewall of the base insulating film remained, and the single processing that formed the first layer wiring 30 was performed using anisotropic dry etching. The etching gas was a mixture of BCQs and 30% CCQ&, and the pressure was 0.
It was conducted under the conditions of orr.

次に同図(c)に示すように、ポリイミド樹脂から成る
層間絶縁膜40を約3μmの厚さに形成し、次いで導体
層間の接続部となる所定の部分をエツチングによって除
去して、ポリイミド樹脂にコンタクト孔50を設けた。
Next, as shown in FIG. 4C, an interlayer insulating film 40 made of polyimide resin is formed to a thickness of about 3 μm, and then predetermined portions that will become connections between the conductor layers are removed by etching. A contact hole 50 was provided in the.

本実流側で採用したポリイミド樹脂は市販の樹脂で、P
IQ (日立化成(株)製)である、なお、ポリイミド
樹脂形成、前にポリイミド樹脂と下地との接着性を改善
させることを目的として、AQキレート溶液を基板に■
転塗布し、その後加熱処理を行いAQキレート化合物の
被膜を形成した。その後、前記のポリイミドを回転塗布
法によって基板上に塗布し、加熱処理を行い溶剤を揮発
させ樹脂を重合、硬化させた。また、ポリイミド樹脂の
コンタクト孔の形成の周知のホトリソグラフィ技術およ
び02ガスを用いたプラズマエッチ技術により行った。
The polyimide resin adopted on the actual flow side is a commercially available resin.
IQ (manufactured by Hitachi Chemical Co., Ltd.).Before forming the polyimide resin, an AQ chelate solution was applied to the substrate in order to improve the adhesion between the polyimide resin and the substrate.
The coating was transferred and then heat treated to form a film of the AQ chelate compound. Thereafter, the polyimide described above was applied onto the substrate by a spin coating method, and heat treatment was performed to volatilize the solvent and polymerize and harden the resin. Further, contact holes in polyimide resin were formed using well-known photolithography technology and plasma etching technology using 02 gas.

次に第1図(d)に示すように、第二層配線60を形成
した。本配線は周知のスパッタ法により堆積し、また周
知ホトリソグラフィ、エツチング技術を用いて加工した
ものである。なお1本実施例では下層配線表面の清浄化
処理しては周知のスパッタクリーニング処理を用いてい
る。
Next, as shown in FIG. 1(d), a second layer wiring 60 was formed. This wiring was deposited by a well-known sputtering method and processed using well-known photolithography and etching techniques. In this embodiment, a well-known sputter cleaning process is used to clean the surface of the lower wiring.

本実施例では、第1層配線30の底面および側壁面が常
時下地絶縁膜20と接着しており、第1層配線と下地と
の接着力は充分な強度を有する。
In this embodiment, the bottom and sidewall surfaces of the first layer wiring 30 are always adhered to the base insulating film 20, and the adhesive force between the first layer wiring and the base has sufficient strength.

したがって製造途中で第1層配線がはがれたり。Therefore, the first layer wiring may peel off during manufacturing.

たおれたりする問題はなくなる。また、本実施例では1
幅約1μm、高さ約2μmの第1M配線を実現したが、
更にアスペクト比の大きい配線の形成に際してもその効
果は同様に得られた。
No more sagging problems. In addition, in this example, 1
We achieved the first M wiring with a width of approximately 1 μm and a height of approximately 2 μm, but
Furthermore, the same effect was obtained when forming wiring with a large aspect ratio.

なお、本実施例は2層配線構造の例であるが。Note that this embodiment is an example of a two-layer wiring structure.

それ以上の多層配線構造の場合にも、任意の下層配線お
よび上層配線に本発明を適用できることは言までもない
It goes without saying that the present invention can be applied to arbitrary lower layer wiring and upper layer wiring even in the case of a multilayer wiring structure having more than that.

実施例2 第2図(a)〜(d)は本発明の配線構造体および製造
工程の他の実施例を示す断面概略図である。本実施例は
導体層間を接続するコンタクト孔が第1[配線上からず
れている点が先の実施例1と大きく異なる。また、下地
絶縁膜材料、第1層配線の構造および第2M配線の形成
法、とくに被着させる前のクリーニング処理が異なる。
Embodiment 2 FIGS. 2(a) to 2(d) are schematic cross-sectional views showing another embodiment of the wiring structure and manufacturing process of the present invention. This embodiment differs greatly from the previous embodiment 1 in that the contact hole connecting the conductor layers is shifted from the first wiring. Further, the underlying insulating film material, the structure of the first layer wiring, the method of forming the second M wiring, and especially the cleaning treatment before deposition are different.

