JPS63291819A - Recovery of gallium - Google Patents
Recovery of galliumInfo
- Publication number
- JPS63291819A JPS63291819A JP12721787A JP12721787A JPS63291819A JP S63291819 A JPS63291819 A JP S63291819A JP 12721787 A JP12721787 A JP 12721787A JP 12721787 A JP12721787 A JP 12721787A JP S63291819 A JPS63291819 A JP S63291819A
- Authority
- JP
- Japan
- Prior art keywords
- gallium
- distillation
- chloride
- gacl3
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052733 gallium Inorganic materials 0.000 title claims description 43
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims description 42
- 238000011084 recovery Methods 0.000 title claims description 5
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 claims abstract description 38
- 238000004821 distillation Methods 0.000 claims abstract description 19
- 238000005660 chlorination reaction Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 42
- 150000001805 chlorine compounds Chemical class 0.000 claims description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 229910005267 GaCl3 Inorganic materials 0.000 abstract description 16
- 238000009835 boiling Methods 0.000 abstract description 15
- 239000012535 impurity Substances 0.000 abstract description 12
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 abstract description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 9
- 229910005260 GaCl2 Inorganic materials 0.000 abstract description 9
- 229910017009 AsCl3 Inorganic materials 0.000 abstract description 8
- 150000001875 compounds Chemical class 0.000 abstract description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 239000000047 product Substances 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000005422 blasting Methods 0.000 abstract 1
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 238000004508 fractional distillation Methods 0.000 abstract 1
- 239000000383 hazardous chemical Substances 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 239000011574 phosphorus Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000005363 electrowinning Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910021513 gallium hydroxide Inorganic materials 0.000 description 4
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical group [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- -1 AsCl3 and PCl3 Chemical class 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 235000007831 chromium(III) chloride Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は化合物半導体として電子産業に広く用いられる
ガリウム・ヒ素(以下Ga−ASと略記)。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to gallium arsenide (hereinafter abbreviated as Ga-AS), which is widely used in the electronic industry as a compound semiconductor.
ガリウム・リン(以下Ga*Pと略記)等の化合物の製
造時およびその他の場合に生ずるGaを含むスクラップ
からGaを分離回収する方法に関する。The present invention relates to a method for separating and recovering Ga from scrap containing Ga generated during the production of compounds such as gallium phosphorous (hereinafter abbreviated as Ga*P) and in other cases.
Ga・AsおよびGa*P等の製造は、一般にはそれら
化合物の溶体より引上げ法により単結晶を製造し、該単
結晶を切断してウェハとし、該ウニ/\を゛数mm角の
チップに切断する。このように上記製造工程においては
数段階の切断工程を経る際に多量の切断屑が生じ、また
単結晶精製の際に該結晶上端の不定形部分がカットされ
たり、ルツボに多結晶ガリウム・ヒ素、ガリウム・リン
等の化合物が残る等の理由からかなりのスクラップが生
じる。Generally, Ga・As, Ga*P, etc. are manufactured by manufacturing a single crystal from a solution of these compounds by a pulling method, cutting the single crystal into a wafer, and cutting the sea urchin/\ into chips of several mm square. disconnect. In this way, in the above manufacturing process, a large amount of cutting waste is generated when going through several stages of cutting processes, and when refining a single crystal, the irregularly shaped part at the top of the crystal is cut off, and the crucible contains polycrystalline gallium arsenide. A considerable amount of scrap is generated due to the fact that compounds such as gallium and phosphorus remain.
他方、ガリウムはその存在量が少ない稀元素であり、特
定の鉱石も存在しない、このため上記スクラップからガ
リウムを回収して再利用することが求められ、その回収
方法として従来種々の方法が知られている。On the other hand, gallium is a rare element that exists in small amounts, and there is no specific ore.Therefore, it is required to recover and reuse gallium from the above-mentioned scrap, and various methods have been known to date. ing.
[従来技術] 従来の回収方法は概ね湿式法と乾式法とに区別しうる。[Prior art] Conventional recovery methods can generally be divided into wet methods and dry methods.
