JPS6270209A - Production of readily sintered beta-sialon based fine powder - Google Patents

Production of readily sintered beta-sialon based fine powder

Info

Publication number
JPS6270209A
JPS6270209A JP60210772A JP21077285A JPS6270209A JP S6270209 A JPS6270209 A JP S6270209A JP 60210772 A JP60210772 A JP 60210772A JP 21077285 A JP21077285 A JP 21077285A JP S6270209 A JPS6270209 A JP S6270209A
Authority
JP
Japan
Prior art keywords
powder
solution
aluminum compound
alkoxide
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60210772A
Other languages
Japanese (ja)
Inventor
Mamoru Mitomo
護 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP60210772A priority Critical patent/JPS6270209A/en
Publication of JPS6270209A publication Critical patent/JPS6270209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce fine, uniform and readily sintered beta-sialon based powder, by adding a solution of an aluminum compound and a sintering assistant to an Si alkoxide containing dispersed carbon powder having a specific particle diameter and heating the formed reaction precipitates under specific conditions. CONSTITUTION:Fine carbon particles having <=0.1mu particle diameter are dispersed in an Si alkoxide, e.g. methyl silicate, by ultrasonic vibration, etc., and a solution of an aluminum compound, e.g. Al(NO3)3, containing a sintering assistant, e.g. MgO, or a salt thereof, dissolved therein is added to the dispersion. The mixing ratio of the Si alkoxide to the aluminum compound is about 0.5-25 (Si/Al). The resultant reaction precipitates formed by the mixing are heated at about 400-700 deg.C to release water and then the resultant precipitates are fired in a nitrogen gas stream at 1,350-1,550 deg.C for about 0.5-50hr. Thereby, fine powder containing uniformly mixed beta-sialon based powder and sintering assistant and having about 0.3-0.5mu particle diameter is obtained and fired in a nitrogen gas stream at about 1,700-1,800 deg.C to form a sintered material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は易焼結性β−サイアロン質微粉末の製造方法に
関する。β−サイアロンはβ−8i、N4のS1位置に
At・N位置にOが置換型固溶したもので、一般式51
61A1202N8−7(ただし、0〈zく4.2を表
わす)で示される。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing easily sinterable β-sialon fine powder. β-Sialon is a solid solution of β-8i, N4 with At in the S1 position and O in the N position as a substituted solid solution, and has the general formula 51
61A1202N8-7 (0<z stands for 4.2).

β−サイアロンの焼結体は高温における強度。The sintered body of β-sialon has high strength at high temperatures.

耐食性?耐酸化性に優れ、切削工具、金属圧延用ローラ
ー、自動車エンジン部品等への応用が期待される。
Corrosion resistance? It has excellent oxidation resistance and is expected to be applied to cutting tools, metal rolling rollers, automobile engine parts, etc.

従来技術 従来の易焼結性β−サイアロン質粉末の製造方法として
は、β−サイアロ/質粉末に焼結助剤を単に混合する方
法が一般的な製法であった。
Prior Art A conventional method for producing easily sinterable β-sialon powder has been a method of simply mixing a sintering aid with β-sialon powder.

また、β−サイアロ/質粉末の製造方法としては、 1)天然のシリカ−アルミナ系の鉱物にカーボンを加え
、窒素気流中で加熱する還元・窒化法。
In addition, methods for producing β-sialo powder include: 1) A reduction/nitriding method in which carbon is added to natural silica-alumina minerals and heated in a nitrogen stream.

2)シラス等のシリカ原料にアルミニウム金属ヲ加え、
窒素気流中で加熱する方法。
2) Adding aluminum metal to silica raw materials such as whitebait,
Method of heating in a nitrogen stream.

3)  Al(OH)3とシリカゲルの共沈物をアンモ
ニア雰囲気下で加熱する方法 が知られている。
3) A method is known in which a coprecipitate of Al(OH)3 and silica gel is heated in an ammonia atmosphere.

