JPS63291877A - Production of nonoxide ceramic - Google Patents

Production of nonoxide ceramic

Info

Publication number
JPS63291877A
JPS63291877A JP62127202A JP12720287A JPS63291877A JP S63291877 A JPS63291877 A JP S63291877A JP 62127202 A JP62127202 A JP 62127202A JP 12720287 A JP12720287 A JP 12720287A JP S63291877 A JPS63291877 A JP S63291877A
Authority
JP
Japan
Prior art keywords
solution
mixed
sintering
aln
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62127202A
Other languages
Japanese (ja)
Other versions
JP2548190B2 (en
Inventor
Hironori Hoshizaki
星崎 博紀
Hirobumi Suzuki
博文 鈴木
Nobuaki Kawahara
伸章 川原
Shinichi Shirasaki
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Denso Corp
Original Assignee
National Institute for Research in Inorganic Material
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, NipponDenso Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP62127202A priority Critical patent/JP2548190B2/en
Publication of JPS63291877A publication Critical patent/JPS63291877A/en
Application granted granted Critical
Publication of JP2548190B2 publication Critical patent/JP2548190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To obtain the titled ceramic suitable as a heating element, having specific resistance value free from variability, excellent sintering properties and dispersibility, by adding a sediment-forming solution to a mixed solution of a Ti-containing solution and an Al-containing solution, drying the prepared coprecipitated material, nitriding, firing, blending the fired material with a fixed amount of AlN and a sintering auxiliary, molding and sintering. CONSTITUTION:A mixed solution of a Ti-containing solution such as an aqueous solution of TiCl4 and an Al-containing solution such as an aqueous solution of AlCl3 is blended with a sediment-forming solution such as NH3 ammonia water to give coprecipitated Ti hydroxide and Al hydroxide. Then the coprecipitated Ti hydroxide and Al hydroxide are filtered, separated, washed with water, dried, fired in an N2-containing atmosphere such as NH3 flow at 700-1,600 deg.C, reduced and nitrided to give fired nitride powder, which is blended with AlN and a sintering auxiliary (e.g. Y2O3) in order to give a ceramic composition having the specific resistance value. The mixed powder is molded into a desired shape and sintered in a nitrogen atmosphere at 1,500-2,100 deg.C to give the titled ceramic of TiN-AlN type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非酸化物セラミックスの製造方法、より詳しく
は、発熱体(ヒータ)用の非酸化物(TiN−AJN)
系複合セラミックスの製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing non-oxide ceramics, more specifically, a method for manufacturing non-oxide ceramics (TiN-AJN) for heating elements (heaters).
The present invention relates to a method for manufacturing composite ceramics.

〔従来の技術〕[Conventional technology]

従来より発熱体としては、金属の場合にはニッケルーク
ロム合金、鉄−クロム−アルミニウム合金等の耐熱合金
が使用され、セラミックスの場合には炭化珪素、珪化モ
リブデン等が使用されている。
Conventionally, heat-resistant alloys such as nickel-chromium alloys and iron-chromium-aluminum alloys have been used as heating elements in the case of metals, and silicon carbide, molybdenum silicide, etc. have been used in the case of ceramics.

しかしながら金属発熱体の場合には使用温度は1000
〜1100℃程度が限界であり、それ以上の高温では酸
化腐食、溶断などが生じて使用不可能である。炭化珪素
(SiC)の場合は1600℃、珪化モリブデン(Mo
Siz)の場合は1800℃程度まで使用可能なものの
、炭化珪素は比抵抗が極めて高いので小型化に問題があ
り、珪化モリブデンは1300℃以上で軟化が始まり、
高温強度、熱衝撃性の面で問題がある。
However, in the case of metal heating elements, the operating temperature is 1000
The upper limit is about 1100° C., and at higher temperatures, oxidation corrosion, fusing, etc. occur, making it unusable. In the case of silicon carbide (SiC), the temperature is 1600°C, and the temperature is 1600°C.
Although silicon carbide can be used up to about 1,800℃, silicon carbide has an extremely high resistivity, making it difficult to downsize, and molybdenum silicide starts to soften at temperatures above 1,300℃.
There are problems with high temperature strength and thermal shock resistance.

