JPS5959846A - Method for removing and recovering magnesium from scrap - Google Patents

Method for removing and recovering magnesium from scrap

Info

Publication number
JPS5959846A
JPS5959846A JP57168252A JP16825282A JPS5959846A JP S5959846 A JPS5959846 A JP S5959846A JP 57168252 A JP57168252 A JP 57168252A JP 16825282 A JP16825282 A JP 16825282A JP S5959846 A JPS5959846 A JP S5959846A
Authority
JP
Japan
Prior art keywords
alloy
scrap
bath
nacl
kcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168252A
Other languages
Japanese (ja)
Other versions
JPS6136570B2 (en
Inventor
Michio Nanjo
南条 道夫
Akira Yazawa
矢沢 彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUGIYOUKAI
RIKEN KOGYO KK
Original Assignee
NIPPON KOUGIYOUKAI
RIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOUGIYOUKAI, RIKEN KOGYO KK filed Critical NIPPON KOUGIYOUKAI
Priority to JP57168252A priority Critical patent/JPS5959846A/en
Publication of JPS5959846A publication Critical patent/JPS5959846A/en
Publication of JPS6136570B2 publication Critical patent/JPS6136570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/062Obtaining aluminium refining using salt or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0038Obtaining aluminium by other processes
    • C22B21/0069Obtaining aluminium by other processes from scrap, skimmings or any secondary source aluminium, e.g. recovery of alloy constituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To remove and recover Mg from scraps by reacting the scraps with zinc chloride in a salt bath contg. NaCl and KCl as principal components to form an NaCl-KCl-MgCl2 bath. CONSTITUTION:Scraps contg. Mg such as Al scraps contg. Mg are reacted with ZnCl2 in a salt bath contg. NaCl and KCl as principal components to form an Al-Zn alloy and an NaCl-KCl-MgCl2 bath. High purity Mg can be separated and recovered from the NaCl-KCl-MgCl2 bath by electrolysis in the molten state. The manufacture of pure Al and the refining of Zn can be carried out at the same time by separating high purity Zn from the Al-Zn alloy by a vacuum distillation method.

Description

【発明の詳細な説明】 この発明は、スクラップ中のマグネシウム、特にアルミ
ニウムスクラップ中のマグネシウムを回収除去する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering and removing magnesium in scrap, particularly magnesium in aluminum scrap.

スクラップ中に含まれるマグネシウムを合理的に除去、
回収するのは従来困難とされてきた。例えばアルミニウ
ムスクラップには多くの場合−7グネシウムが含まれ、
再生二次゛1ルミニウム地金とする場合除去が必要であ
り、融体中への塩素ガスの吹込みにより除きiηるが、
環境汚染問題のため実用化が困難であった。
Rational removal of magnesium contained in scrap,
It has traditionally been considered difficult to recover. For example, aluminum scrap often contains -7gnesium,
When producing recycled secondary 1-luminium metal, it must be removed, and it can be removed by blowing chlorine gas into the melt.
It was difficult to put it into practical use due to environmental pollution problems.