湿式法の一例は、ガリウム・ヒ素含有スクラップを酸化
剤の存在下で酸またはアルカリで溶解し、該溶解液のp
Hを2〜8に調整してガリウムの水酸化物を沈澱させ、
これを炉別回収してアルカリ溶解して電解し、金属ガリ
ウムとして回収する方法である。(特公昭5B−388
8号)、また他の一例はガリウムと元素周期率表vb族
元素から“成る金属間化合物をアルカリ水溶液中で過酸
化水素によって酸化分解し、次いで得られたガリウム酸
およびvb族元素酸素酸のアルカリ塩を含むアルカリ水
溶液を電気分解することにより金属ガリウムを回収する
方法である(特開昭50−84410号)、 ・
以上の様な湿式法は、何れもガリウム含有スクラップを
酸ないしアルカリで溶解し、不純物を沈澱等により除去
した後に電解採取することを基本としている。An example of a wet method is to dissolve gallium-arsenic-containing scrap with acid or alkali in the presence of an oxidizing agent, and to reduce the p.
Adjust H to 2 to 8 to precipitate gallium hydroxide,
This is a method of collecting this in a separate furnace, dissolving it in an alkali, electrolyzing it, and recovering it as metallic gallium. (Tokuko Showa 5B-388
Another example is the oxidative decomposition of an intermetallic compound consisting of gallium and an element of Group VB of the Periodic Table of Elements with hydrogen peroxide in an alkaline aqueous solution, and then the resulting gallium acid and the oxyacid of Group VB element. This is a method of recovering metallic gallium by electrolyzing an alkaline aqueous solution containing an alkali salt (Japanese Unexamined Patent Publication No. 84410/1983). The above wet methods all involve dissolving gallium-containing scrap with acid or alkali. However, the basic method is to perform electrowinning after removing impurities by precipitation etc.
次に乾式法としては、Ga5Pの場合はスクラップを5
00〜1000℃、Ga@A+の場合は1100〜11
50℃の高温で真空蒸留し、 P 、 Asを昇華させ
てこれをawa回収する一方、精製した溶融−Gaを冷
却後酸で洗浄して回収する方法が公開されている(東独
特許第159421号)および(特開昭57−1018
25号)。Next, as a dry method, in the case of Ga5P, scrap is
00~1000℃, 1100~11 for Ga@A+
A method has been published in which P and As are sublimated through vacuum distillation at a high temperature of 50°C to recover them, while the purified molten Ga is recovered by cooling and washing with acid (East German Patent No. 159421). ) and (Unexamined Japanese Patent Publication No. 57-1018
No. 25).
しかし、これら公開された方法は何れも問題点なしとし
ない、即ち湿式法においては溶解するときにホスフィン
(PH3)や水素(H2)などのガスが発°生し特にホ
スフィンは毒性が強い上に、自然発火するため危険であ
る。また乾式法の場合は、蒸留温度が極めて高くエネル
ギーコストが嵩む問題があり、さらに析出したリンが発
火するため危険である。However, none of these published methods is without problems; in the wet method, gases such as phosphine (PH3) and hydrogen (H2) are generated during dissolution, and phosphine in particular is highly toxic. , which is dangerous because it spontaneously combusts. In addition, in the case of the dry method, there is a problem that the distillation temperature is extremely high and energy costs are increased, and furthermore, the precipitated phosphorus can ignite, making it dangerous.
[問題解決に係る知見1
本発明者は、ガリウム・ヒ素及びリンの塩化物は融点が
低く、比較的低温で溶融することができ、しかもこれら
塩化物の沸点はGaCl3 201℃、AsCl3 1
30℃、PCl375℃、 Pct、1813℃ で
あり、比較的低く、かつ充分な温度差を有していること
に注目し、上記ガリウムを含有しているスクラップを塩
素ガスにより塩化物とし、蒸留分離することを試み、こ
の方法により高純度のガリウムを回収できることを見出
して本発明をなすに至った。[Findings related to problem solving 1 The present inventor found that chlorides of gallium arsenide and phosphorus have low melting points and can be melted at relatively low temperatures, and that the boiling points of these chlorides are 201°C for GaCl3 and 1°C for AsCl3.
30℃, PCl375℃, Pct, 1813℃, which are relatively low and have a sufficient temperature difference, the scrap containing gallium was converted into chloride with chlorine gas and separated by distillation. They tried to do this and found that highly pure gallium could be recovered by this method, leading to the present invention.