これら材料にかわって、近年、TiNの非酸化物導電材
料とAINの非酸化物絶縁材料を適当な割合で混合する
ことにより比抵抗調整を行った複合セラミックスヒータ
が注目されている。このようなセラミックスヒータを製
造する場合には、例えば、TiN粉末とAIN粉末とに
焼結助剤を加え、これらをポットで混合し、バインダー
を加えて造粒した後に、成形して焼結を行なっていた。
In place of these materials, in recent years, composite ceramic heaters have been attracting attention in which resistivity is adjusted by mixing a non-oxide conductive material such as TiN and a non-oxide insulating material such as AIN in an appropriate ratio. When manufacturing such a ceramic heater, for example, a sintering aid is added to TiN powder and AIN powder, these are mixed in a pot, a binder is added and granulated, and then molded and sintered. I was doing it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような非酸化物複合セラミックス(ヒータ)は高い
耐熱性、耐熱衝撃性、高温強度を合せ持っているが、焼
成時に導電材料が凝集して焼結してしまうために、導電
バスが切断されるという現象が起き、TiN成分量が少
な(なってくると比抵抗値がばらつくという問題がある
Such non-oxide composite ceramics (heaters) have high heat resistance, thermal shock resistance, and high-temperature strength, but because the conductive material aggregates and sinters during firing, the conductive bus is cut. There is a problem that the specific resistance value varies when the amount of TiN component decreases.

本発明の目的は、この非酸化物複合セラミックス導電材
料(ヒータ)の比抵抗値のばらつきを解消し、広範囲の
比抵抗値を持つ非酸化物セラミックスを安定して製造制
御できる製造技術を提供するものである。゛ 〔問題点を解決するための手段〕 上述の目的が、工程(a)〜(e)  : (a) T
iを含む溶液とA1を含む溶液とを含有する混合溶液を
作る工程;(b)該混合溶液と沈殿形成液とを混合して
、共沈法で共沈体を得る又はゾル−ゲル法でゲルを得る
工程;(C)得られた共沈体又はゲルを乾燥後に700
〜1600℃で窒化仮焼する工程;(d)窒化仮焼によ
る仮焼窒化物と、目的とする比抵抗値のセラミックス組
成となるようにAlNおよび焼結助剤とを混合する工程
;および(e)得られた混合粉末を成形して1500〜
2100℃で焼結する工程:からなることを特徴とする
TiN −AlN系の非酸化物セラミックスの製造方法
によって達成される。
The purpose of the present invention is to eliminate variations in resistivity values of this non-oxide composite ceramic conductive material (heater) and provide a manufacturing technology that can stably control the production of non-oxide ceramics having a wide range of resistivity values. It is something.゛ [Means for solving the problem] The above purpose is the process (a) to (e): (a) T
A step of preparing a mixed solution containing a solution containing i and a solution containing A1; (b) mixing the mixed solution and a precipitate forming solution to obtain a coprecipitate by a coprecipitation method or by a sol-gel method; Step of obtaining gel; (C) After drying the obtained coprecipitate or gel,
A step of nitriding calcination at ~1600°C; (d) a step of mixing the calcined nitride obtained by nitriding calcination with AlN and a sintering aid so as to obtain a ceramic composition with a desired resistivity value; and ( e) The obtained mixed powder is molded to 1500~
This is achieved by a method for producing TiN-AlN-based non-oxide ceramics, which is characterized by comprising the steps of sintering at 2100°C.