しかし、1) 、 2)の方法は天然原料を用いるので
、多量の不純物が含有される欠点があり、また3)の方
法では反応が完結し難く、未反応物であるM化物が残る
欠点があった。
However, since methods 1) and 2) use natural raw materials, they have the disadvantage of containing a large amount of impurities, and method 3) has the disadvantage that the reaction is difficult to complete and unreacted M compounds remain. there were.

本発明者らは、さきに従来のこれらの欠点を吏服する方
法として、カーボン粉末を分散させたけい素とアルミニ
ウムのアルコキシド溶液を加水分解し7て均一に混合さ
れた微粉末からなる沈殿を窒素勿流中で加熱する方法を
開発した(%願昭59−2317号)。
The present inventors first proposed a method to overcome these drawbacks of the conventional method by hydrolyzing a silicon and aluminum alkoxide solution in which carbon powder was dispersed7 to form a precipitate consisting of a uniformly mixed fine powder. A method of heating in a nitrogen stream was developed (%Gan No. 59-2317).

しかし、この方法でも強度の大きいセラミックスの君1
られるAlの固溶量の少ない領域のサイアロン粉末は得
られず、捷だアルミニウムアルコキシドは高価である欠
点があった。
However, even with this method, ceramics with high strength 1
SiAlON powder having a small amount of solid solution of Al cannot be obtained, and crushed aluminum alkoxide has the drawback of being expensive.

発明の目的 本発明は従来法の欠点を解消すべくなされたもので、そ
の目的は従来得られなかった1ミクロン以下の粒径のβ
−サイアロン質粉末と焼結助剤が均一に混合された易焼
結性のβ−サイアロン質微粉末の製造法を提供するにあ
る。
Purpose of the Invention The present invention was made in order to eliminate the drawbacks of the conventional method, and its purpose is to reduce the
- To provide a method for producing easily sinterable β-sialon fine powder in which a sialon powder and a sintering aid are uniformly mixed.

発明の構成 本発明者は前記目的を達成すべく鋭意研究の結果、粒径
0.1ミクロン以下のカーボン粉末を分散させたけい素
アルコキシドに、アルミニウム化合物の溶液及び焼結助
剤捷たばその塩類を加え、反応によって生じた沈殿物を
窒素気流中で加熱すると、β−サイアロン質粉末と焼結
助剤との微粉末が均一に混合された粉末が得られ、この
微粉末は常圧焼結でも容易に焼結し得られることを究明
し2得た。この知見に基いて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventor has added a solution of an aluminum compound and a sintering aid to a silicon alkoxide in which carbon powder with a particle size of 0.1 micron or less is dispersed. When salts are added and the precipitate produced by the reaction is heated in a nitrogen stream, a powder is obtained in which a fine powder of β-sialon powder and a sintering aid is uniformly mixed, and this fine powder is sintered under atmospheric pressure. It was found that it could be easily obtained by sintering even if it was made of solids, and 2 was obtained. The present invention was completed based on this knowledge.

本発明の要旨は、粒径o、i ミクロン以1のカーボン
粉末を分散させたけい素アルコキシドに、アルミニウム
化合物溶液及び焼結助剤罎るいは焼結助剤の塩類を加え
、反応によって生じた沈殿を、窒素気流中で1350〜
1550℃に力[)熱することを特徴とする易炉結性β
−サイアロン質微粉末の製造方法にある。
The gist of the present invention is to add an aluminum compound solution and a sintering aid solution or salts of a sintering aid to silicon alkoxide in which carbon powder with a particle size of 1 micron or less is dispersed, Precipitate in a nitrogen stream at 1350~
Easy-to-furnace β characterized by heating to 1550°C
- A method for producing sialon fine powder.

原料のけい素アルコキシドとしては、例えばけい酸メチ
ル、けい酸エチル、けい酸プロピル、けい酸ブチル吟が
挙げられる。甘た、アルミニウム化合物としては、硝酸
アルミニウム、硫酸アルミニウム、塩化アルミニウムB
ヨウパン等が挙げられる。しかし、これに限定されるも
のではない。
Examples of the raw material silicon alkoxide include methyl silicate, ethyl silicate, propyl silicate, and butyl silicate. Sweet, aluminum compounds include aluminum nitrate, aluminum sulfate, aluminum chloride B
Examples include Youpan and the like. However, it is not limited to this.