[発明の構成]
本発明はGaを含有するスクラップを塩素と反応させ、
Gaおよび他の元素の一部または全部を塩化物とし、塩
素化後又は塩素化と同時に蒸留分離した粗塩化ガリウム
を精製することを特徴とするG’aの回収方法を提供す
るものである。[Structure of the invention] The present invention involves reacting scrap containing Ga with chlorine,
The present invention provides a method for recovering G'a, which is characterized by converting some or all of Ga and other elements into chlorides, and purifying crude gallium chloride separated by distillation after chlorination or simultaneously with chlorination.
本発明は、従来の方法とは全く異った塩素化蒸留法とも
言うべき独自のGaの分離回収方法である。The present invention is a unique Ga separation and recovery method that can be called a chlorination distillation method, which is completely different from conventional methods.
図面に本発明に係る分離回収方法のフローシートを示す
0本発明においては、ガリウムを含有するスクラップを
溶解する手段として、溶解容器中にガリウムを含有する
スクラップを装入し、塩素ガスによる塩素化を行なう。The drawing shows a flow sheet of the separation and recovery method according to the present invention. In the present invention, as a means for melting scrap containing gallium, the scrap containing gallium is charged into a melting container and chlorinated with chlorine gas. Do the following.
該ガリウム含有スクラップは塩素ガスとの接触を高める
ため粉砕して用いるのが好ましい、原料となるガリウム
含有スクラップは、前述したように、ガリウム争ヒ素、
ガリウム番リン等の化合物半導体の製造工程から生じる
各種の切断屑や切断片及び金属ガリウムを含む各種スク
ラップを用いることができる。The gallium-containing scrap is preferably used after being crushed in order to increase contact with chlorine gas.
It is possible to use various kinds of cutting chips and fragments generated from the manufacturing process of compound semiconductors such as gallium phosphorus, and various kinds of scraps containing metallic gallium.
本発明方法によれば、不純物を多量に含む粗金属ガリウ
ムも同様に処理することが可能である。According to the method of the present invention, crude metal gallium containing a large amount of impurities can also be treated in the same way.
塩素化工程の反応は一般に次式で表わされる。The reaction in the chlorination step is generally expressed by the following formula.
Ga + 012−〉GaCl2
GaCl2 + 1/2 C12−→GaCl3As
+ 3/2 012−〉A3Cl5P + 3/2 0
h→PCI3
Pct3+ C12−÷Pc+5
M + x/ 2 012−→MC1xここにMは上記
以外のメタルを表わす、この様にガリウムはGaCl2
とGaCl3の二種類の塩化物を生成するが、後の分離
精製工程の必要に応じて、塩素ガスを過剰に供給すれば
、GaCl2はGaCl3に転換される。Ga + 012->GaCl2 GaCl2 + 1/2 C12-→GaCl3As
+ 3/2 012->A3Cl5P + 3/2 0
h→PCI3 Pct3+ C12−÷Pc+5 M + x/ 2 012−→MC1x Here, M represents a metal other than the above. In this way, gallium is GaCl2
Two types of chlorides, GaCl3 and GaCl3, are produced, but if chlorine gas is supplied in excess as required in the subsequent separation and purification process, GaCl2 is converted to GaCl3.
塩素ガスの吹込み速度には、特に制約はなく、塩素ガス
の反応効率や反応時間等の経済的要因から適宜選択する
。There is no particular restriction on the blowing speed of chlorine gas, and it is appropriately selected based on economic factors such as reaction efficiency and reaction time of chlorine gas.
塩素化終了後の生成物中には塩化ガリウムの他に処理原
料中に含まれていた不純物金属の塩化物を含んでいるの
で1次にこれら不純物の塩化物と塩化ガリウムを蒸留分
離する。媒体の塩化物や、スクラップ中の不純物から生
成するAsCl3 、PCl3等の塩化物は、GaCl
3の沸点201”Oよりかなり低い沸点を有するのでこ
れらの大部分を蒸留分離する。尚、上記塩素化反応をこ
こに示す様な蒸留工程の温度に保持することにより、塩
素化と低沸点塩化物の蒸留を同時に行なうことも可能で
ある。Since the product after chlorination contains chlorides of impurity metals contained in the treated raw materials in addition to gallium chloride, these impurity chlorides and gallium chloride are first separated by distillation. Chlorides such as AsCl3 and PCl3 generated from chlorides in the medium and impurities in scrap are
Most of these are separated by distillation because they have a boiling point considerably lower than the boiling point of 3. It is also possible to carry out the distillation of substances at the same time.
