JPS63291846A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPS63291846A
JPS63291846A JP62125113A JP12511387A JPS63291846A JP S63291846 A JPS63291846 A JP S63291846A JP 62125113 A JP62125113 A JP 62125113A JP 12511387 A JP12511387 A JP 12511387A JP S63291846 A JPS63291846 A JP S63291846A
Authority
JP
Japan
Prior art keywords
powder
temperature
oxide
superconductor
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62125113A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62125113A priority Critical patent/JPS63291846A/en
Publication of JPS63291846A publication Critical patent/JPS63291846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To readily obtain a superconductor capable of exhibiting superconductivity, especially at liquid N2 temperature or above, by temporarily firing a mixed powder of Y oxide powder and Cu oxide powder at a temperature below the normal firing temperature adding Y oxide powder to the resultant processed powder, compacting the resultant blended powder and normally firing the obtained compact of the blended powder in an oxidizing atmosphere. CONSTITUTION:A superconductor which is a sintered compact, consisting of Y, Ba, Cu and O and containing components at atomic ratios within the ranges of 10<=Y<=60 atom.%, 20<=Ba<=50atom.% and 30<=Cu<=65atom.% in Y-Ba-Cu is produced by the following method. That is powder of Y oxide (Y2O3) and powder of Ba oxide (BaO) are thoroughly mixed in a ball mill, etc. The resultant mixed powder is then temporarily fired at about 900 deg.C which is a lower temperature than that in normal firing in an oxidizing atmosphere and subsequently wet pulverized to provide a finely divided processed powder. Powder of Y oxide (Y2O3) is then added to the obtained processed powder and the resultant blended powder is sufficiently mixed in a ball mill, dried and subsequently compacted. The resultant compact is then normally fired at about 1,050 deg.C temperature in an oxidizing atmosphere to afford the aimed superconductor having stabilized characteristics without crack or strain.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになる所謂超電
導体に係り、特に液体窒素温度以上で超電導を示す超電
導体に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and particularly to a superconductor which exhibits superconductivity above the temperature of liquid nitrogen.

B1発明の概要 本発明は、バリウム酸化物の粉末と、銅酸化物の粉末と
を混合して仮焼成し、これを粉砕して得た加工粉末とイ
ツトリウム酸化物の粉末とを混合して混合粉を得、この
混合粉を加圧成形した後に酸化性雰囲気中で本焼成して
得た、イツトリウム(Y)、バリウム(Ba)、銅(C
u)及び酸素(O)の成分からなる焼結体であり、液体
窒素温度(絶対温度77度)以上で超電導を示す超電導
体の製造方法にある。
B1 Overview of the Invention The present invention involves mixing barium oxide powder and copper oxide powder, calcining the mixture, and pulverizing the resulting processed powder and yttrium oxide powder. Yttrium (Y), barium (Ba), copper (C
A method for producing a superconductor which is a sintered body consisting of components u) and oxygen (O) and exhibits superconductivity above liquid nitrogen temperature (absolute temperature of 77 degrees Celsius).

C0従来の技術 西暦1911年カメリング・オンネスにより超電導現象
が発見されていらい、実用化に向けてさまざまな研究開
発が進められている。実用化には、臨界温度(Tc)が
高ければ高い程、冷却コストが安くて済むため、より高
温での超電導の可能性をめぐってその超電導材料の激し
い開発競争が展開されている。
C0 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been underway to put it into practical use. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

これまでに明らかにされている超電導材料は、液体ヘリ
ウム温度(Tc約4に、−269℃)で冷却して使用す
るものがほとんどであり、これはヘリウムガスを液化し
た冷却剤で冷却しなければならない。ヘリウムは希少材
料で高価格であるうえ、臨界温度まで下げるための冷却
コストが非常に高くつくため、超電導材料の普及を遅ら
せる最大の原因となっている。
Most of the superconducting materials that have been revealed so far are used after being cooled to liquid helium temperature (Tc approximately 4, -269°C), which requires cooling with a coolant made from liquefied helium gas. Must be. Helium is a rare and expensive material, and the cost of cooling it down to its critical temperature is extremely high, making it the main reason for delaying the spread of superconducting materials.

ごく最近、超電導材料についての研究開発が世界的にも
進められ、これまでの概念を破る材料が登場しつつある
Very recently, research and development on superconducting materials has been progressing worldwide, and materials that break with conventional concepts are appearing.