一方、マグネシウムを含有するアルミニウムスクラップ
に塩化亜鉛を作用させると、+11式のようΔ(!  
M g + Z n Cj22→八A  Z n +M
 g C12−(1)に、置換反応が定量的に進め、マ
グネシウムを除去、分離できることが知られている。し
かし、この場合には、塩化亜鉛自体の潮解性が強く、塩
素と比べて高価であること、また塩化亜鉛の添加により
アルミニウム中の亜鉛含量が増加すること(例えばスク
ラップ1を当り塩化亜鉛2 kgを添加すると亜鉛含量
が、0.05%増加し、亜鉛含量0゜19(以下の規格
の耐蝕合金等には使用できない)、更に、塩化亜11)
は上記のようにマグネシウムと定量的に反応するが、実
際にはスクラップ中の大部分が八βであるため、次の(
2)及び(3)式のように、八e (−3/ 2 Z 
n Ce 2→Δ7ICI13 +3/2Zn−(21
Δ1− M g + 2 / 3八j! CI! 3→
MgCff2+x八N−(31 先ず、八6(M3が生成し、これがMgと置換してM 
g Cj! 2となる二段階で反応が進行し、この際に
生成するΔ1ce3と最初に添加するZ ri Cj!
 2の蒸気圧が高く、そのダスl−及びヒユームの発生
防止及び除去が困難であること等の問題があり、実施化
できなかった。
On the other hand, when zinc chloride is applied to aluminum scrap containing magnesium, the result is Δ(!
M g + Z n Cj22→8A Z n +M
It is known that a substitution reaction can proceed quantitatively on C12-(1) to remove and separate magnesium. However, in this case, zinc chloride itself has strong deliquescent properties and is more expensive than chlorine, and the addition of zinc chloride increases the zinc content in aluminum (for example, 2 kg of zinc chloride per 1 scrap). When added, the zinc content increases by 0.05%, the zinc content is 0°19 (cannot be used in corrosion-resistant alloys of the following specifications), and zinc chloride is 11).
reacts quantitatively with magnesium as described above, but in reality, most of the scrap is octaβ, so the following (
2) and (3), 8e (-3/2 Z
n Ce 2→Δ7ICI13 +3/2Zn-(21
Δ1− M g + 2 / 38j! CI! 3→
MgCff2+x8N-(31 First, 86(M3 is generated, which replaces Mg and becomes M
gCj! The reaction proceeds in two steps, resulting in Δ1ce3 produced at this time and Z ri Cj! that is initially added.
The vapor pressure of No. 2 was high, and it was difficult to prevent and remove its dasu l- and fume, so it could not be put into practice.

本発明者等は上記の問題に鑑みて鋭意研究を重ねた結果
、N a C(!  K C1を主成分とする塩浴中で
アルミニウムスクラップを塩化亜鉛と反応させるごとに
より、生成したAlCl2は塩浴に吸収されてA I 
Cjl! 3  N a CIl−K Cl!となッテ
飛11&することもなく、スクラップ中のM gと反応
してM g Cj! 2を生成し、以ってスクラップ中
のM gを効率よく除去、回収できることを見い出し、
この発明に至った。
The inventors of the present invention have conducted extensive research in view of the above problems, and have found that by reacting aluminum scrap with zinc chloride in a salt bath containing NaC(!KCl as a main component), the AlCl2 produced is Absorbed in the bath A I
Cjl! 3 N a CIl-K Cl! Tonattehi 11& Without doing anything, it reacts with M g in the scrap and M g Cj! It was discovered that Mg in scrap can be efficiently removed and recovered by producing Mg2.
This led to this invention.

即し、本発明は、マグネシウムを含量jするスクラップ
をN a CII −1< CItを主成分とする11
に浴中で塩化亜鉛と反応させ、生成したΔβ−Zn合金
とN a Cl!  K Cj!  M g CIt 
2浴とを分離することを特徴とする。
Accordingly, the present invention provides scrap with a magnesium content j of Na CII -1 < 11 whose main component is CIt.
The Δβ-Zn alloy produced by reacting with zinc chloride in a bath and NaCl! K Cj! M g CIt
It is characterized by separating the two baths.

本発明によれば、得られたAβ−Zn合金は真空蒸留法
により分離し、高純度のZnとして取り出すことにより
純アルミニウムの製造と亜鉛製錬とを同時に行うことが
できる。一方、NaC6−K CII  M g C1
22熔融塩電解により高純度のMgを分離回収すること
ができる。
According to the present invention, the obtained Aβ-Zn alloy is separated by vacuum distillation and extracted as high-purity Zn, thereby making it possible to simultaneously produce pure aluminum and smelt zinc. On the other hand, NaC6-K CII M g C1
22 High purity Mg can be separated and recovered by molten salt electrolysis.