Ga含有スクラップがリンを含む場合は、リンの一部が
Pct、となり、このPCI、は融点が180’Cと高
< IEiO℃以下ではスクラップの表面をPCI5
が覆い、反応が進まなくなるので、180℃以上で塩素
化を行うのが良い、より好ましくはPCI3、PCI5
を揮発させながら塩素化を行うのが良い。When Ga-containing scrap contains phosphorus, some of the phosphorus becomes Pct, and this PCI has a melting point of 180'C, which is as high as < IEiO.
It is better to carry out chlorination at 180°C or higher, more preferably PCI3 and PCI5, as the reaction will not proceed.
It is best to carry out chlorination while volatilizing.
またPct、は沸点も18Ei℃と高く、GaCl3の
沸点201℃と近く分離が難しいのでpat5の生成を
少なくすることが好ましい、 Pct、の生成を少な
くする為には塩素化温度を300℃以上にするのが好ま
しい。In addition, Pct has a high boiling point of 18Ei℃, which is close to the boiling point of GaCl3 of 201℃ and is difficult to separate, so it is preferable to reduce the formation of pat5.In order to reduce the formation of Pct, the chlorination temperature should be set to 300℃ or higher. It is preferable to do so.
AsCl3、PCl3等の低沸点塩化物を蒸留した後゛
の蒸留残分は GaCl2 、 GaCl3を主成分と
し、スクラップ中の不純物から生成する他の高沸点塩化
物、例えばAlCl3やCrCl3等を含む粗塩化ガリ
ウムである。さらに精製してから又は直ちに還元して金
属ガリウムを回収する。After distilling low boiling point chlorides such as AsCl3 and PCl3, the distillation residue is a crude chloride containing GaCl2 and GaCl3 as main components and other high boiling point chlorides generated from impurities in the scrap, such as AlCl3 and CrCl3. It is gallium. Metallic gallium is recovered after further purification or by immediate reduction.
精製法の一つとして蒸留及び精留による方法がある。こ
の方法による場合には、まず粗塩化ガリウムに更に塩素
ガスを吹込みGaCl2をより沸点の低いGaCI 3
に転換する(再塩素化)、ついで常法に従いGaC13
を蒸留、更に精留して、他の不純物から分離精製して精
製塩化ガリウム(GaC13)を得ることができる。One of the purification methods is a method using distillation and rectification. In this method, first, chlorine gas is further blown into the crude gallium chloride to convert GaCl2 into GaCl3, which has a lower boiling point.
(rechlorination), and then convert GaC13 according to a conventional method.
By distilling and further rectifying, purified gallium chloride (GaC13) can be obtained by separating and purifying it from other impurities.
上記工程により得られた粗塩化ガリウム又は精製塩化ガ
リウムは必要に応じ還元し、金属ガリウムとする。粗塩
化ガリウム又は精製塩化ガリウムを還元して金属ガリウ
ムを回収する還元方法としては(a)アルミ粉末、亜鉛
末による還元、(b)水素還元、(C)電解採取の各方
法を実施することができる。The crude gallium chloride or purified gallium chloride obtained in the above steps is reduced as necessary to obtain metallic gallium. As reduction methods for recovering metallic gallium by reducing crude gallium chloride or purified gallium chloride, it is possible to implement the following methods: (a) reduction with aluminum powder or zinc powder, (b) hydrogen reduction, and (C) electrowinning. can.
これらの方法の反応は次式により表わされる。The reactions of these methods are expressed by the following equations.
(a)アルミ粉末、亜鉛末による還元
GaCl3 +AI −ンGa+AlCl32(ia
c13 + 3Zn−−m−←〉2Ga+ 32
nC13(b)水素還元
2GaC13+ 3H2−一→2Ga + 8HCIG
aC12+ H2−→Ga+ 2HC1(c)電解採取
Ga3++ 3e−→Ga
Ga” + 2e−−ラGa
アルミ粉末、亜鉛末による還元は水素還元法による場合
と異なり還元方法そのものには不純物を効率よく分離す
る機能が含まれていないので、上記方法により予め塩化
ガリウムを精製して用いなければならない。(a) Reduced GaCl3 + AI - Ga + AlCl32 (ia
c13 + 3Zn--m-←>2Ga+ 32
nC13(b) Hydrogen reduction 2GaC13+ 3H2-1 → 2Ga + 8HCIG
aC12+ H2-→Ga+ 2HC1 (c) Electrowinning Ga3++ 3e-→Ga Ga" + 2e--La Ga Reduction using aluminum powder or zinc powder is different from the hydrogen reduction method; the reduction method itself requires efficient separation of impurities. Since it does not contain any functionality, gallium chloride must be purified in advance by the above method before use.