その他の構造、製造工程は実施例1の場合と同様である
Other structures and manufacturing steps are the same as in Example 1.

まず第2図(a)に示すようにシリコン基板lO上に、
厚さ約1μmの二酸化シリコン膜21および所定の凹凸
段差を有するポリイミド樹脂膜22を形成する。これら
の膜は前記実施例1で示した形成法と同様であり二酸化
シリコン膜はCVD法で、ポリイミド膜は回転塗布法で
それぞれ作成した。ポリイミド膜の加工も前記実施例1
の場合と同じく02プラズマにより行い、溝幅の形状を
それぞれ2μmとした。ついでシリコン31.アルミニ
ウム32.シリコン33の三層構造から成る第1周溝体
層を全面に被着する。シリコン膜31.33はプラズマ
CVD法でそれぞれ20Onmずつ形成した。このとき
の堆積には、SSiH430SCCとHzlSCCMの
混合ガスを圧力0 、3 Torrに保ち、基板温度3
50℃1周波類13.56MHy、、0.2W/c+m
”の高周波電力によりプラズマ放電を発生させて行った
。アルミニウム[32の形成は実施例1の場合と同様に
TIBALを主原料とするLPCVD法によって約0.
6μm堆積した。
First, as shown in FIG. 2(a), on a silicon substrate lO,
A silicon dioxide film 21 with a thickness of approximately 1 μm and a polyimide resin film 22 having predetermined uneven steps are formed. These films were formed by the same method as shown in Example 1, with the silicon dioxide film being formed by the CVD method and the polyimide film being formed by the spin coating method. The processing of the polyimide film was also carried out in Example 1 above.
As in the case of 02 plasma, the shape of the groove width was 2 μm. Then silicon 31. Aluminum 32. A first circumferential trench layer consisting of a three-layer structure of silicon 33 is deposited over the entire surface. The silicon films 31 and 33 were each formed to a thickness of 20 Onm by plasma CVD. For this deposition, the mixed gas of SSiH430SCC and HzlSCCM was maintained at a pressure of 0.3 Torr, and the substrate temperature was 3.
50℃ 1 frequency 13.56MHy, 0.2W/c+m
Plasma discharge was generated using a high-frequency power of 0.0%.Aluminum [32] was formed by LPCVD using TIBAL as the main raw material in the same manner as in Example 1.
A thickness of 6 μm was deposited.

次に、同図(b)に示すように三層導電層の段差側壁部
だけが残るような条件で加工を行ない。
Next, processing is carried out under conditions such that only the stepped sidewall portions of the three-layer conductive layer remain, as shown in FIG. 4(b).

第1PR配線31,32.33を形成した。次に同図(
c)に示すように、実施例1と同じくポリイミド樹脂か
ら成る層間絶縁膜40を約3μmの厚さに形成し、次い
で導体層間の接続部となる所定のコンタクト孔50を設
けた。
First PR wirings 31, 32, and 33 were formed. Next, the same figure (
As shown in c), as in Example 1, an interlayer insulating film 40 made of polyimide resin was formed to a thickness of about 3 μm, and then predetermined contact holes 50 were formed to serve as connections between conductor layers.

本実施例では、コンタクト孔が第1層配線パターン上か
らずれており、コンタクト孔内には、第1層AQ配線の
上表面の一部および側壁面の一部が露出している。
In this example, the contact hole is shifted from above the first layer wiring pattern, and a part of the upper surface and a part of the side wall surface of the first layer AQ wiring are exposed in the contact hole.

次に第2図(d)に示すように、第2層配線6oを形成
した。以下にその詳細を述べる。同図(c)に示したよ
うなコンタクト孔を開孔した後の基板をプラズマ発生機
構を有するスパッタ装置内に設置する。まずSFeガス
を導入して圧力を0 、 I Torrとしに後、基板
に周波数13.56MIIz、0 、4 W / cr
a”の高周波電力を印加してコンタクト孔50内の第1
層jul配線32側壁部のシリコン膜31をエツチング
除去した。しかる後、真空容器内をいったん排気し、A
rガスを導入して、必要に応じて上記SFeガスの場合
と同様のクリーニングを施した後に1通常のスパッタ法
によりAM膜約1μmを堆積した。その後1通常のホト
リソグラフィ技術、ドライエツチング法を用いてAQ膜
をバターニングし、第2層配線60を形成した。
Next, as shown in FIG. 2(d), a second layer wiring 6o was formed. The details are described below. The substrate after forming contact holes as shown in FIG. 3(c) is placed in a sputtering apparatus having a plasma generation mechanism. First, SFe gas was introduced and the pressure was set to 0, I Torr, and then the frequency of 13.56 MIIz, 0, 4 W/cr was applied to the substrate.
a'' is applied to the first contact hole 50.
The silicon film 31 on the side wall portion of the layer Jul wiring 32 was removed by etching. After that, the inside of the vacuum container is evacuated once, and A
After introducing r gas and carrying out the same cleaning as in the case of SFe gas as described above, an AM film of about 1 μm was deposited by a normal sputtering method. Thereafter, the AQ film was patterned using a conventional photolithography technique and dry etching method to form a second layer wiring 60.