これまで知られた超電導材料の最高のTcは、ニオブ3
ゲルマニウム(N bs G e)の22.3Kにとど
まっていたが、La(ランタン)の一部をBa(バリウ
ム)で置換したランタン・ストロンチウム・銅酸化物(
LaSr)tcuo4によって、これまでの限界を超え
た37にで超電導現象が始まり、33にで電気抵抗がゼ
ロになったことが発表され、続いて今年始め同じ<La
−8r−Cu04系で54Kを、また同物質系で85K
を実現したと発表された。更に続いて、物質名を「酸化
物」としか明らかにされないが、ランタン・ストロンチ
ウム・同酸化物系と思われる新物質によってTc77K
を達成したと発表されるに至った。更に近年、100K
を超えるバリウム・イッテルビウム・銅酸化物。
The highest Tc of superconducting materials known so far is niobium 3
The temperature was only 22.3K for germanium (N bs Ge), but lanthanum/strontium/copper oxide (in which part of La (lanthanum) is replaced with Ba (barium))
With LaSr)tcuo4, it was announced that the superconducting phenomenon began at 37, exceeding the previous limit, and that the electrical resistance became zero at 33, followed by the same <LaSr) at the beginning of this year.
-8r-Cu04 system with 54K, and the same material system with 85K
It was announced that it had been achieved. Furthermore, although the name of the substance is only disclosed as "oxide," Tc77K is produced by a new substance that is thought to be based on lanthanum, strontium, and the same oxide.
It was announced that the goal had been achieved. Furthermore, in recent years, 100K
barium, ytterbium, and copper oxide.

イツトリウム系銅酸化物の超電導材料が発見されたと発
表されるに至っている。
It has been announced that a superconducting material made of yttrium-based copper oxide has been discovered.

D1発明が解決しようとする問題点 上記のように液体ヘリウムの温度は、常圧で4.2にで
あり、ヘリウムは希少材料で且つ高価格で、加えて臨界
温度まで下げるための膨張タービンなどを必要とし、冷
却コストが極めて高くつき実用化の一つの障害となって
いた。また、77に以上であれば液体窒素を使用でき、
液体ヘリウムの使用と比較してすべての点において有利
であり、実用化が極めて容易となるため、Tcが77に
以上の超電導材料の開発が望まれているが、その開発は
、上述の通り未だ緒についたばかりであるのが現状であ
る。
D1 Problems to be solved by the invention As mentioned above, the temperature of liquid helium is 4.2 at normal pressure. The cooling cost was extremely high, which was an obstacle to practical application. Also, if it is 77 or higher, you can use liquid nitrogen,
It is desired to develop a superconducting material with a Tc of 77 or higher because it is advantageous in all respects compared to the use of liquid helium and is extremely easy to put into practical use. The current situation is that it has just started.

これらの点に鑑み、本発明は、77に以上で超電導状態
となる超電導体の製造方法を提供しようとするものであ
る。
In view of these points, the present invention seeks to provide a method for manufacturing a superconductor that becomes superconducting in 77 or more steps.

E1問題点を解決するための手段と作用液体窒素冷却で
超電導体が使用できれば、電力。
Means and functions for solving the E1 problem If superconductors can be used with liquid nitrogen cooling, power.

運輸、エネルギー変換等の広い分野で利用できる点に着
目し、種々の材料の配合、焼成温度等の実験を重ねた結
果、イツトリウム(Y)、バリウム(Ba)、銅(Cu
)及び酸素(O)の成分からなる焼結体で、且つ焼結体
の成分のY−Ba−CuにおけるYh<10≦Y≦60
原子% Baが20≦Ba≦50原子% Cuが30≦Cu≦65原子% の範囲あれば、液体窒素による冷却で抵抗ゼロの超電導
体が得られることを見出した。
Focusing on the fact that it can be used in a wide range of fields such as transportation and energy conversion, we have repeatedly experimented with various material formulations, firing temperatures, etc.
) and oxygen (O), and Yh<10≦Y≦60 in Y-Ba-Cu, which is a component of the sintered body.
It has been found that a superconductor with zero resistance can be obtained by cooling with liquid nitrogen if the atomic % Ba is in the range of 20≦Ba≦50 atomic % and the Cu content is in the range of 30≦Cu≦65 atomic %.