けい素アルコキシドとアルミニウム化合物の混合比は原
子比でSi/A!= 0.5〜25の範囲であることが
好ましい。Si/Alの比が0.5より低いとアルミニ
ウム量がサイアロンの固溶WJ囲を超え、アルミニウム
化合物が不純物として粉末中に混入する。またこれが2
5を超えると、還元・窒化反応が不均一となり、均一な
サイアロ/粉末は得られない0 アルミニウム化合物はエタノール、ブタノール。
The mixing ratio of silicon alkoxide and aluminum compound is Si/A in atomic ratio! = preferably in the range of 0.5 to 25. When the Si/Al ratio is lower than 0.5, the amount of aluminum exceeds the solid solution WJ range of Sialon, and aluminum compounds are mixed into the powder as impurities. Also this is 2
If it exceeds 5, the reduction/nitriding reaction becomes non-uniform and uniform sialo/powder cannot be obtained.0 The aluminum compounds are ethanol and butanol.

プロパツール等のアルコールがまたは水に溶解して使用
する。この溶液に粒径1ミクロン以下の焼結助剤である
Mg02Y2o51Zro2.ランタニド金属酸化物の
1種以上を分散するか、あるいはそれらの金属の硫酸塩
・塩化物、硝酸塩またはアルコキシドを溶解させる。焼
結助剤及びその塩類の量は、粉末合成後酸化物が0.1
〜10重量%の範囲であるように設定する。焼結助剤の
量が0.lNff1%未満であると焼結への効果がなく
、捷た10’3量%を超えると焼結体の高温強度や耐酸
化性が低下する。
Use alcohol such as propatool or dissolve it in water. Mg02Y2o51Zro2., a sintering aid with a particle size of 1 micron or less, is added to this solution. One or more lanthanide metal oxides are dispersed or the sulfates, chlorides, nitrates or alkoxides of these metals are dissolved. The amount of the sintering aid and its salts is such that the oxide after powder synthesis is 0.1
The content is set within the range of ~10% by weight. The amount of sintering aid is 0. If lNff is less than 1%, there will be no effect on sintering, and if it exceeds 10'3% by weight, the high temperature strength and oxidation resistance of the sintered body will decrease.

0.1 ミクロン以下のカーボン微粒子を超音波振動等
でけい酸アルコキシドに分散させる。これに上記の焼結
助剤を分散あるいは焼結助剤の塩類を溶解したアルミニ
ウム化合物の溶液を力[・える。アルミニウム化合物の
溶液が水溶液の場合、混合後、酸または#X基を加え、
反応を完結させる。反応はけい素アルコキシドの加水分
解と、アルミニウム溶液からの水酸化アルミニウムの生
成反応である。
Carbon fine particles of 0.1 micron or less are dispersed in silicate alkoxide using ultrasonic vibration or the like. A solution of an aluminum compound in which the above-mentioned sintering aid is dispersed or a salt of the sintering aid is dissolved is added to this. If the aluminum compound solution is an aqueous solution, add acid or #X group after mixing,
Complete the reaction. The reaction is the hydrolysis of silicon alkoxide and the production of aluminum hydroxide from an aluminum solution.

焼結助剤の塩類が溶液中に溶解している場合は、反応中
に酸化物または水酸化物として共沈する。
If the sintering aid salts are dissolved in the solution, they will co-precipitate as oxides or hydroxides during the reaction.

アルミニウム化合物の溶液が有機溶液の場合は、カーボ
ンを分散したけい素アルコキシドと混合後、原料の3〜
4倍の蒸留水を加え、更に酸または塩基の溶液を加えて
、けい素アルコキシドの加水分解と水酸化アルミニウム
の生成を行なう。
If the solution of the aluminum compound is an organic solution, after mixing with silicon alkoxide in which carbon is dispersed,
Add 4 times as much distilled water and then add an acid or base solution to hydrolyze the silicon alkoxide and produce aluminum hydroxide.