次に電解採取であるが、これには酸性溶液を用いる場合
とアルカリ溶液を用いる場合がある。酸性溶液を用いる
場合、不純物の同時析出やAsH3の発生を防止するた
め、予め塩化ガリウムを精製する必要がある。アルカリ
溶液を用いるばあいには塩化ガリウムを中和し、生成し
た水酸化ガリウム[Ga(OH)3]の沈澱を炉別し、
NaOH等のフルカリを加えて溶解して、電解採取する
。この場合。Next is electrowinning, which may use an acidic solution or an alkaline solution. When using an acidic solution, it is necessary to purify gallium chloride in advance to prevent simultaneous precipitation of impurities and generation of AsH3. When using an alkaline solution, gallium chloride is neutralized, and the precipitate of gallium hydroxide [Ga(OH)3] produced is separated in a furnace.
Add potassium such as NaOH to dissolve and perform electrowinning. in this case.
鉄等の金属不純物はアルカリ浴に不溶なので、容易に分
離される。ヒ素、クロム等はアルカリ浴での不溶性化合
物を生成させ濾過分離する。また、ガリウムがGaCl
2であってもGaCl3であっても同様の方法で処理で
きる。従って、この方法による場合は粗塩化ガリウムを
直接処理することができる。ガリウムと分離される他の
低沸点塩化物も精製工程を経て高純度塩化物として、更
に還元工程を経ることにより高純度メタルとして回収し
、半導体原料として使用することができる。Metal impurities such as iron are insoluble in alkaline baths and are therefore easily separated. Arsenic, chromium, etc. are separated by filtration after forming insoluble compounds in an alkaline bath. Also, gallium is GaCl
2 or GaCl3 can be treated in the same manner. Therefore, when using this method, crude gallium chloride can be directly processed. Other low-boiling point chlorides that are separated from gallium can also be recovered as high-purity chlorides through a purification process and then as high-purity metals through a reduction process, which can be used as semiconductor raw materials.
[本発明の効果]
本発明の方法によれば、例えばガリウム・ヒ素スクラッ
プから高純度のガリウムのみならずヒ素を低コストで同
時に分離回収出来る。[Effects of the present invention] According to the method of the present invention, not only high-purity gallium but also arsenic can be simultaneously separated and recovered from, for example, gallium arsenide scrap at low cost.
本発明の方法はガリウム含有スクラップと塩素ガスを直
接反応させるので、湿式法での溶解に比べて反応時間が
短い。Since the method of the present invention directly reacts gallium-containing scrap with chlorine gas, the reaction time is shorter than in wet melting.
又ガリウム含有スクラップにリンを含有する場合には、
湿式法では毒性が強く、自然発火性のあるホスフィンの
発生があり、乾式法では自然発火性のあるリンの生成が
あるが、本発明の方法ではそれら危険性のある物質の生
成が無く、作業が安全に行える。In addition, if the gallium-containing scrap contains phosphorus,
The wet method produces highly toxic and pyrophoric phosphine, and the dry method produces pyrophoric phosphorus, but the method of the present invention does not produce these potentially dangerous substances and is easy to work with. can be done safely.