すなわち、バリウム酸化物の粉末と、銅酸化物の粉末と
を混合して混合粉末を作り、この混合粉末を本焼成の温
度より低い温度にて仮焼成し、得られた仮焼成物を粉砕
して加工粉末を作り、この加工粉末とイツトリウム酸化
物の粉末とを混合して混合粉を作り、この混合粉を加圧
して成形体を作り、この成形体を酸化性雰囲気中で且つ
950〜1200℃の範囲の温度で本焼成することによ
り、 イツトリウム(Y)、バリウム(Ba)、銅(Cu)及
び酸素(O)の成分からなり、且つY−Ba−Cuにお
ける成分を前述の範囲とした焼結体を形成すれば、 液体窒素による冷却で抵抗ゼロの超電導体が容易に得ら
れることを見出した。
That is, a mixed powder is made by mixing barium oxide powder and copper oxide powder, this mixed powder is pre-fired at a temperature lower than the main firing temperature, and the obtained pre-fired product is pulverized. This processed powder is mixed with yttrium oxide powder to make a mixed powder, this mixed powder is pressed to make a molded body, and this molded body is heated in an oxidizing atmosphere to a temperature of 950 to 1200 By performing the main firing at a temperature in the range of ℃, it consists of the components of yttrium (Y), barium (Ba), copper (Cu) and oxygen (O), and the components of Y-Ba-Cu are within the above range. We discovered that if a sintered body is formed, a superconductor with zero resistance can be easily obtained by cooling with liquid nitrogen.

なお、Y−Ba−Cuにおいて、 Yが10原子%未満、60原子%超過 Baが20原子%未満、50原子超過 Cuが30原子%未満、65原子%超過の場合には、液
体窒素で超電導が生じる焼結体を得ることができなかっ
た。
In addition, in Y-Ba-Cu, if Y is less than 10 atomic %, Ba exceeding 60 atomic % is less than 20 atomic %, and Cu exceeding 50 atomic % is less than 30 atomic % or more than 65 atomic %, superconductivity can be achieved using liquid nitrogen. It was not possible to obtain a sintered body in which .

F、実施例 以下、本発明を実施例に基づいて説明する・先ず、出発
原料として粒径lOμ騰以下としたイツトリウム酸化物
(yt 03 )の粉末・バリウム酸化物(Bad)の
粉末、銅酸化物(Cub)の粉末をそれぞれ20mo1
%、30Ilo1%、50mo1%の割合となるよう秤
量する。
F. Examples Hereinafter, the present invention will be explained based on examples. First, as starting materials, yttrium oxide (yt 03 ) powder with a particle size of 10μ or less, barium oxide (Bad) powder, and copper oxide were used as starting materials. 20 mo1 of Cub powder each
%, 30Ilo1%, and 50mol1%.

そしてまず、バリウム酸化物の粉末と銅酸化物の粉末を
ボールミル等で十分に混合すると共にエチルアルコール
と玉石を入れ数時間十分に混合し、得られたスラリーを
約100℃の温度で乾燥させる。
First, barium oxide powder and copper oxide powder are thoroughly mixed using a ball mill or the like, and ethyl alcohol and cobblestone are added thereto and thoroughly mixed for several hours, and the resulting slurry is dried at a temperature of about 100°C.

次に乾燥して得た混合粉末をアルミナ容器に入れ、酸化
性雰囲気中にて後工程の本焼成の温度より低い温度であ
る約900℃の温度で約2時間加熱処理(所謂仮焼成)
する。
Next, the mixed powder obtained by drying is placed in an alumina container and heat-treated in an oxidizing atmosphere at a temperature of approximately 900°C, which is lower than the temperature of the main firing in the subsequent process, for approximately 2 hours (so-called pre-calcination).
do.

次に得られた焼成粉は、粉体が反応し合って固くなって
いるので、これをライカイキにセットしている乳バチに
移し、アルコールを加え湿式にて粉砕し微細化した加工
粉末を得る。
Next, the obtained fired powder becomes hard due to the reaction between the powders, so it is transferred to a milk drum set in the Raikaiki, and alcohol is added to wet-pulverize it to obtain a fine processed powder. .

そして得られた加工粉末に、イツトリウム酸化物の粉末
を加えてボールミルで十分に混合すると共にエチルアル
コールと玉石を入れて数時間十分に混合し、得られたス
ラリーを約100℃の温度で乾燥させる。
Then, yttrium oxide powder is added to the obtained processed powder, thoroughly mixed in a ball mill, ethyl alcohol and cobblestone are added, and mixed thoroughly for several hours, and the resulting slurry is dried at a temperature of about 100°C. .