本実施例によれば、コンタクト孔が第1層配線上からず
れて形成された場合者でもコンタクト孔内に露出した第
1層配線の上表面および側壁面と第2層配線との接触面
が極めて良好な導通特性を示し、コンタクト抵抗低減比
の効果がある。
According to this embodiment, even if the contact hole is formed offset from the top of the first layer wiring, the contact surface between the top surface and side wall surface of the first layer wiring exposed in the contact hole and the second layer wiring is It exhibits extremely good conduction characteristics and is effective in reducing contact resistance.

なお、本実施例では、第1層配線の側壁材料としてシリ
コンを用いたが、他にモリブデンやタングステンなどの
ようにガスプラズマ中の中性ラジカルでエツチング除去
が可能な材料であれば他の材料でも同様の効果を示す。
In this example, silicon was used as the sidewall material of the first layer wiring, but other materials such as molybdenum and tungsten may be used as long as they can be removed by etching with neutral radicals in gas plasma. However, it shows similar effects.

また、下層配線に形成する側壁材料は、導rtx材料に
限ることはなく酸素を含まないもの、つまり配線材料の
表面を酸化させない材料であれば本実施例と同様の効果
がある。なお、プラズマCV IJ法で形成したSiN
膜を側壁材料としたときも良好な結果を得た。
Further, the sidewall material formed on the lower wiring is not limited to a conductive RTX material, and any material that does not contain oxygen, that is, a material that does not oxidize the surface of the wiring material, will have the same effect as this embodiment. Note that SiN formed by plasma CV IJ method
Good results were also obtained when the membrane was used as the sidewall material.

また、本実施例ではコンタクト孔50内に露出した第1
層配線表面のシリコン膜;31を全てエツチングにより
除去したが、本シリコン層の全てを除去することは必ず
しも必要ではなく、後に熱処理工程を施せば表面の一部
を取り除くだけのエツチング量でも良い。
Further, in this embodiment, the first
Although all of the silicon film 31 on the surface of the layer wiring was removed by etching, it is not necessarily necessary to remove all of the silicon layer, and if a heat treatment step is performed later, the etching amount may be sufficient to remove only a portion of the surface.

また、本実施例では下層配線の表面清浄化処理としてS
Feガスのプラズマエツチング法でシリコンを除去した
がフッ素を含むガスを紫外線照射しながらエツチングす
る方法でも同様の効果を得た。
In addition, in this example, S
Although silicon was removed by plasma etching using Fe gas, a similar effect was obtained by etching using a gas containing fluorine while irradiating ultraviolet rays.

さらに、シリコンのエツチングとして水素プラズマによ
る方法でも有効であった。
Furthermore, a method using hydrogen plasma was also effective for etching silicon.