本発明の方法は蒸留温度が200℃ないし500℃程度
であり、従来の乾式法で行なわれる1150℃の高温蒸
留に比べて蒸留温度が格段に低く、従ってエネルギーコ
ストがはるかに少なく、かつ実施も容易である。また本
発明の方法によれば、粗塩化ガリウム低沸点塩化物より
、GaCl3 、 AsCl3、Pct3の精製を得る
ことにより、半導体原料として好適な高純度の塩化ガリ
ウム、塩化ヒ素、塩化リンを直接塩化物の形で得ること
ができる。また得られる粗塩化ガリウム、精製塩化ガリ
ウム、精製塩化ヒ素、精製塩化リンを更に還元すること
により8N純度の金属ガリウム、金属ヒ素、金属リンと
して回収することができる。The method of the present invention has a distillation temperature of about 200°C to 500°C, which is much lower than the high-temperature distillation of 1150°C carried out in the conventional dry method, and therefore the energy cost is much lower and it is easier to implement. It's easy. Furthermore, according to the method of the present invention, by purifying GaCl3, AsCl3, and Pct3 from crude gallium chloride low-boiling chloride, high-purity gallium chloride, arsenic chloride, and phosphorus chloride, which are suitable as semiconductor raw materials, can be directly converted into chloride. can be obtained in the form of Moreover, by further reducing the obtained crude gallium chloride, purified gallium chloride, purified arsenic chloride, and purified phosphorus chloride, it is possible to recover 8N purity metal gallium, metal arsenic, and metal phosphorus.
[発明の具体的開示]
実施例1
2文の40フラスコにガリウム・ヒ素スクラップを50
08入れた。これを60℃に加熱した0次いで40(l
sJL / winの割合で C12ガスを浴中に吹込
んだ、ガリウムとヒ素の塩素化反応は発熱反応のため、
フラスコ内の温度は70〜80℃となる。一部揮発した
AsCl3はフラスコのCI2ガス出口に取付けた冷却
管により冷却され液体状となり、フラスコに戻された。[Specific Disclosure of the Invention] Example 1 50 gallium arsenic scraps in 2 40 flasks
I put in 08. This was heated to 60°C and then 40 (l
Since the chlorination reaction of gallium and arsenic, in which C12 gas was blown into the bath at a ratio of sJL/win, is an exothermic reaction,
The temperature inside the flask will be 70-80°C. Partially volatilized AsCl3 was cooled by a cooling pipe attached to the CI2 gas outlet of the flask, became liquid, and returned to the flask.
フラスコに3481のC12ガスをさらに吹込んだ後、
生成したGaCl3とAgCl3の混合液を取出した。After further blowing 3481 C12 gas into the flask,
A mixed solution of GaCl3 and AgCl3 produced was taken out.
生成量は1242 g (GaC13807g、As
Cl3 eosg )であった。The amount produced was 1242 g (GaC13807 g, As
Cl3eosg).
次にこの混合液から500gを抜出して5001の40
フラスコに入れ、マントルヒーターで加熱して蒸留精製
を行った。蒸留管は長さ500■、内径20mmでガラ
スピーズを充填した。Next, extract 500g from this mixture and add 5001/40
It was placed in a flask and heated with a mantle heater to perform distillation purification. The distillation tube had a length of 500 mm, an inner diameter of 20 mm, and was filled with glass beads.
まず蒸留管上部の温度を130℃としてAs013を留
出させた。留出物は冷却管により冷却蒸縮し、液体とし
て取出した後、秤量し成分を分析した。First, the temperature at the top of the distillation tube was set at 130° C. to distill As013. The distillate was cooled and evaporated in a condenser tube, taken out as a liquid, and then weighed and analyzed for components.
AsCl3を留出させた後に蒸留管上部の温度を200
℃にしてGaCl3を留出させた0回収されたA、te
13は222gで純度は99.9 %であった。又回収
されたGaCl3は238gでその純度は99.8 $
であった。After distilling AsCl3, the temperature at the top of the distillation tube was set to 200℃.
℃ and distilled GaCl3 0 recovered A, te
13 weighed 222g and had a purity of 99.9%. Also, the recovered GaCl3 was 238g and its purity was 99.8$
Met.
実施例2
実施例1で得られたGaC13(純度98.8駕)を精
留した。蒸留管は長さ1000■鵬、内径50■lのガ
ラス管にガラスピーズを充填して使用した。初留として
AsCl3に富んだものが得られた。その後GaCl
3に富んだものが得られた。得られたGaCI 3は1
91g 、純度99.9999 $ テあツタ。Example 2 The GaC13 obtained in Example 1 (purity 98.8) was rectified. The distillation tube used was a glass tube with a length of 1000 mm and an inner diameter of 50 μl filled with glass beads. As the first distillate, one rich in AsCl3 was obtained. Then GaCl
A product rich in 3 was obtained. The obtained GaCI 3 is 1
91g, purity 99.9999$ Te Atsuta.