本発明に係る製造方法での共沈法の場合には、Tiを含
む溶液(例えば、塩化チタン(Tic l 4)の水溶
液)とAj2を含む溶液(例えば、塩化アルミニウム(
八1ces)の水溶液)とを混合して、場合によっては
溶媒の水(H2O)に加えて混合して、混合溶液を作る
。水溶液でなくアルコール溶液としてこの混合溶液を作
ることも可能である。次に、この混合溶液と沈殿形成液
(例えば、アンモニア水(NH,0N))とを混合して
チタン水酸化物およびアルミニウム水酸化物の共沈体が
得られ、この共沈体を濾別水洗し乾燥する。この水酸化
物共沈体を窒素含有雰囲気下で700〜1600℃の温
度にて仮焼する還元窒化処理して仮焼窒化物(粉末)が
得られる。このように導電材料であるTiNのTi成分
を共沈法でもって絶縁材となるAINのA1成分と共に
析出させることになり、Ti とAlとの分散が非常に
よくなり、その結果、得られた仮焼窒化物の分散性も非
常に良好なものとなる。なお、仮焼温度が700℃以下
では凝集し易くなり、一方、1600℃以上では粒子が
粗大化する。
In the case of the coprecipitation method in the production method according to the present invention, a solution containing Ti (for example, an aqueous solution of titanium chloride (TiCl 4)) and a solution containing Aj2 (for example, an aqueous solution of aluminum chloride (TiCl 4)) are used.
A mixed solution is prepared by mixing an aqueous solution of 81ces) and optionally adding water (H2O) as a solvent. It is also possible to prepare this mixed solution as an alcohol solution instead of an aqueous solution. Next, this mixed solution and a precipitate forming liquid (for example, aqueous ammonia (NH, 0N)) are mixed to obtain a coprecipitate of titanium hydroxide and aluminum hydroxide, and this coprecipitate is separated by filtration. Wash with water and dry. This hydroxide coprecipitate is subjected to a reduction nitriding treatment in which the hydroxide coprecipitate is calcined at a temperature of 700 to 1600° C. in a nitrogen-containing atmosphere to obtain a calcined nitride (powder). In this way, the Ti component of TiN, which is a conductive material, is precipitated together with the A1 component of AIN, which is an insulating material, by the co-precipitation method, and the dispersion of Ti and Al becomes very good. The dispersibility of the calcined nitride is also very good. It should be noted that if the calcination temperature is 700°C or lower, the particles tend to aggregate, while if the calcination temperature is 1600°C or higher, the particles become coarse.

そして、所定の比抵抗値のセラミックス(ヒータ)を作
るために、得られた仮焼窒化物粉末と、絶縁材料のAI
N粉末および焼結助剤とを混合し、公知の成形法で所定
形状にし、窒素雰囲気下で1500〜2100℃の温度
にて焼結する。焼結助剤としては酸化イツトリウム(Y
zOs)、酸化カルシウム(Cab)などが使用できる
。焼結温度が1500℃以下では焼結が不十分となり、
一方、2100℃以上では、AINの分解が起きるので
、規定した温度範囲で焼結を行なう。このような焼結に
おいては、導電材料(TiN)の凝集がなく、導電材の
分散性が良いため通常の粉末混合を用いるよりも、比抵
抗制御を広範囲でしかも安定に行うことができ、しかも
焼結体の強度を向上させることができる。
Then, in order to make ceramics (heater) with a predetermined resistivity value, the obtained calcined nitride powder and the insulating material AI
N powder and a sintering aid are mixed, formed into a predetermined shape by a known molding method, and sintered at a temperature of 1500 to 2100° C. in a nitrogen atmosphere. Yttrium oxide (Y
zOs), calcium oxide (Cab), etc. can be used. If the sintering temperature is below 1500℃, sintering will be insufficient,
On the other hand, since AIN decomposes at temperatures above 2100° C., sintering is performed within a specified temperature range. In this type of sintering, there is no agglomeration of the conductive material (TiN) and the conductive material has good dispersibility, so it is possible to control resistivity over a wider range and more stably than when using normal powder mixing. The strength of the sintered body can be improved.