次に、乾燥して得た混合粉に、バインダーとしてポリビ
ニルアルコールを混合粉に対し1重量%となるようにポ
リビニルアルコール水溶液の形で添加する。そしてアル
コールを更に加え十分混練した後、乾燥し、ふるいにて
150メツシユ以下の顆粒状の造粒粉を得る。
Next, to the mixed powder obtained by drying, polyvinyl alcohol is added as a binder in the form of an aqueous polyvinyl alcohol solution so that the amount is 1% by weight based on the mixed powder. After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、700k g 
/ c m ’程度の圧力で圧縮成形して外径40m 
m 、厚み約6mmの成形体を作る。
Next, after filling this granulated powder into a mold, 700 kg
Compression molded at a pressure of about /cm' to an outer diameter of 40m.
m, a molded body with a thickness of about 6 mm is made.

次に、この成形体を焼成器に設置し、酸化性雰囲気で且
つ約1050℃(前述の仮焼成温度より高い温度)の温
度で数時間加熱して焼結体(セラミックス)を得る。
Next, this molded body is placed in a sintering machine and heated in an oxidizing atmosphere at a temperature of approximately 1050° C. (a temperature higher than the above-mentioned pre-firing temperature) for several hours to obtain a sintered body (ceramics).

上記の製造方法により得られた焼結体、巾4mm、厚さ
4 m m 、長さ40mmの形状に切り出して第1図
に示すように電極を設けて4端子法により、焼結体の抵
抗を測定した。
The sintered body obtained by the above manufacturing method was cut into a shape with a width of 4 mm, a thickness of 4 mm, and a length of 40 mm. Electrodes were provided as shown in Figure 1, and the resistance of the sintered body was determined by the four-terminal method. was measured.

即ち第1図は、抵抗値を測定するための説明図で、焼結
体Sの長芋方向の両端側に電流を流すための端子a、 
a’を設け、その内側に抵抗値を測定するための電圧端
子す、 b:を設ける、これを液体窒素の低温槽に入れ
、端子a、 a’ に1アンペアの安定化電流を流して
端子す、 b’間の電圧を電圧計(V)で測定して端子
す、 b’間の電圧降下によって抵抗値を測定する。な
お、Aは電流計を示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, with terminals a for passing current through both ends of the sintered body S in the potato direction;
A' is provided, and a voltage terminal (B) for measuring the resistance value is provided inside it.This is placed in a liquid nitrogen cryostat, and a stabilized current of 1 ampere is passed through terminals a and a' to connect the terminals. Measure the voltage between terminals A and B' with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度約93
にで超電導現象が始まり、89Kに至って電気抵抗がゼ
ロになることが確認された。
Figure 2 shows the measurement results, with an absolute temperature of approximately 93
It was confirmed that the superconducting phenomenon began at 89K, and that the electrical resistance became zero at 89K.

他の組成比についても同様な実験を行なったので、前述
の例を含めて記載する。
Similar experiments were conducted with other composition ratios, so the description will include the above-mentioned examples.

但し、表の実施例1が上述したものを示す。However, Example 1 in the table shows the above.

なお1. Y * Osが5 mo1%未満、30mo
1%超過BaOが20mo1%未満、50mo1%超過
CuOが30Ilo1%未満、65mo1%超過では、
超電導を生じる焼結体を得ることができなかった。
Note 1. Y*Os less than 5 mo1%, 30 mo
When BaO exceeding 1% is less than 20mo1%, CuO exceeding 50mo1% is less than 30Ilo1%, and exceeding 65mo1%,
It was not possible to obtain a sintered body that produced superconductivity.

要は、出発物質換算でイツトリウム酸化物(Y、0.)
が5〜30IIO1%、バリウム酸化物(Bad)が2
0〜50IIIo1%、銅酸化物(Cub)が30〜6
5so1%であれば液体窒素で抵抗ゼロとなることが判
った。
In short, yttrium oxide (Y, 0.) in terms of starting material
is 5-30IIO1%, barium oxide (Bad) is 2
0-50IIIo1%, copper oxide (Cub) 30-6
It was found that if 5so1% was used, the resistance would be zero with liquid nitrogen.

すなわち、焼結体を構成する成分のY−Ba−Cuにお
いて、Yh(10〜60原子%、Baが20〜50原子
%、 Cuが30〜65原子%であれば超電導体が得ら
れることが判った。
That is, in Y-Ba-Cu, which is a component constituting the sintered body, a superconductor can be obtained if Yh (10 to 60 atomic %, Ba 20 to 50 atomic %, and Cu 30 to 65 atomic %). understood.