実施例3
2文の40フラスコにガリウム・リンスクラップ500
gを装入し、これを約300℃にマントルヒーターで加
熱した。Example 3 500 gallium phosphorus scraps in 2 40 flasks
This was heated to about 300°C using a mantle heater.
次いでC12を500mA / sinでフラスコ中
に吹込んだ、ガリウムは大部分Gac l 3となり揮
発、リンも大部分がpc+3となり、一部PCl5とな
ったものも揮発するので、常にスクラップの新しい表面
がC12と反応する0反応は発熱反応なのでほとんど加
熱の必要なく温度が維持できる。揮発してきた塩化物は
120〜180℃に冷却され、GaC13を凝縮回収す
る。 pc+3は沸点が75℃なので凝縮せず、 G
aCl3の精製が行える。 Pct、を主とするガス
は更に冷却され、Pct3その他の低沸点塩化物が凝縮
する。Next, C12 was injected into the flask at 500 mA/sin. Most of the gallium became Gacl3 and volatilized, and most of the phosphorus also became pc+3 and some of it also volatilized as PCl5, so there was always a new surface of the scrap. Since the 0 reaction with C12 is an exothermic reaction, the temperature can be maintained with almost no need for heating. The volatilized chloride is cooled to 120 to 180°C, and GaC13 is condensed and recovered. Since the boiling point of pc+3 is 75℃, it does not condense, and G
Purification of aCl3 can be performed. The gas mainly composed of Pct is further cooled, and Pct3 and other low boiling point chlorides are condensed.
CI2ガス1201を吹込んだ後、ガリウムに富んだ塩
化物(Ga含有量149g P含有量14g)とガリウ
ムの少ない塩化物(Ga含有量3g 、 P含有量58
g ) を得た。After injecting CI2 gas 1201, gallium-rich chloride (Ga content 149 g, P content 14 g) and gallium-poor chloride (Ga content 3 g, P content 58
g) was obtained.
ガリウムに富んだ塩化物を1.5fLの水に溶解した後
、 NaOHにてP)ISに調整し、ガリウムを水酸化
ガリウムGa(OH)3として沈澱回収した。リンの大
部分は炉液に入り除去される。水酸化ガリウムGa(O
H)3に更にNaOHを加えてガリウムを溶解した後、
各種試薬により液中の不純物を除き、電解採取を行ない
ガリウムメタル148gを回収した。純度は99.99
82であった。After dissolving gallium-rich chloride in 1.5 fL of water, it was adjusted to P)IS with NaOH, and gallium was precipitated and recovered as gallium hydroxide Ga(OH)3. Most of the phosphorus enters the furnace fluid and is removed. Gallium hydroxide Ga(O
H) After further adding NaOH to 3 and dissolving gallium,
Impurities in the liquid were removed using various reagents, and 148 g of gallium metal was recovered by electrolytic sampling. Purity is 99.99
It was 82.
実施例4
1文の40フラスコにガリウム含有スクラップ(Ga
78L Bi 5L Si0215% )を500g
入した。マントルヒーターでフラスコを240℃に加熱
した後、400+1!;L/ winの割合でCI2ガ
スをクラスコ中に吹込んだ、ガリウムとビスマスの塩素
化反応は発熱反応の為、フラスコ内は約250℃に維持
される。該温度では、BiCl3の沸点は441℃なの
でフラスコ中に留まるが、GaCl3の沸点は201℃
なので揮発し、冷却により凝縮し回収される。Example 4 Gallium-containing scrap (Ga
500g of 78L Bi 5L Si0215%)
I entered. After heating the flask to 240℃ with a mantle heater, 400+1! ; Because the chlorination reaction of gallium and bismuth, in which CI2 gas was blown into the flask at a ratio of L/win, is an exothermic reaction, the temperature inside the flask is maintained at approximately 250°C. At this temperature, BiCl3 has a boiling point of 441°C and therefore remains in the flask, while GaCl3 has a boiling point of 201°C.
Therefore, it volatilizes and is condensed and recovered by cooling.
CI2ガスを2501吹込んだ後、冷却部にて純度99
.99%のGaCl3956gを得た。After injecting 2501 CI2 gas, the purity is 99 in the cooling section.
.. 3956 g of 99% GaCl was obtained.