また、本発明に係る製造方法でのゾル−ゲル法の場合に
は、Tiを含む溶液(例えば、チタンアルコキシドアル
コール溶液)とAlを含む溶液(例えば、アルミニウム
アルコキシドアルコール溶液)とを混合して、場合によ
っては、溶媒のアルコール(例えば、エチルアルコール
)に加工て混合して、混合溶液を作る。アルコール溶液
でな(水溶液としてこの混合溶液を作ることも可能であ
る。次に、この混合溶液に、例えば、塩化水素の水溶液
である塩酸を加えて、加水分解によりアルミナ・チタニ
アゾル溶液にし、これを所定温度にてゲル化し、そして
乾燥する。得られたアルミナ・チタニアゲルを窒素含有
雰囲気下で700〜1600℃の温度にて仮焼する還元
窒化処理で仮焼窒化物(粉末)が得られる。この場合に
も上述した共沈法と同様にゲル中でのTiおよびA1の
分散性が非常に良く、仮焼窒化物の分散性も良く、共沈
法と同等の仮焼窒化物が得られる。なお、仮焼温度が7
00℃以下では凝集し易くなり、一方、1600℃以上
では、粒子が粗大化する。これ以降のセラミックス(ヒ
ータ)の製造工程は上述した共沈法の場合と同様である
In addition, in the case of the sol-gel method in the production method according to the present invention, a solution containing Ti (for example, titanium alkoxide alcohol solution) and a solution containing Al (for example, aluminum alkoxide alcohol solution) are mixed, In some cases, it is processed and mixed with alcohol as a solvent (for example, ethyl alcohol) to create a mixed solution. This mixed solution can also be made as an alcoholic solution (it is also possible to make it as an aqueous solution).Next, for example, hydrochloric acid, which is an aqueous solution of hydrogen chloride, is added to this mixed solution to form an alumina-titania sol solution by hydrolysis. It is gelled at a predetermined temperature and then dried. A calcined nitride (powder) is obtained by a reduction nitriding treatment in which the obtained alumina-titania gel is calcined at a temperature of 700 to 1600°C in a nitrogen-containing atmosphere. In this case, as in the coprecipitation method described above, the dispersibility of Ti and A1 in the gel is very good, the dispersibility of the calcined nitride is also good, and a calcined nitride equivalent to that obtained by the coprecipitation method can be obtained. In addition, the calcination temperature is 7
At temperatures below 00°C, agglomeration tends to occur, while at temperatures above 1600°C, particles become coarse. The subsequent steps for producing ceramics (heater) are the same as those for the coprecipitation method described above.

〔実施例〕〔Example〕

以下、本発明の実施態様例によって本発明の詳細な説明
する。
Hereinafter, the present invention will be explained in detail using embodiment examples of the present invention.

裏隻■上(共沈法の場合) 塩化アルミニウム(AIlCl、・6H,O)  1モ
ルと、塩化チタン(TiC14) 1モルと、1.51
の水(Hgo)とで混合溶液を作成した。この混合溶液
を、攪拌している6N−アンモニア水1N中に150c
cの割合で徐々に添加(混合)して、Ti’+と)、j
!3−の水酸化物共沈体を得た。これを洗浄乾燥した後
に、1100℃のアンモニア気流中で10時間還元窒化
処理を行い仮焼窒化物を得た。この仮焼窒化物の粒径は
0.1〜0.3 tnaであった。
On the back boat (in case of coprecipitation method) 1 mole of aluminum chloride (AIlCl, 6H, O), 1 mole of titanium chloride (TiC14), 1.51
A mixed solution was prepared with water (Hgo). Add this mixed solution to 1N of 6N-ammonia water while stirring.
Gradually add (mix) at a ratio of c, with Ti'+), j
! A hydroxide coprecipitate of 3- was obtained. After washing and drying this, a reduction nitriding treatment was performed for 10 hours in an ammonia stream at 1100° C. to obtain a calcined nitride. The grain size of this calcined nitride was 0.1 to 0.3 tna.

次に、この仮焼窒化物に、さらに平均粒径0.9趨の窒
化アルミニウム(A I N)粉末1.71モルおよび
焼結助剤としての酸化イツトリウム(YzOi) 0.
024モルを混合した。
Next, to this calcined nitride, 1.71 mol of aluminum nitride (AIN) powder with an average particle size of 0.9 and 0.0 mol of yttrium oxide (YzOi) as a sintering aid were added.
024 mol were mixed.