また更に1本実施例では第1層配線の両側壁にシリコン
層を付着させた構造を採用した。しかしながら第1層配
線の片側壁内のみにシリコン層を設けた場合でも、コン
タクト孔のレイアウト設計の余裕度に多少の制限が加え
られるが、同様の効果が得られる。なお1本実施例では
二層配線構造を例としたが、それ以上の多層配線構造を
作成する場合にも、任意の下層配線および上層配線に本
発明を適用できることは言うまでもない。
Furthermore, in this embodiment, a structure is adopted in which silicon layers are attached to both side walls of the first layer wiring. However, even when the silicon layer is provided only within one side wall of the first layer wiring, the same effect can be obtained, although there are some restrictions on the latitude in designing the layout of the contact holes. In this embodiment, a two-layer wiring structure is used as an example, but it goes without saying that the present invention can be applied to arbitrary lower-layer wiring and upper-layer wiring even when creating a multi-layer wiring structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配線を形成する際に配線かたおれたり
、はがれたりすることなく、微細な配線およびアスペク
ト比が大きな配線を安定に提供することができる。また
、多層配線構造体で層間接続部では、上層配線と下層配
線の上表面および側壁面とで良好な導通特性を有したコ
ンタクトを得ることができるので、コンタクト孔と下層
配線とのずれを許容することができる。したがって1本
発明は集積回路の設計配線ピッチの縮少を可能とし、集
積度の向上に効果がある。
According to the present invention, fine wiring and wiring with a large aspect ratio can be stably provided without the wiring being bent or peeled off when the wiring is formed. In addition, in the interlayer connection part of a multilayer wiring structure, it is possible to obtain a contact with good conductivity between the upper layer wiring and the upper surface and side wall surface of the lower layer wiring, so misalignment between the contact hole and the lower layer wiring can be tolerated. can do. Therefore, the present invention makes it possible to reduce the designed wiring pitch of an integrated circuit, and is effective in improving the degree of integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の配線構造体およびその製造工程の一実
施例を示す断面概略図、第2図は他の実施例を示す断面
概略図、第3図は従来の配a摺造体の断面概略図である
。 10・・・シリコン基板、20,21.22・・・下地
絶縁膜、30,31,32,33・・・第1Fl配線。 40・・・層間絶縁膜、50・・・コンタクト孔、60
・・・第二層配線。 巣/I!1 (久) (b、1 第 2区 第 3 犯
FIG. 1 is a schematic cross-sectional view showing one embodiment of the wiring structure of the present invention and its manufacturing process, FIG. 2 is a schematic cross-sectional view showing another embodiment, and FIG. It is a cross-sectional schematic diagram. 10... Silicon substrate, 20, 21. 22... Base insulating film, 30, 31, 32, 33... First Fl wiring. 40... Interlayer insulating film, 50... Contact hole, 60
...Second layer wiring. Nest/I! 1 (ku) (b, 1 2nd ward 3rd offender

Claims (1)

【特許請求の範囲】 1、基板上に、下層絶縁膜、第一層配線、層間絶縁膜、
第二層配線を順次形成する多層配線において、少なくと
も第一層配線もしくは第二層以上の配線のうちの一層の
配線は基板の主平面方向とは異なる方向に少なくとも1
種以上の導電材料もしくは2種以上の場合には絶縁物等
の化合物材料をもを組み合わせた構造から成り、配線層
間の接続部では、下層配線の表面もしくは側面の少なく
とも一部の領域が上層配線と接触していることを特徴と
する多層配線構造体。 2、第一層配線もしくは下層配線の構成材料のうち、最
も外側に位置する一領域に設ける材料シリコン、タング
ステンやそれらの化合物、もしくはそれらの窒素化合物
などのようにガスプラズマ中の中性ラジカルもしくはガ
ス中の反応基等によつてエッチング除去(以下気相エッ
チング法と記す)することが可能なものであることを特
徴とする特許請求の範囲第1項記載の多層配線構造体。 3、(a)基板表面に所定の段差を有する下層絶縁膜を
形成する工程、 (b)前記下層絶縁膜の段差部を含む全面に少なくとも
一層の導電材料を含む2種以上の材料の層を付着形成し
、その後前記下層絶縁膜段差部以外の領域の二種以上の
導電材料を除去し、所定のパターンを有する下層配線を
形成する工程、 (c)所定の場所に下層配線と上層配線との接続部とな
る接続孔を有する層間絶縁膜を形成する工程、 (d)前記接続孔内に露出した下層配線の表面をクリー
ニングする工程、 (e)所定のパターンを有する上層配線を形成する工程
を少なくとも有することを特徴とする多層配線構造体の
製造方法。 4、前記下層配線の表面をクリーニングする工程が、反
応性ガスプラズマもしくは反応性ガス雰囲気中でのガス
エッチングによつて、配線の上部表面のみならず側面を
もエッチングできる条件の下でエッチングする工程を含
むことを特徴とする特許請求の範囲第3項記載の多層配
線構造体の製造方法。
[Claims] 1. On the substrate, a lower insulating film, a first layer wiring, an interlayer insulating film,
In a multilayer wiring in which second layer wiring is sequentially formed, at least one layer of wiring among the first layer wiring or the second or higher layer wiring is arranged in a direction different from the main plane direction of the substrate.
It consists of a structure that combines more than one type of conductive material, or in the case of two or more types of compound materials such as insulators, and at the connection between wiring layers, at least a part of the surface or side surface of the lower layer wiring is connected to the upper layer wiring. A multilayer wiring structure characterized by being in contact with. 2. Among the constituent materials of the first-layer wiring or lower-layer wiring, materials provided in the outermost region such as silicon, tungsten, their compounds, or their nitrogen compounds can be used to remove neutral radicals in gas plasma or The multilayer wiring structure according to claim 1, wherein the multilayer wiring structure can be removed by etching (hereinafter referred to as vapor phase etching method) using a reactive group in a gas. 3. (a) forming a lower insulating film having a predetermined step on the surface of the substrate; (b) forming a layer of two or more materials containing at least one conductive material on the entire surface of the lower insulating film including the step; (c) forming a lower layer interconnect and an upper layer interconnect at a predetermined location by removing two or more types of conductive materials in areas other than the step portion of the lower layer insulating film to form a lower layer interconnect having a predetermined pattern; (d) cleaning the surface of the lower layer wiring exposed in the connection hole; (e) forming an upper layer wiring having a predetermined pattern. 1. A method for manufacturing a multilayer wiring structure, comprising at least the following. 4. The step of cleaning the surface of the lower wiring is performed by reactive gas plasma or gas etching in a reactive gas atmosphere under conditions that allow etching not only the upper surface but also the side surfaces of the wiring. 4. A method of manufacturing a multilayer wiring structure according to claim 3, comprising:
JP62128116A 1987-05-27 1987-05-27 Semiconductor device Expired - Fee Related JP2515801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128116A JP2515801B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128116A JP2515801B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63293859A true JPS63293859A (en) 1988-11-30
JP2515801B2 JP2515801B2 (en) 1996-07-10