図は本発明の方法を示すフローシートである。 特許出願人 三菱金属株式会社 代理人 弁理士 松 井 政 広 (外−1名) The figure is a flow sheet illustrating the method of the invention. Patent applicant: Mitsubishi Metals Corporation Agent: Patent Attorney Masahiro Matsui (Outside - 1 person)
Claims (1)
リウムおよび他の元素の一部又は全部を塩化物とし、塩
素化後又は塩素化と同時に蒸留分離した粗塩化ガリウム
を精製することからなるガリウムの回収方法。1. Recovery of gallium, which consists of reacting scrap containing gallium with chlorine to convert some or all of gallium and other elements into chlorides, and purifying crude gallium chloride separated by distillation after or simultaneously with chlorination. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12721787A JPH0791059B2 (en) | 1987-05-26 | 1987-05-26 | Recovery method of gallium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12721787A JPH0791059B2 (en) | 1987-05-26 | 1987-05-26 | Recovery method of gallium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63291819A true JPS63291819A (en) | 1988-11-29 |
JPH0791059B2 JPH0791059B2 (en) | 1995-10-04 |
Family
ID=14954628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12721787A Expired - Lifetime JPH0791059B2 (en) | 1987-05-26 | 1987-05-26 | Recovery method of gallium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0791059B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100680881B1 (en) | 2005-01-24 | 2007-02-09 | 홍진희 | The Preparing and purifying method of gallium three chloride |
WO2015129091A1 (en) * | 2014-02-27 | 2015-09-03 | 日立アロカメディカル株式会社 | Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals |
CN110898455A (en) * | 2019-11-29 | 2020-03-24 | 富彤化学有限公司 | Phosphorus trichloride refining equipment and process thereof |
-
1987
- 1987-05-26 JP JP12721787A patent/JPH0791059B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100680881B1 (en) | 2005-01-24 | 2007-02-09 | 홍진희 | The Preparing and purifying method of gallium three chloride |
WO2015129091A1 (en) * | 2014-02-27 | 2015-09-03 | 日立アロカメディカル株式会社 | Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals |
JP2015160771A (en) * | 2014-02-27 | 2015-09-07 | 日立アロカメディカル株式会社 | Crystal growth crucible, crystal growth apparatus including the same and crystal growth method |
CN110898455A (en) * | 2019-11-29 | 2020-03-24 | 富彤化学有限公司 | Phosphorus trichloride refining equipment and process thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0791059B2 (en) | 1995-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7682593B2 (en) | Process for the production of Ge by reduction of GeCl4 with liquid metal | |
US20040202593A1 (en) | Apparatus for purifying ruthenium using ozone | |
US4233063A (en) | Process for producing cobalt powder | |
CN110612269B (en) | Method for producing commercial grade silicon | |
AU2005100939A4 (en) | F - treatment of titanium materials | |
EP1437326B1 (en) | Method for producing silicon | |
WO2014181833A1 (en) | Zinc production method | |
EP0271845B1 (en) | Process for recovering gallium trichloride from gallium-containing waste | |
JPS63291819A (en) | Recovery of gallium | |
KR101865262B1 (en) | Method for refining carbon concentration using edta | |
US2241514A (en) | Process for the recovery of beryllium metal | |
CN112867692A (en) | Integrated production of high purity silicon and alumina | |
RU2048559C1 (en) | Method for processing of zirconium concentrate | |
UA73847C2 (en) | A method for preparing silicon tetrafluoride, a method for isolation of the silicon tetrafluoride from oxygen and highly volatile admixtures, a method for preparing silicon powder from the silicon tetrafluoride | |
JPS5959846A (en) | Method for removing and recovering magnesium from scrap | |
JPS63159223A (en) | Production of high-purity zirconium tetrachloride | |
US1011899A (en) | Metallurgy of metal sulfids. | |
GB1452228A (en) | Process for producing elemental copper | |
RU2534323C1 (en) | Metallic cobalt obtaining method | |
JPS63223193A (en) | Method and apparatus for separating and recovering gallium from scrap containing gallium | |
JPH0543210A (en) | Production of high purity phosphorus | |
US3527561A (en) | Process for producing chlorides of chromium and iron from chrome ore | |
Traut | Induction slag reduction process for making titanium | |
EP0092562A1 (en) | Chlorination of an aluminous material | |
JPS6324054B2 (en) |