この混合粉末を溶媒としての有機溶剤およびバインダー
とともに混合し、スラリーを形成し、収縮率を考慮して
所定の形状に成形し、360℃で脱脂し、その後180
0℃で4時間窒素雰囲気中にて焼成を行った。その後焼
結体の表面を研磨して必要寸法のセラミックスヒータ試
験片を得た。
This mixed powder is mixed with an organic solvent as a solvent and a binder to form a slurry, molded into a predetermined shape considering the shrinkage rate, degreased at 360°C, and then heated at 180°C.
Firing was performed at 0° C. for 4 hours in a nitrogen atmosphere. Thereafter, the surface of the sintered body was polished to obtain a ceramic heater test piece with the required dimensions.

この本発明に係る製造方法によるセラミックスヒータ試
験片(最終焼結体)のTiNとAlNの成分割合を分析
した結果、モル比でTiN:  Aj!N =26.9
 : 73.1であった。そこで比較のために、通常の
方法にてほぼ同一組成となるように以下の方法で比較試
験片を作成した。
As a result of analyzing the component ratio of TiN and AlN in the ceramic heater test piece (final sintered body) produced by the manufacturing method according to the present invention, the molar ratio was TiN: Aj! N=26.9
: It was 73.1. Therefore, for comparison, comparative test pieces were prepared using the following method so that they had almost the same composition using a conventional method.

平均粒径0.9−のAIN 、平均粒径0.5−のTi
Nの所要量を秤量し、A I N 72.7n+o1%
、TiN26.7mo1%の組成の混合粉末を調整した
。なお、この混合粉末にはYzO+ 0.6 mo1%
の焼結助剤も混合した。この混合粉末を溶媒としての有
機溶剤およびバインダーとともに混合し、スラリーを形
成し、収縮率を考慮して所定の形状に成形し、360℃
で脱脂し、その後1800℃で4時間窒素雰囲気中にて
焼成を行った。その後焼結体の表面を研磨して、必要寸
法のセラミックスヒータ比較試験片を得た。
AIN with an average particle size of 0.9-, Ti with an average particle size of 0.5-
Weigh the required amount of N, A I N 72.7n+o1%
A mixed powder having a composition of 26.7 mo1% of TiN was prepared. In addition, this mixed powder contains YzO + 0.6 mo1%
A sintering aid was also mixed. This mixed powder is mixed with an organic solvent as a solvent and a binder to form a slurry, which is molded into a predetermined shape considering the shrinkage rate and heated to 360°C.
The sample was degreased and then fired at 1800° C. for 4 hours in a nitrogen atmosphere. Thereafter, the surface of the sintered body was polished to obtain a ceramic heater comparative test piece with the required dimensions.

得られたセラミックスヒータの本発明に係る試験片およ
び比較試験片の特性を調べて第1表に示す結果が得られ
た。
The characteristics of the test piece according to the present invention and the comparative test piece of the obtained ceramic heater were investigated, and the results shown in Table 1 were obtained.

第1表 第1表かられかるように、TiN −Aj!Nセラミッ
クスヒータの組成は本発明品と比較品とで同じであるが
、発明品は焼結密度、曲げ強度いずれも従来の比較品に
較べ向上した。この結果より本発明法を用いた原料粉末
は、従来品に較べより完全な焼結体が得られることがわ
かる。さらに、発明品の比抵抗値は、組成がほぼ同じで
あるにもかかわらず、従来品よりも減少した。TtN 
−An!Nセラミックス(ヒータ)は、TiNどうしの
導電バスによって導電性(比抵抗)を得ており、S’E
M等による観察結果から従来法をもちいたセラミ・ノク
ス焼結品は原料混合時や焼結時に生じたと思われるTi
N粒子どうしの凝集が観察されるのに対し、発明法によ
る焼結体ではTiNの分散性が非常によい。上記比抵抗
値の違いは、この分散性の違いにより、発明品ではより
スムーズな導電バスが形成された結果であると考えられ
る。
Table 1 As seen from Table 1, TiN −Aj! The composition of the N ceramic heater is the same between the inventive product and the comparative product, but the inventive product has improved sintering density and bending strength compared to the conventional comparative product. These results show that the raw material powder obtained using the method of the present invention allows a more complete sintered body to be obtained than the conventional product. Furthermore, the specific resistance value of the invented product was lower than that of the conventional product despite having almost the same composition. TtN
-An! N ceramics (heater) obtains conductivity (specific resistance) through a conductive bus between TiN, and S'E
Based on the observation results by M et al., ceramic-nox sintered products using the conventional method contain Ti, which is thought to have been generated during raw material mixing and sintering.
While agglomeration of N particles is observed, TiN has very good dispersibility in the sintered body produced by the invention method. It is thought that the difference in the specific resistance values described above is the result of a smoother conductive bus being formed in the invention product due to this difference in dispersibility.