更に実施例1の組成条件のY 20 s= 2 On+
o1%。
Furthermore, Y 20 s= 2 On+ under the composition conditions of Example 1
o1%.

Ba0t=30+*o1%、 Cu0= 50mo1%
のものについて、BaO粉末とCuO粉末との仮焼成の
温度を900℃にしてY * 03粉末を加えての本焼
成の温度を変えて調べた結果、950℃〜1200℃の
温度において本焼結すれば所望の超電導体を得ることが
できた。
Ba0t=30+*o1%, Cu0=50mo1%
As a result of the investigation, the temperature of preliminary sintering of BaO powder and CuO powder was set at 900°C, and the temperature of main sintering with addition of Y*03 powder was changed. By doing so, the desired superconductor could be obtained.

しかし、温度が950℃未満、1200℃超過では所望
の超電導現象を生ずる焼結体を得ることができなかった
However, at temperatures below 950°C and above 1200°C, it was not possible to obtain a sintered body that produced the desired superconducting phenomenon.

また、実施例1の組成条件のものにおl、1て、本焼成
の温度を約1050℃にして、BaO粉末とCuO粉末
との仮焼成の温度を変えて調べた結果、約800℃以上
で且つ本焼成の温度以下の温度にて加熱(約10分間以
上)して仮焼成しておけば、Y、03粉末を加えての本
焼成時において、反応がゆるやかとなって、割れ、歪の
生じない品質の安定した焼結体が得られることが判った
。 要は、本焼成の温度以下の条件で、まず、バリウム
酸化物の粉末と銅酸化物の粉末との混合粉末を仮焼成(
熱処理)し、これを粉砕して得た加工粉末にイツトリウ
ム酸化物の粉末を加えて得た混合粉を用いて本焼成すれ
ば品質の安定した焼結体すなわち超電導体が得られるこ
とが判った。
In addition, under the composition conditions of Example 1, the main firing temperature was set at about 1050°C, and the results of investigation by changing the pre-sintering temperature of BaO powder and CuO powder were found to be about 800°C or higher. If you pre-fire it by heating (for about 10 minutes or more) at a temperature below the main firing temperature, the reaction will be slow during the main firing with Y, 03 powder added, causing cracks and distortion. It was found that a sintered body with stable quality and no occurrence of oxidation can be obtained. The point is, first, a mixed powder of barium oxide powder and copper oxide powder is pre-calcined (under conditions below the main firing temperature).
It was found that a sintered body of stable quality, that is, a superconductor, can be obtained by using a mixed powder obtained by adding yttrium oxide powder to the processed powder obtained by heat treatment) and pulverizing it. .

G0発明の効果 以上のような本発明による超電導体は、液体窒素温度(
77K)において完全に超電導状態となる。
G0 Effects of the invention The superconductor according to the invention as described above has a temperature of liquid nitrogen (
It becomes completely superconducting at 77K).

しかも、Y−Ba−Cu−0の焼結体における出発物質
に、イツトリウム酸化物、バリウム酸化物、銅酸化物の
粉末を用いており、その上焼成に際しては、本焼成(9
50−1200℃)の温度より低い温度にて、バリウム
酸化物の粉末と銅酸化物の粉末とからなる混合粉末を熱
処理(仮焼成)して加工粉末を得、この加工粉末にイツ
トリウム酸化物の粉末を加えた混合粉を用いて本焼成す
るものであるから、割れ、歪がなく、しかも特性の安定
した焼成体、すなわち超電導体を容易に得ることができ
る。
Moreover, powders of yttrium oxide, barium oxide, and copper oxide are used as starting materials in the sintered body of Y-Ba-Cu-0, and upon firing, the main firing (9
A mixed powder consisting of barium oxide powder and copper oxide powder is heat-treated (pre-calcined) at a temperature lower than the temperature of 50-1200℃) to obtain processed powder, and yttrium oxide is added to this processed powder. Since the main sintering is performed using a mixed powder containing powder, it is possible to easily obtain a sintered body, that is, a superconductor, which is free from cracks and distortions and has stable characteristics.

現在明らかにされている超電導体は、ヘリウムガスを液
化した冷却剤で冷却しなければならず、液体ヘリウムの
温度は4.2にで、しかも希少材料で高価であり、且つ
液化コストも高いため、超電導材料の実用化の壁となっ
ていた。
The currently discovered superconductor requires cooling with a coolant made from liquefied helium gas, and the temperature of liquid helium is 4.2, and it is a rare and expensive material, and the cost of liquefying it is high. This has been a barrier to the practical application of superconducting materials.