Family

ID=14976773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128116A Expired - Fee Related JP2515801B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2515801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526382A (en) * 2009-05-06 2012-10-25 マイクロン テクノロジー, インク. Method for forming a plurality of conductive lines in the manufacture of an integrated circuit, method for forming a conductive line array, and integrated circuit
JP2013042011A (en) * 2011-08-17 2013-02-28 Toshiba Corp Semiconductor device and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852849A (en) * 1981-09-24 1983-03-29 Nec Corp Manufacture for wiring for electronic parts
JPS63147347A (en) * 1986-08-25 1988-06-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852849A (en) * 1981-09-24 1983-03-29 Nec Corp Manufacture for wiring for electronic parts
JPS63147347A (en) * 1986-08-25 1988-06-20 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526382A (en) * 2009-05-06 2012-10-25 マイクロン テクノロジー, インク. Method for forming a plurality of conductive lines in the manufacture of an integrated circuit, method for forming a conductive line array, and integrated circuit
TWI450362B (en) * 2009-05-06 2014-08-21 Micron Technology Inc Method of forming conductive lines in the fabrication of integrated circuitry and integrated circuitry comprising an array of conductive lines
US9064935B2 (en) 2009-05-06 2015-06-23 Micron Technology, Inc. Methods of forming a plurality of conductive lines in the fabrication of integrated circuitry, methods of forming an array of conductive lines, and integrated circuitry
JP2013042011A (en) * 2011-08-17 2013-02-28 Toshiba Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2515801B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
KR100780986B1 (en) Semiconductor device and manufacturing method thereof
US20060055046A1 (en) Semiconductor device and method for manufacturing the same
JPS6244812B2 (en)
JPS60502179A (en) How to interconnect metal layers
JP3193335B2 (en) Method for manufacturing semiconductor device
JP3781729B2 (en) Manufacturing method of semiconductor device
JPS63293859A (en) Multilayer interconnection structure and manufacture thereof
JPH04290249A (en) Manufacture of semiconductor device
US5554884A (en) Multilevel metallization process for use in fabricating microelectronic devices
JP2570997B2 (en) Semiconductor device multilayer wiring structure and semiconductor device manufacturing method
JPH07130680A (en) Method of fabricating semiconductor device
JP2000077396A (en) Semiconductor device and fabrication thereof
JPH1167909A (en) Manufacture of semiconductor device
JPH11111842A (en) Multilayered wiring structure and its manufacture
JPH11186237A (en) Manufacture of semiconductor device
JPH05291416A (en) Formation of multilayer interconnection
JPH06216264A (en) Semiconductor device and manufacture thereof
JP2000323569A (en) Semiconductor integrated circuit device, and manufacture thereof
JPH1126575A (en) Semiconductor device and its manufacture
JPH04171745A (en) Manufacture of integrated circuit
JPH06244187A (en) Manufacture of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH02140927A (en) Manufacture of semiconductor device
JPH08111474A (en) Formation of wiring layer
JPH02168625A (en) Multilayer wiring structure body and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees