JPS63291849A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPS63291849A
JPS63291849A JP62125116A JP12511687A JPS63291849A JP S63291849 A JPS63291849 A JP S63291849A JP 62125116 A JP62125116 A JP 62125116A JP 12511687 A JP12511687 A JP 12511687A JP S63291849 A JPS63291849 A JP S63291849A
Authority
JP
Japan
Prior art keywords
powder
superconductor
temperature
oxide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62125116A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62125116A priority Critical patent/JPS63291849A/en
Publication of JPS63291849A publication Critical patent/JPS63291849A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductor capable of exhibiting superconductivity, especially at liquid N2 temperature or above, by firing a compact of a blended powder of Y oxide powder, Ba hydroxide power and Cu oxide powder in an oxidizing atmosphere. CONSTITUTION:Powder of an Y oxide (Y2O3) is thoroughly mixed with powder of Ba hydroxide [Ba(OH)2] and powder of Cu oxide (CuO) in a ball mill, etc. The resultant blended powder is then filled in a metallic mold and compacted under about 700kg/cm<2> pressure to provide a compact, which is then placed in a firing device and fired at about 1,050 deg.C temperature in an oxidizing atmosphere for several hour to afford the aimed superconductor consisting of a sintered compact. The above-mentioned sintered compact is required to consist of Y, Ba, Cu and O and have composition ratios of 10<=Y<=60atom.%, 20<=Ba<=50atom.% and 30<=Cu<=65atom.% in Y-Ba-Cu. The superconductor of this invention completely attains a superconducting state at liquid N2 temperature (77K).

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになる所謂超電
導体に係り、特に液体窒素温度以上で超電導を示す超電
導体に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and particularly to a superconductor which exhibits superconductivity above the temperature of liquid nitrogen.

B8発明の概要 本発明は、出発物質として、イツトリウム酸化物、バリ
ウム水酸化物、及び銅酸化物の各粉末を用いて形成した
。イツトリウム(Y)、バリウム(Ba)、銅(Cu)
及び酸素(O)の成分からなる焼結体で、液体窒素温度
(絶対温度77度)以上で超電導を示す超電導体の製造
方法にある。
B8 Summary of the Invention The present invention was formed using yttrium oxide, barium hydroxide, and copper oxide powders as starting materials. Yttrium (Y), barium (Ba), copper (Cu)
The present invention provides a method for producing a superconductor which is a sintered body consisting of the following components:

C1従来の技術 西暦1911年カメリング・オンネスにより超電導現象
が発見されていらい、実用化に向けてさまざまな研究開
発が進められている。実用化には、臨界温度(Tc)が
高ければ高い程、冷却コストが安(て済むため、より高
温での超電導の可能性をめぐってその超電導材料の激し
い開発競争が展開されている。
C1 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been underway to put it into practical use. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

これまでに明らかにされている超電導材料は、液体ヘリ
ウム温度(Tc約4に、−269℃)で冷却して使用す
るものがほとんどであり、これはヘリウムガスを液化し
た冷却剤で冷却しなければならない。ヘリウムは希少材
料で高価格であるうえ、臨界温度まで下げるための冷却
コストが非常に高くつくため、超電導材料の普及を遅ら
せる最大の原因となっている。
Most of the superconducting materials that have been revealed so far are used after being cooled to liquid helium temperature (Tc approximately 4, -269°C), which requires cooling with a coolant made from liquefied helium gas. Must be. Helium is a rare and expensive material, and the cost of cooling it down to its critical temperature is extremely high, making it the main reason for delaying the spread of superconducting materials.

ごく最近、超電導材料についての研究開発が世界的にも
進められ、これまでの概念を破る材料が登場しつつある
Very recently, research and development on superconducting materials has been progressing worldwide, and materials that break with conventional concepts are appearing.

これまで知られた超電導材料の最高のTcは、ニオブ3
ゲルマニウム(NbsGe)の22.3Kにとどまって
いたが、La(ランタン)の一部をBa(バリウム)で
置換したランタン・ストロンチウム・銅酸化物(L a
S r)*Cuo 4によって、これまでの限界を超え
た37にで超電導現象が始まり、33にで電気抵抗がゼ
ロになったことか発表され、続いて今年始め同じ<La
−9r−Cubs系で54Kを、また同物質系で85K
を実現したと発表された。更に続いて、物質名を「酸化
物」としか明らかにされないが、ランタン・ストロンチ
ウム・同酸化物系と思われる新物質によってTc77K
を達成したと発表されるに至った。更に近年、100K
を超えるバリウム・イブテルビウム・銅酸化物。
The highest Tc of superconducting materials known so far is niobium 3
The temperature was only 22.3K for germanium (NbsGe), but lanthanum/strontium/copper oxide (L a
With S r) *Cuo 4, the superconducting phenomenon began at 37, exceeding the previous limit, and it was announced that the electrical resistance had become zero at 33, followed by the same <La at the beginning of this year.
-9r-Cubs type 54K, and the same material type 85K
It was announced that it had been achieved. Furthermore, although the name of the substance is only disclosed as "oxide," Tc77K is produced by a new substance that is thought to be based on lanthanum, strontium, and the same oxide.
It was announced that the goal had been achieved. Furthermore, in recent years, 100K
barium, ibuterbium, and copper oxide.

イツトリウム系鋼酸化物の超電導材料が発見されたと発
表されるに至っている。
It has been announced that a superconducting material made of yttrium-based steel oxide has been discovered.

D9発明が解決しようとする問題点 上記のように液体ヘリウムの温度は、常圧で4.2にで
あり、ヘリウムは希少材料で且つ高価格で、加えて臨界
温度まで下げるための膨張タービンなどを必要とし、冷
却コストが極めて高くつき実用化の一つの障害となって
いた。また、77に以上であれば液体窒素を使用でき、
液体ヘリウムの使用と比較してすべての点において有利
であり、実用化が極めて容易となるため、Tcが77に
以上の超電導材料の開発が望まれているが、その開発は
、上述の通り未だ緒についたばかりであるのが現状であ
る。
D9 Problems to be solved by the invention As mentioned above, the temperature of liquid helium is 4.2 at normal pressure. The cooling cost was extremely high, which was an obstacle to practical application. Also, if it is 77 or higher, you can use liquid nitrogen,
It is desired to develop a superconducting material with a Tc of 77 or higher because it is advantageous in all respects compared to the use of liquid helium and is extremely easy to put into practical use. The current situation is that it has just started.

これらの点に鑑み、本発明は、77に以上で超電導状態
となる超電導体の製造方法を提供しようとするものであ
る。
In view of these points, the present invention seeks to provide a method for manufacturing a superconductor that becomes superconducting in 77 or more steps.

E7問題点を解決するための手段と作用液体窒素冷却で
超電導体が使用できれば、電力。
E7 Means and Actions to Solve Problems If superconductors can be used with liquid nitrogen cooling, power.

運輸、エネルギー変換等の広い分野で利用できる点に着
目し、種々の材料の配合、焼成温度等の実験を重ねた結
果、イツトリウム(Y)、バリウム(Ba)、銅(Cu
)及び酸素(O)の成分からなる焼結体で、且つ焼結体
の成分のY−Ba−CuにおけるYが10≦Y≦60原
子% Baが20≦Ba≦50原子% Cuが30≦Cu≦65原子% の範囲であれば、液体窒素による冷却で抵抗ゼロの超電
導体が得られることを見出した。
Focusing on the fact that it can be used in a wide range of fields such as transportation and energy conversion, we have repeatedly experimented with various material formulations, firing temperatures, etc.
) and oxygen (O), and in Y-Ba-Cu, which is a component of the sintered body, Y is 10≦Y≦60 atomic%, Ba is 20≦Ba≦50 atomic%, and Cu is 30≦ It has been found that a superconductor with zero resistance can be obtained by cooling with liquid nitrogen as long as Cu≦65 atomic %.

すなわち、イツトリウム酸化物の粉末と、バリウム水酸
化物の粉末と、銅酸化物の粉末と、を混合して得た混合
粉末を加圧して形成し、この成形体を酸化性雰囲気中で
且つ950〜1200℃の範囲で焼結することにより、
イツトリウム(Y)、バリウム(Ba)、銅(Cu)、
及び酸素(O)の成分からなり、且っY−Ba−CUに
おける成分を前述の範囲とした焼結体を形成すれば、液
体窒素による冷却で抵抗ゼロの超電導体が容易に得られ
ることを見出した。
That is, a mixed powder obtained by mixing yttrium oxide powder, barium hydroxide powder, and copper oxide powder is formed by pressing, and this molded body is heated in an oxidizing atmosphere at 950°C. By sintering in the range of ~1200℃,
Yttrium (Y), barium (Ba), copper (Cu),
It has been shown that if a sintered body consisting of Y-Ba-CU and oxygen (O) is formed and the Y-Ba-CU component is within the above-mentioned range, a superconductor with zero resistance can be easily obtained by cooling with liquid nitrogen. I found it.

なお、Y−Ba−Cuにおいて YがIO原子%未満、60原子%超過 Baが20原子%未満、50原子%超過Cuが30原子
未満、65原子超過 の場合には、液体窒素で超電導が生じる焼結体を得るこ
とができなかった。
In addition, in Y-Ba-Cu, when Y is less than IO atomic %, Ba is less than 20 atomic % in excess of 60 atomic %, Cu is less than 30 atoms in excess of 50 atomic %, and Cu is in excess of 65 atomic %, superconductivity occurs in liquid nitrogen. A sintered body could not be obtained.

F、実施例 以下、本発明を実施例に基づいて説明する。先ず、出発
原料として粒径10μm以下としたイツトリウム酸化物
(Ytos)の粉末、バリウム水酸  −化物(B a
 (OH) z)の粉末、銅酸化物(CuO)の粉末、
をそれぞれ20so1%、30mo1%。
F. Examples The present invention will be explained below based on examples. First, as starting materials, yttrium oxide (Ytos) powder with a particle size of 10 μm or less, barium hydroxide (Ba
(OH) z) powder, copper oxide (CuO) powder,
20so1% and 30mo1% respectively.

50+++o1%となるよう秤看する。Weigh it so that it is 50+++o1%.

次に、これらの粉末をボールミル等で十分に混合すると
供にエチルアルコールと玉石を入れ数時間十分に混合し
、得られたスラリーを約100’cの温度で乾燥させる
Next, these powders are thoroughly mixed using a ball mill or the like, and ethyl alcohol and cobblestone are added thereto and thoroughly mixed for several hours, and the resulting slurry is dried at a temperature of about 100'C.

なお、バリウム水酸化物は水に対して溶解度があるため
、水を含まない溶媒(例えばエチルアルコール)を用い
て混合、造粒を行う必要がある。
In addition, since barium hydroxide has solubility in water, it is necessary to perform mixing and granulation using a water-free solvent (for example, ethyl alcohol).

次に、バインダーとしてポリビニルアルコールを原料粉
末に対し1重量%となるようにポリビニルアルコール溶
液の形で添加する。そしてアルコールを更に加え十分混
練した後、乾燥し、ふるいにて150メツシユ以下の顆
粒状の造粒粉を得る。
Next, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution so that the amount is 1% by weight based on the raw material powder. After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、700に9/a
x”程度の圧力で圧縮成形して外径40wx、厚み約6
xxの成形体を作る。
Next, after filling this granulated powder into a mold, 700 to 9/a
Compression molded with a pressure of about x”, outer diameter 40wx, thickness approx.
Make a molded body of xx.

次に、この成形体を焼成器に設置し、酸化性雰囲気で、
且つ約1050℃の温度で数時間加熱して焼結体(セラ
ミックス)を得る。
Next, this molded body is placed in a firing oven and heated in an oxidizing atmosphere.
A sintered body (ceramics) is obtained by heating at a temperature of about 1050° C. for several hours.

上記の製造方法により得られた焼結体を、巾4ffl+
、厚さ4 xz、長さ40m麓の形状に切り出して第1
図に示すように電極を設けて4端子法により、焼結体の
抵抗を測定した。
The sintered body obtained by the above manufacturing method was
, cut into a shape with a thickness of 4 x z and a length of 40 m.
The resistance of the sintered body was measured by a four-probe method using electrodes as shown in the figure.

即ち第1図は、抵抗値を測定するための説明図で、焼結
体Sの長手方向の両端側に電流を流すための端子a、 
a’を設け、その内側に抵抗値を測定するための電圧端
子す、 b’を設ける、これを液体窒素の低温槽に入れ
、端子a、 a’に1アンペアの安定化電流を流して端
子す、 b’間の電圧を電圧計(v)で測定して端子す
、 b’間の電圧降下によって抵抗値を測定する。なお
、Aは電流計を示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, in which terminals a for passing current through both ends of the sintered body S in the longitudinal direction,
A' is provided, and inside it is a voltage terminal for measuring the resistance value, and a voltage terminal B' is provided.This is placed in a liquid nitrogen cryostat, and a stabilized current of 1 ampere is passed through terminals a and a' to connect the terminals. Measure the voltage between terminals S and B' with a voltmeter (v), and measure the resistance value by the voltage drop between terminals S and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度約93
にで超電導現象が始まり、約89Kに至って電気抵抗が
ゼロになることが確認された。
Figure 2 shows the measurement results, with an absolute temperature of approximately 93
It was confirmed that the superconducting phenomenon began at about 89K, and that the electrical resistance became zero.

他の組成比についても同様な実験を行なったので、前述
の例を含めて記載する。
Similar experiments were conducted with other composition ratios, so the description will include the above-mentioned examples.

但し、表の実施例1が上述したものを示す。However, Example 1 in the table shows the above.

なお、Y、0.が5 mo1%未満、30mo1%超過
Ba(OH)、が20mo1%未満、50mo1%超過 CuOが30!101%未満、65mo1%超過では、
超電導を生じる焼結体を得ることができなかった。
Note that Y, 0. is less than 5 mo1%, Ba (OH) exceeding 30 mo1%, is less than 20 mo1%, CuO is less than 30!101%, exceeding 65 mo1%,
It was not possible to obtain a sintered body that produced superconductivity.

要は、出発物質換算でイツトリウム酸化物(Y、O8)
が5〜30mo1%、バリウム水酸化物(Ba(oH)
t)が20〜50mo1%、銅酸化物(CuO)が30
〜65mo1%であれば液体窒素で抵抗ゼロとなること
が判った。
In short, yttrium oxide (Y, O8) in terms of starting material
is 5 to 30 mo1%, barium hydroxide (Ba(oH)
t) is 20 to 50 mo1%, copper oxide (CuO) is 30
It was found that if it was ~65 mo1%, the resistance would be zero with liquid nitrogen.

すなわち、焼結体を構成する成分のY−Ba−Cuにお
いて、Yが10〜60原子%、Baが20〜50原子%
、 Cuが30〜65原子%であれば超電導体が得られ
ることが判った。
That is, in Y-Ba-Cu, which is a component constituting the sintered body, Y is 10 to 60 at%, and Ba is 20 to 50 at%.
It has been found that a superconductor can be obtained if the Cu content is 30 to 65 atomic %.

更に、前述の実施例1の組成条件のYtO,=20mo
1%、Ha(OH)*=30@o1%、CuO=50m
o1%のものについて、焼結温度を変えて調べた結果、
950℃〜1200℃の温度において焼結すれば所望の
超電導体を得ることができた。
Furthermore, YtO,=20mo under the composition conditions of Example 1 described above.
1%, Ha(OH)*=30@o1%, CuO=50m
As a result of investigating 1% o by changing the sintering temperature,
The desired superconductor could be obtained by sintering at a temperature of 950°C to 1200°C.

しかし、温度が950℃未満、1200℃超過では所望
の超電導現象を生ずる焼結体を得ることができなかった
However, at temperatures below 950°C and above 1200°C, it was not possible to obtain a sintered body that produced the desired superconducting phenomenon.

G9発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において完全に超電導状態となる。
Effects of the G9 Invention As described above, the superconductor according to the present invention has a temperature of liquid nitrogen (
It becomes completely superconducting at 77K).

しかも、Y−Ba−Cu−0の焼結体における出発物質
に、イツトリウム酸化物、バリウム水酸化物、銅酸化物
の粉末を用いており、その上、加圧成形、酸化性雰囲気
にて950〜1200℃の温度で焼結していることから
、ち密で特性の安定した超電導体を容易に得ることがで
きる。
Furthermore, powders of yttrium oxide, barium hydroxide, and copper oxide are used as starting materials for the sintered body of Y-Ba-Cu-0, and in addition, powders of yttrium oxide, barium hydroxide, and copper oxide are used as starting materials. Since it is sintered at a temperature of ~1200°C, a dense superconductor with stable characteristics can be easily obtained.

現在明らかにされている超電導体は、ヘリウムガスを液
化した冷却剤で冷却しなければならず、液体ヘリウムの
温度は4.2にで、しかも希少材料で高価であり、且つ
液化コストも高いため、超電導材料の実用化の壁となっ
ていた。
The currently discovered superconductor requires cooling with a coolant made from liquefied helium gas, and the temperature of liquid helium is 4.2, and it is a rare and expensive material, and the cost of liquefying it is high. This has been a barrier to the practical application of superconducting materials.

しかし、液体窒素はどこででも、しかも安く入手でき、
従来の実用化の壁は完全に取り除かれ、特に電力、運輸
等に関連した電気抵抗、及び精密計測素子、その他エネ
ルギー変換などの分野に利用可能となる等極めて優れた
効果を発揮する。
However, liquid nitrogen is available everywhere and cheaply.
The conventional barriers to practical application have been completely removed, and it has extremely excellent effects, such as being able to be used in fields such as electrical resistance, precision measurement elements, and other energy conversion related to electricity, transportation, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(10−”Ωam)の特性曲線図を示
す。 a、 a’・・・電流供給用端子、b、 b’ ・・・
電圧測定端子、S・・・焼結体。
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) shows a characteristic curve diagram of the resistance value (10-"Ωam). a, a'... terminal for current supply, b, b'...
Voltage measurement terminal, S... sintered body.

Claims (1)

【特許請求の範囲】 イットリウム酸化物の粉末と、バリウム水酸化物の粉末
と、銅酸化物の粉末とを混合して混合粉末を得る工程と
、 該混合粉末を加圧して成形体を得る工程と、該成形体を
酸化性雰囲気中で、且つ950℃〜1200℃の範囲の
温度で焼成して焼結体を形成する工程とからなり、 該焼結体がイットリウム(Y)、バリウム(Ba)、銅
(Cu)及び酸素(O)の成分からなり、且つY−Ba
−Cuにおける成分比が、 イットリウム(Y)が10≦Y≦60原子%バリウム(
Ba)が20≦Ba≦50原子%銅(Cu)が30≦C
u≦65原子% であることを特徴とする超電導体の製造方法。
[Claims] A step of mixing yttrium oxide powder, barium hydroxide powder, and copper oxide powder to obtain a mixed powder, and a step of pressurizing the mixed powder to obtain a compact. and a step of firing the molded body in an oxidizing atmosphere at a temperature in the range of 950°C to 1200°C to form a sintered body, the sintered body containing yttrium (Y), barium (Ba ), copper (Cu) and oxygen (O), and Y-Ba
-The component ratio in Cu is yttrium (Y) to 10≦Y≦60 atomic% barium (
Ba) is 20≦Ba≦50 atomic% Copper (Cu) is 30≦C
A method for producing a superconductor, characterized in that u≦65 atomic %.
JP62125116A 1987-05-22 1987-05-22 Production of superconductor Pending JPS63291849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125116A JPS63291849A (en) 1987-05-22 1987-05-22 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125116A JPS63291849A (en) 1987-05-22 1987-05-22 Production of superconductor

Publications (1)

Publication Number Publication Date
JPS63291849A true JPS63291849A (en) 1988-11-29

Family

ID=14902243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125116A Pending JPS63291849A (en) 1987-05-22 1987-05-22 Production of superconductor

Country Status (1)

Country Link
JP (1) JPS63291849A (en)

Similar Documents

Publication Publication Date Title
JPS63291849A (en) Production of superconductor
JPS63291848A (en) Superconductor and production thereof
JPS63285161A (en) Superconductor and production thereof
JPS63291853A (en) Production of superconductor
JPS63288954A (en) Production of superconductor
JPS63288945A (en) Superconductor
JPS63288947A (en) Superconductor and its production
JPS63288948A (en) Production of superconductor
JPS63288953A (en) Production of superconductor
JPS63291851A (en) Production of superconductor
JPS63291846A (en) Production of superconductor
JPS63291852A (en) Production of superconductor
JPH01278420A (en) Superconductor and production thereof
JPS63288951A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01278452A (en) Superconductor and production thereof
JPH01278454A (en) Superconductor and production thereof
JPH01278465A (en) Production of superconductor
JPS63291850A (en) Production of superconductor
JPS63288946A (en) Superconductor
JPH01278455A (en) Superconductor and production thereof
JPH01278451A (en) Superconductor and production thereof
JPH01278460A (en) Production of superconductor
JPH01278456A (en) Superconductor and production thereof
JPS63288952A (en) Production of superconductor