次に、上述した本発明に係る製造方法の途中工程で得ら
れた仮焼窒化物に対するAIN添加割合を変えて、得ら
れたセラミックスヒータ試験片(発明品)の比抵抗値を
調べてその結果を第1図に示す。そして、比較のために
、組成をほぼ同じにして従来法の粉末混合から得られた
セラミックスヒータ試験片(比較品)の比抵抗値も調べ
てその結果を第1図に示す。第1図かられかるように、
一般的にTiN成分が減少するにつれ導電バスがつなが
りにく(なるために、特に比較品(従来品)では比抵抗
の上昇と共にばらつきが非常に大きくなってしまう。こ
のため10−’〜10°Ω・1台の比抵抗を安定して得
ることは従来の場合には非常に困難であった。これに対
し第1図のように本発明の製造方法では、TiN成分が
少なくても比抵抗値のばらつきが少いため工業的生産に
適している。
Next, the specific resistance value of the ceramic heater test piece (invented product) obtained was examined by changing the ratio of AIN added to the calcined nitride obtained in the intermediate process of the manufacturing method according to the present invention described above. is shown in Figure 1. For comparison, the resistivity values of ceramic heater test pieces (comparative products) obtained by conventional powder mixing with substantially the same composition were also investigated, and the results are shown in FIG. As you can see from Figure 1,
In general, as the TiN component decreases, it becomes difficult for the conductive bus to connect (because it becomes difficult to connect the conductive bus, so the variation becomes extremely large as the specific resistance increases, especially in comparative products (conventional products).For this reason, the variation becomes very large as the specific resistance increases. In the conventional case, it was very difficult to stably obtain a specific resistance of Ω.1 unit.On the other hand, as shown in Figure 1, with the manufacturing method of the present invention, even if the TiN component is small, the specific resistance is It is suitable for industrial production because the variation in value is small.

1LfLL(ゾル−ゲル法の場合) テトライソプロポキシチタン(Ti (iso−OC3
1b) t)1モルと、アルミニウムイソプロポキシド
CA13(iso−OC,L、) s)  1モルと、
1.21のエチルアルコール(CJ、OH)とで混合溶
液を作成した。この混合溶液を攪拌しながら、6Nの塩
酸70ccを滴下し、加水分解によってアルミナ・チタ
ニアゾル溶液を調整した。これを50℃でゲル化し3日
間乾燥させた。このようにして得られたアルミナ・チタ
ニアゲルを1100℃のアンモニア気流中で10Hr還
元窒化処理を行なって、仮焼窒化物を得た。この仮焼窒
化物の粒径は0.05〜0.3−であった。次にこの仮
焼焼化物に、さらに平均粒径0.9−のAIN粉末を1
.71モルと、焼結助剤のy、o、0.024モルとを
混合した。
1LfLL (for sol-gel method) Tetraisopropoxy titanium (Ti (iso-OC3
1b) t) 1 mol and s) 1 mol of aluminum isopropoxide CA13 (iso-OC,L,),
A mixed solution was prepared with 1.21 g of ethyl alcohol (CJ, OH). While stirring this mixed solution, 70 cc of 6N hydrochloric acid was added dropwise to prepare an alumina-titania sol solution by hydrolysis. This was gelatinized at 50°C and dried for 3 days. The thus obtained alumina-titania gel was subjected to a reduction nitriding treatment for 10 hours in an ammonia stream at 1100° C. to obtain a calcined nitride. The grain size of this calcined nitride was 0.05-0.3-. Next, 1 layer of AIN powder with an average particle size of 0.9- is added to this calcined product.
.. 71 mol and 0.024 mol of sintering aids y, o, were mixed.