得られる沈殿は微細であるので、溶液との分離は通常の
r過では困難である。従って、スプレードライヤや力[
1熱により液体を蒸発させる方法が便利である。
The resulting precipitate is so fine that it is difficult to separate it from the solution by ordinary filtration. Therefore, spray dryer or force [
1. A convenient method is to evaporate the liquid using heat.

沈殿は0.01〜0,1ミクロンの均一な粒子からなり
、X線的にも電子線的にも非晶質である。化学分析によ
ると5j7Atの原子比は±2%の範囲内で原料の原子
比と一致する。
The precipitate consists of uniform particles of 0.01 to 0.1 micron and is amorphous both in X-ray and electron beams. According to chemical analysis, the atomic ratio of 5j7At matches the atomic ratio of the raw material within a range of ±2%.

沈殿を加熱すると、400〜700℃で水を放出し、非
晶質のシリカ−アルミナ−カーボン−焼結助剤系の混合
粉末となる。この粉末をそのままあるいは成形後窒素気
流中で加熱すると、還元・窒化反応が起こり、β−サイ
アロン質粉末と焼結助剤とが均一に混合された粉末が得
られる。
When the precipitate is heated, water is released at 400 to 700° C., resulting in an amorphous silica-alumina-carbon-sintering aid mixed powder. When this powder is heated as it is or after molding in a nitrogen stream, reduction and nitriding reactions occur, resulting in a powder in which the β-sialon powder and the sintering aid are uniformly mixed.

還元・窒化反応に必要なカーポンチは、粉末中のSi/
Alの比によって異なる。
The car punch necessary for the reduction/nitriding reaction is the Si/Si powder in the powder.
It varies depending on the Al ratio.

Si/l = 1の場合 :3 (25in2・A1205) + 150 + 
5N2−+ 23i、A7303N5+ 15CO−=
=−べl)Sコ/Al=3の場合 3 (65in2・At、、o、) + 39Cj +
 13N2443i4.5Al、、、0..5N6.5
+39GO・−曲(2)けい翠アルコキシドに分散させ
るカーボン量は上記の代表的な式で示される■)の1〜
3倍が鏑当である。カーボン量が1倍未満であると反応
は完結せず、酸化物が未反応物として残る。カーボン量
が3倍を超えると炭化けい素も同時に生成する。
When Si/l = 1: 3 (25in2・A1205) + 150 +
5N2-+ 23i, A7303N5+ 15CO-=
=-Bel) S co/Al=3 case 3 (65in2・At,,o,) + 39Cj +
13N2443i4.5Al,,0. .. 5N6.5
+39GO・-Curve (2) The amount of carbon to be dispersed in the silicon alkoxide is 1 to 1 of ■) shown in the above representative formula.
Three times the amount is the Kaburato. If the amount of carbon is less than 1 time, the reaction will not be completed and the oxide will remain as an unreacted product. When the amount of carbon exceeds three times, silicon carbide is also generated at the same time.

加熱温度は1350〜1550℃、9才しくに1400
〜1500℃である。1350℃より低いと反応完結に
長時間を要し実用的でない。1550℃を超えると原料
の飛散や炭化けい素の生成が起る。焼成時間は0.5〜
50時間で、低温はど長時間を要する。
Heating temperature is 1350-1550℃, 1400℃ for 9 years
~1500°C. If the temperature is lower than 1350°C, it will take a long time to complete the reaction, which is not practical. When the temperature exceeds 1550°C, scattering of raw materials and generation of silicon carbide occur. Baking time is 0.5~
It takes 50 hours, but it takes a long time at low temperature.

1400℃では5〜20時間、 1soo℃では1〜5
時間が適当である。
5-20 hours at 1400℃, 1-5 hours at 1soo℃
The time is appropriate.

得られる粉末は殆んどの粒子が0.3〜0.5ミクロン
粒径の微細なものであり、β−サイアロン質粉末と焼結
助剤が均一に混5合されたものである。
Most of the particles of the obtained powder are fine particles with a particle size of 0.3 to 0.5 microns, and the β-sialon powder and the sintering aid are uniformly mixed.

この粉末は成形後、窒素気流中で1700〜1800℃
に加熱することにより焼結体が得られる。
After molding, this powder is heated to 1700-1800℃ in a nitrogen stream.
A sintered body is obtained by heating to .

実施例1゜ 平均粒径0.05 ミクロンのカーボンブラック67を
分散させたけい酸ブチル535’に、硝酸アルミニウム
(9水和物)252とイツトリウム・エトキシド0.8
7を溶解したイソプロパツール200CCを加えた。
Example 1 Carbon black 67 with an average particle size of 0.05 microns was dispersed in butyl silicate 535', aluminum nitrate (nonahydrate) 252 and yttrium ethoxide 0.8
200 CC of isopropanol in which 7 was dissolved was added.

この溶液に蒸留水200 CCrさらにアンモニア水溶
液(so%)100ccを滴下した。これを80℃址で
加熱し、8時間保って沈殿の生成を完結させた。冷却後
、容器内を100トールに減圧にして、徐々に90℃ま
で加熱することにより液体を除去した。得られた沈殿は
粒径が0.01〜0.05 ミクロンの微粒子で、均一
な混合物であった。
To this solution, 200 CCr of distilled water and 100 cc of aqueous ammonia solution (so%) were added dropwise. This was heated at 80° C. and maintained for 8 hours to complete the formation of a precipitate. After cooling, the pressure inside the container was reduced to 100 Torr and the liquid was removed by gradually heating it to 90°C. The obtained precipitate was a homogeneous mixture of fine particles with a particle size of 0.01 to 0.05 microns.

この粉末o、s yを直径12馴の金型で300Kf/
Cm2に力[:圧し、ベレットを作った。このペレット
をアルミナ製ボートに置き、窒素気流中で1450℃で
8時間加熱した。得られた粉末は平均粒径0.7ミクロ
ンの微粒子であり、β−ザイアロンと3.2沖ft%の
イツトリアを含んだガラス相からなるものであった。
These powders o and sy are put into a mold with a diameter of 12 mm at a rate of 300Kf/
A force was applied to Cm2 to make a pellet. The pellets were placed in an alumina boat and heated at 1450° C. for 8 hours in a nitrogen stream. The obtained powder was fine particles with an average particle size of 0.7 microns, and consisted of a glass phase containing β-xialon and 3.2 ft% of ittria.

これを直径16間の金型で200 K17cm2の圧力
で一次成形した後、2 jon /′Cm2のラバープ
レスで成形しベレットとした。このペレットを窒素り流
中で1750℃に1時間保持し、気孔率066%の高密
度焼結体を得た。
This was first molded in a mold with a diameter of 16 mm at a pressure of 200 K17 cm2, and then molded with a rubber press at 2 jon/'Cm2 to form a pellet. This pellet was held at 1750° C. for 1 hour in a nitrogen stream to obtain a high-density sintered body with a porosity of 066%.

実施例2゜ 平均粒径0.05ミクロンのカーボンブラックを分散さ
せたけい酸エチル42)に、蒸留水150ccにアルミ
ニウム化合物を溶解させた後焼結助剤を分散させた溶液
を加えて沈殿物を生成させた。アルミニウム化合物及び
その量↑焼結助剤及びその量を及びカーボン量は次の第
1表の通りであった。
Example 2゜To ethyl silicate42) in which carbon black with an average particle size of 0.05 micrometers was dispersed, an aluminum compound was dissolved in 150 cc of distilled water, and then a solution in which a sintering aid was dispersed was added to form a precipitate. was generated. The aluminum compound and its amount ↑ the sintering aid and its amount and the carbon amount are as shown in Table 1 below.