しかし、液体窒素はどこででも、しかも安く入手でき、
従来の実用化の壁は完全に取り除かれ、特に電力、運輸
等に関連した電気抵抗、及び精密計測素子、その他エネ
ルギー変換などの分野に利用可能となる等極めて優れた
効果を発揮する。
However, liquid nitrogen is available everywhere and cheaply.
The conventional barriers to practical application have been completely removed, and it has extremely excellent effects, such as being able to be used in fields such as electrical resistance, precision measurement elements, and other energy conversion related to electricity, transportation, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(10”’Ωc m )の特性曲線図
を示す。 a、a′・・・電流供給用端子、b、b’・・・電圧測
定端子、S・・・焼結体。
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) is a characteristic curve diagram of the resistance value (10''Ωcm). a, a'... terminal for current supply, b, b'... terminal for voltage measurement, S... sintered body.

Claims (1)

【特許請求の範囲】 バリウム酸化物の粉末と、銅酸化物の粉末とを混合して
混合粉末を得、該混合粉末を本焼成の温度より低い温度
にて仮焼成し、該仮焼成物を粉砕して加工粉末を得る工
程と、 該加工粉末とイットリウム酸化物の粉末とを混合して混
合粉を得、該混合粉を加圧して成形体を得る工程と、 該成形体を酸化性雰囲気中で、且つ950℃〜1200
℃の範囲の温度で本焼成して焼結体を形成する工程とか
らなり、 該焼結体がイットリウム(Y)、バリウム(Ba)、銅
(Cu)及び酸素(O)の成分からなり、且つY−Ba
−Cuにおける成分が、 イットリウム(Y)が10≦Y≦60原子%バリウム(
Ba)が20≦Ba≦50原子%銅(Cu)が30≦C
u≦65原子% であることを特徴とした超電導体の製造方法。
[Claims] Barium oxide powder and copper oxide powder are mixed to obtain a mixed powder, the mixed powder is pre-fired at a temperature lower than the main firing temperature, and the pre-fired product is pulverizing to obtain a processed powder; mixing the processed powder and yttrium oxide powder to obtain a mixed powder; pressurizing the mixed powder to obtain a compact; and placing the compact in an oxidizing atmosphere. inside and 950℃~1200℃
a step of main firing at a temperature in the range of °C to form a sintered body, the sintered body consisting of components of yttrium (Y), barium (Ba), copper (Cu) and oxygen (O), And Y-Ba
-The components in Cu are yttrium (Y) and 10≦Y≦60 atomic% barium (
Ba) is 20≦Ba≦50 atomic% Copper (Cu) is 30≦C
A method for producing a superconductor, characterized in that u≦65 atomic %.
JP62125113A 1987-05-22 1987-05-22 Production of superconductor Pending JPS63291846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125113A JPS63291846A (en) 1987-05-22 1987-05-22 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125113A JPS63291846A (en) 1987-05-22 1987-05-22 Production of superconductor

Publications (1)

Publication Number Publication Date
JPS63291846A true JPS63291846A (en) 1988-11-29

Family

ID=14902168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125113A Pending JPS63291846A (en) 1987-05-22 1987-05-22 Production of superconductor

Country Status (1)

Country Link
JP (1) JPS63291846A (en)

Similar Documents

Publication Publication Date Title
JPS63291846A (en) Production of superconductor
JPS63291853A (en) Production of superconductor
JPS63291847A (en) Production of superconductor
JPS63291845A (en) Production of superconductor
JPS63288951A (en) Production of superconductor
JPS63291852A (en) Production of superconductor
JPS63291851A (en) Production of superconductor
JPS63291850A (en) Production of superconductor
JPS63288955A (en) Production of superconductor
JPS63288952A (en) Production of superconductor
JPS63288949A (en) Production of superconductor
JPS63288950A (en) Production of superconductor
JPS63291848A (en) Superconductor and production thereof
JPS63288947A (en) Superconductor and its production
JPS63288945A (en) Superconductor
JPS63291849A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPS63285161A (en) Superconductor and production thereof
JPH0214868A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01278454A (en) Superconductor and production thereof
JPS63288948A (en) Production of superconductor
JPS63288954A (en) Production of superconductor