この混合粉末を溶媒としての有機溶剤およびバインダー
とともに混合し、スラリーを形成し収縮率を考慮して所
定の形状に成形し、360℃で脱脂し、その後1800
℃で4時間窒素雰囲気中にて焼成を行った。その後焼結
体の表面を研磨して必要寸法のセラミックスヒータ試験
片を得た。
This mixed powder is mixed with an organic solvent as a solvent and a binder to form a slurry, which is molded into a predetermined shape considering the shrinkage rate, degreased at 360°C, and then heated at 1800°C.
Firing was performed at ℃ for 4 hours in a nitrogen atmosphere. Thereafter, the surface of the sintered body was polished to obtain a ceramic heater test piece with the required dimensions.

このようにして得られたセラミックスヒータ試験片(最
終焼結体)のTiNとAJNの成分割合を分析した結果
は例1の場合とほぼ同様なTtN :A ffi N 
−26,5: 73.5であった。そして、この試験片
の特性は、焼結密度3.70g/am” 、三点曲げ強
度44kg/w” および比抵抗2.5X10−3Q−
amであり、例1での場合の本発明品と同等の良好な焼
結体を得ることができた。
The results of analyzing the component ratios of TiN and AJN of the ceramic heater test piece (final sintered body) obtained in this way were almost the same as in Example 1, TtN:AffiN
-26,5: It was 73.5. The characteristics of this test piece are: sintered density 3.70g/am", three-point bending strength 44kg/w", and specific resistance 2.5X10-3Q-
am, and a good sintered body comparable to the product of the present invention in Example 1 could be obtained.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の製造方法によって、TiN−A
INセラミックス(ヒータ)において、導電性の主体と
なるTiN成分を母体側のAlN成分と共に溶液原料よ
り共沈あるいはゲル化によって取り出し、これにAβN
を追加混合することにより、焼結性及び導電成分(Ti
N)の分散性を向上させることができる。
As described above, by the manufacturing method of the present invention, TiN-A
In IN ceramics (heaters), the TiN component, which is the main conductive component, is extracted from the solution raw material together with the AlN component on the base side by co-precipitation or gelation, and AβN is added to this.
By additionally mixing the sinterable and conductive component (Ti
The dispersibility of N) can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、TiN −AINセラミックスヒータ(焼結
体)のTiN含有量と比抵抗値との関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between TiN content and specific resistance value of a TiN-AIN ceramic heater (sintered body).

Claims (1)