得られた沈殿を実施例1と同様な方法で、第1表に示す
温度と時間加熱した。得られた粉末は平均粒径が1ミク
ロン以下で均一なり粉末であった。
The resulting precipitate was heated in the same manner as in Example 1 at the temperature and time shown in Table 1. The obtained powder was a uniform powder with an average particle size of 1 micron or less.

実施例36 平均粒径0.05ミクロンのカーボンブラック82を分
散させたけい酸エチル452に、硝酸アルミニウム(9
水和物)222と所定量の焼結助剤の塩を蒸留水150
CCに溶かした溶液に加えた。この混合溶液に2規定の
塩酸水溶液30ccを加え、80℃で4時間加熱して、
けい酸エチルの加水分解とアルミニウム及び焼結助剤を
含む化合物の沈殿の生成を完結させた。沈殿を含む溶液
を遠心分離器にかけ沈殿を採取し、これに蒸留水150
ccを加え再び遠心分離器にかけ、この操作を3回繰返
した。
Example 36 Aluminum nitrate (9
Hydrate) 222 and a specified amount of sintering aid salt with distilled water 150
Added to solution in CC. Add 30 cc of 2N hydrochloric acid aqueous solution to this mixed solution, heat at 80°C for 4 hours,
The hydrolysis of ethyl silicate and the formation of a precipitate of compounds containing aluminum and sintering aids were completed. The solution containing the precipitate was centrifuged to collect the precipitate, and this was mixed with 150% distilled water.
cc was added and centrifuged again, and this operation was repeated three times.

得られた沈殿物を90℃で10時間保って乾燥した後、
実施例1と同様な方法で加熱し、÷4焼結した。その結
果は第2表に示す通りであった。
After drying the obtained precipitate by keeping it at 90°C for 10 hours,
It was heated in the same manner as in Example 1 to perform ÷4 sintering. The results were as shown in Table 2.

得られた焼結体の気孔率は1.2%JJTの高密度のも
のであった。
The obtained sintered body had a high density porosity of 1.2% JJT.

第  2  表 発明の効果 本発明の方法によると、微細なカーボン粉末を分散させ
たけい素アルコキシドと焼結助剤またはその塩を含むア
ルミニウム化合物の溶液の反応によって、微細で均一な
原料粉末が得られ、これの窒素気流中での加熱により粒
径が1ミクロン以下の微細で焼結助剤が均一に混合され
たβ−サイアロン質粉末が得られる。
Table 2 Effects of the Invention According to the method of the present invention, fine and uniform raw material powder can be obtained by the reaction of silicon alkoxide in which fine carbon powder is dispersed and a solution of an aluminum compound containing a sintering aid or its salt. By heating this in a nitrogen stream, a β-sialon powder having a particle size of 1 micron or less and uniformly mixed with a sintering aid is obtained.

そのため、これは常圧焼結によっても気孔率2%以下の
緻密な焼結体が得られる優れた効果を奏し得られる。し
かもβ価なアルミニウムアルコキンドを使用することな
く、合成反応を均一に進行し得るため、アルミニウムの
固溶の少ない領域のβ−サイアロン質粉末が安価に容易
に11.られる効果も有する。
Therefore, even by pressureless sintering, a dense sintered body with a porosity of 2% or less can be obtained, which is an excellent effect. Moreover, since the synthesis reaction can proceed uniformly without using a β-valent aluminum alkoxide, the β-sialon powder in the region where solid solution of aluminum is small can be easily produced at low cost.11. It also has the effect of

髪許出願人  科学技術庁無榛材質研究所丑後 藤  
  優
Hair permit applicant: Fuji Ushigo, Science and Technology Agency, Musashi Materials Research Institute
Excellent

Claims (1)