【特許請求の範囲】 1、下記工程(a)〜(e): (a)Tiを含む溶液とAlを含む溶液とを含有する混
合溶液を作る工程; (b)該混合溶液と沈殿形成液とを混合して共沈法で共
沈体を得る工程; (c)得られた共沈体を乾燥後に700〜1600℃で
窒化仮焼する工程; (d)前記窒化仮焼による仮焼窒化物と、目的とする比
抵抗値のセラミックス組成となるようにAlNおよび焼
結助剤とを混合する工程;および(e)得られた混合粉
末を成形して1500〜2100℃で焼結する工程; からなることを特徴とするTiN−AlN系の非酸化物
セラミックスの製造方法。 2、前記混合溶液が水溶液又はアルコール溶液であるこ
とを特徴とする特許請求の範囲第1項記載の方法。 3、下記工程(a)〜(e): (a)Tiを含む溶液とAlを含む溶液とを含有する混
合溶液を作る工程; (b)該混合溶液からゾル−ゲル法でゲルを得る工程; (c)得られたゲルを乾燥後に700〜1600℃で窒
化仮焼する工程; (d)前記窒化仮焼による仮焼窒化物と、目的とする比
抵抗値のセラミックス組成となるようにAlNおよび焼
結助剤とを混合する工程;および(e)得られた混合粉
末を成形して1500〜2100℃で焼結する工程; からなることを特徴とするTiN−AlN系の非酸化物
セラミックスの製造方法。 4、前記混合溶液が水溶液又はアルコール溶液であるこ
とを特徴とする特許請求の範囲第3項記載の方法。
[Claims] 1. The following steps (a) to (e): (a) Step of preparing a mixed solution containing a solution containing Ti and a solution containing Al; (b) The mixed solution and a precipitate forming solution (c) step of drying the obtained coprecipitate and then nitriding calcination at 700 to 1600°C; (d) calcination nitriding by the nitriding calcination. and (e) a step of molding the obtained mixed powder and sintering it at 1500 to 2100°C. A method for producing TiN-AlN-based non-oxide ceramics, characterized by comprising; 2. The method according to claim 1, wherein the mixed solution is an aqueous solution or an alcoholic solution. 3. The following steps (a) to (e): (a) Step of making a mixed solution containing a solution containing Ti and a solution containing Al; (b) Step of obtaining a gel from the mixed solution by a sol-gel method (c) A step of drying the obtained gel and then nitriding and calcining it at 700 to 1600°C; (d) Adding AlN to the calcined nitride resulting from the nitriding and calcination to obtain a ceramic composition with the desired resistivity value. and (e) molding the obtained mixed powder and sintering it at 1500 to 2100°C; TiN-AlN non-oxide ceramic characterized by comprising: manufacturing method. 4. The method according to claim 3, wherein the mixed solution is an aqueous solution or an alcoholic solution.
JP62127202A 1987-05-26 1987-05-26 Method for producing non-oxide ceramics Expired - Lifetime JP2548190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127202A JP2548190B2 (en) 1987-05-26 1987-05-26 Method for producing non-oxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127202A JP2548190B2 (en) 1987-05-26 1987-05-26 Method for producing non-oxide ceramics

Publications (2)

Publication Number Publication Date
JPS63291877A true JPS63291877A (en) 1988-11-29
JP2548190B2 JP2548190B2 (en) 1996-10-30

Family

ID=14954238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127202A Expired - Lifetime JP2548190B2 (en) 1987-05-26 1987-05-26 Method for producing non-oxide ceramics

Country Status (1)

Country Link
JP (1) JP2548190B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138899A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitridg base powder
JPS6139918A (en) * 1984-07-31 1986-02-26 Hitachi Ltd Slider for thin magnetic head
JPS6270209A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of readily sintered beta-sialon based fine powder
JPS6270210A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of aluminum nitride-silicon carbide composite fine powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138899A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitridg base powder
JPS6139918A (en) * 1984-07-31 1986-02-26 Hitachi Ltd Slider for thin magnetic head
JPS6270209A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of readily sintered beta-sialon based fine powder
JPS6270210A (en) * 1985-09-24 1987-03-31 Natl Inst For Res In Inorg Mater Production of aluminum nitride-silicon carbide composite fine powder

Also Published As

Publication number Publication date
JP2548190B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JPS6060983A (en) Ceramic heater and manufacture
JPH05330824A (en) Barium titanate and its production
JPS63156054A (en) Manufacture of polycomponent ceramics
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JPH0353255B2 (en)
Lee et al. Preparation of Al2TiO5 from alkoxides and the effects of additives on its properties
KR940005090B1 (en) Ceramic sintering processes
JPS63291877A (en) Production of nonoxide ceramic
JP2548191B2 (en) Method for producing non-oxide ceramics
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPS63156072A (en) Manufacture of composite ceramics
JP2616772B2 (en) Method for producing proton conductive ceramics
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
JP3152853B2 (en) Alumina sintered body and method for producing the same
JPS63156071A (en) Manufacture of composite ceramics
JP2548192B2 (en) Method for manufacturing aluminum nitride sintered body
JPS63151676A (en) Manufacture of zirconium titanate base ceramics
JP3221284B2 (en) Method for producing metal-oxide ceramic composite sintered body
JP2949936B2 (en) Method for producing silicon nitride sintered body
JP2564153B2 (en) Method for producing alumina-silica based sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPS62105927A (en) Production of ceramic powder having electro-optical properties
JP2004307254A (en) Silicon nitride material and its manufacturing method