【特許請求の範囲】 1)粒径0.1ミクロン以下のカーボン粉末を分散させ
たけい素アルコキシドに、アルミニウム化合物溶液及び
焼結助剤あるいは焼結助剤の塩類を加え、反応によって
生じた沈殿を、窒素気流中で1350〜1550℃に加
熱することを特徴とする易焼結性β−サイアロン質微粉
末の製造方法。 2)けい素アルコキシドとアルミニウム化合物の混合比
が原子比でSi/Al=0.5〜25である特許請求の
範囲第1項記載の易焼結性β−サイアロン質微粉末の製
造方法。
[Claims] 1) An aluminum compound solution and a sintering aid or salts of a sintering aid are added to silicon alkoxide in which carbon powder with a particle size of 0.1 micron or less is dispersed, and a precipitate is produced by the reaction. A method for producing easily sinterable β-sialon fine powder, which comprises heating the above to 1,350 to 1,550°C in a nitrogen stream. 2) The method for producing easily sinterable β-sialon fine powder according to claim 1, wherein the mixing ratio of silicon alkoxide and aluminum compound is Si/Al=0.5 to 25 in atomic ratio.
JP60210772A 1985-09-24 1985-09-24 Production of readily sintered beta-sialon based fine powder Pending JPS6270209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210772A JPS6270209A (en) 1985-09-24 1985-09-24 Production of readily sintered beta-sialon based fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210772A JPS6270209A (en) 1985-09-24 1985-09-24 Production of readily sintered beta-sialon based fine powder

Publications (1)

Publication Number Publication Date
JPS6270209A true JPS6270209A (en) 1987-03-31

Family

ID=16594882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210772A Pending JPS6270209A (en) 1985-09-24 1985-09-24 Production of readily sintered beta-sialon based fine powder

Country Status (1)

Country Link
JP (1) JPS6270209A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167209A (en) * 1986-01-17 1987-07-23 Natl Inst For Res In Inorg Mater Alpha-sialon powder and its production
JPS63291876A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of nonoxide ceramic
JPS63291877A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of nonoxide ceramic
JPS63291878A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of aluminum nitride sintered material
JP2013063894A (en) * 2011-08-29 2013-04-11 Hokkaido Univ Sialon and method for synthesizing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138899A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitridg base powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138899A (en) * 1978-04-21 1979-10-27 Toshiba Corp Production of silicon nitridg base powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167209A (en) * 1986-01-17 1987-07-23 Natl Inst For Res In Inorg Mater Alpha-sialon powder and its production
JPH0460050B2 (en) * 1986-01-17 1992-09-25 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPS63291876A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of nonoxide ceramic
JPS63291877A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of nonoxide ceramic
JPS63291878A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of aluminum nitride sintered material
JP2013063894A (en) * 2011-08-29 2013-04-11 Hokkaido Univ Sialon and method for synthesizing the same

Similar Documents

Publication Publication Date Title
JP2639121B2 (en) Method for producing fine α-alumina powder
JPS62167209A (en) Alpha-sialon powder and its production
CN102531015A (en) Method for preparing porous aluminum oxide superfine powder
US4643859A (en) Process for the production of fine non-oxide powders from alkoxides
JPS6270209A (en) Production of readily sintered beta-sialon based fine powder
TW200417516A (en) Method for producing α-alumina particulate
JPS61186268A (en) Manufacture of high strength beta-sialon silicon carbide composite body
JPS6357383B2 (en)
JP2977408B2 (en) Method for producing α&#39;-sialon sintered body
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JP2006076799A (en) Method for producing fine particle alpha-alumina
JPH0371366B2 (en)
JPS61183108A (en) Preparation of fine powder of aluminium nitride
JPH0339968B2 (en)
JPS61281013A (en) Production of mullite powder of high purity
JPH0218285B2 (en)
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPH10182156A (en) Zirconia power and its production
JPH05147924A (en) Production of alumina-silica powder
JPS61174106A (en) Production of fine silicon nitride powder
JPS6356189B2 (en)
JPS6150908B2 (en)
JPS6348829B2 (en)
JPS63139008A (en) Production of powdery aluminum nitride
JPH10195717A (en) Production of composite fiber