次に本発明を図面と共に説明する。Next, the present invention will be explained with reference to the drawings.

第1図はAj2−Mg合金(Mg9.83%、m、p6
17℃、チップ)と過剰量のZ n C7!2粉末の加
熱による反応状況を示すD ′rA図である。(1)式
により370°C付近から大きな発熱ピークが見られ、
引続き生成するZnの融解による吸熱が419°Cにみ
られる。しかし、Z n Ce。が合金に刻して当量以
上の場合には、合金は全“ζ塩化され、ZnとZ n 
C(! 2  M g Ce 2−八llC7!3融体
を形成する。
Figure 1 shows the Aj2-Mg alloy (Mg9.83%, m, p6
FIG. 2 is a D′rA diagram showing the reaction situation caused by heating an excessive amount of Z n C7!2 powder at 17° C. (chip). According to equation (1), a large exothermic peak is seen around 370°C,
An endotherm is observed at 419°C due to the subsequent melting of Zn. However, ZnCe. is more than the equivalent amount in the alloy, the alloy is completely chlorinated and Zn and Zn
C(! 2 M g Ce 2-8llC7!3 forms a melt.

そこで、合金中のMg含1に相当するだりのZnC62
を添加すれば、優先的に脱Mgが起るとの予想の下に、
合金過剰で封管中400℃、100分間加熱した。その
結果、加熱後の合金チップの形状はそのままであったが
、次表a>+mに示されるように合金中のMgがZnに
置換していることがわかる。しかし、反応は合金チップ
表面とZ n CIl 2融体の間で起ゲCおり、必ず
しも選択的でない。
Therefore, ZnC62, which corresponds to 1 Mg content in the alloy,
Based on the expectation that Mg removal would occur preferentially by adding
The alloy was heated in a sealed tube at 400° C. for 100 minutes with an excess of alloy. As a result, the shape of the alloy chip after heating remained the same, but as shown in the following table a>+m, it was found that Mg in the alloy was replaced with Zn. However, the reaction occurs between the alloy chip surface and the Z n CIl 2 melt, and is not necessarily selective.

a)400℃100 m I n 、 、 n o  
N a C4−l(C7!b)650℃100ntIn
、、  15gNaC1−1<C12(1:  it第
2図はAj!−MgとZnC7!2(7J置換反応にお
ける脱M gに及ばずZ n C7!2添加量の効果を
示すグラフである。このように塩浴を用いない場合には
、Z n、 CIl 2の添加量が1当量でMMg率が
70%程度に過ぎず、添加量の増加と共に脱Mg率も上
昇するが、Ilの塩浴への10失率も増加する。
a) 400°C 100 m I n , , no
N a C4-l (C7!b) 650℃100ntIn
,, 15gNaC1-1<C12 (1: it Figure 2 is a graph showing the effect of the amount of ZnC7!2 added, which is less than Mg removal in the Aj!-Mg and ZnC7!2 (7J substitution reaction). When a salt bath is not used, the MMg ratio is only about 70% when the amount of Zn, CIl 2 added is 1 equivalent, and as the amount added increases, the Mg removal ratio also increases. 10 loss rate also increases.

第3図及び上記表bN閉は半れぞれ本発明の一実施例を
示す。即ち、A1−Mg合金とZ n C12−N a
 Cj! −K C1との反応をZnC7!2の添加量
を変えて石英封管中、650℃、100分間加熱して行
った結果を示す。図から明らかなように、合金中のMg
当量のZnC#2を添加すると、Mgがほぼ100%塩
浴中に抽出されてA/−Zn合金が得られると共に生成
する合金中のMg含量は0.01wt%程度であり、A
6の10失も少ないことがわかる。
FIG. 3 and Table bN shown above each show one embodiment of the present invention. That is, A1-Mg alloy and Z n C12-N a
Cj! The results are shown in which the reaction with -K C1 was performed by varying the amount of ZnC7!2 added and heating in a quartz sealed tube at 650°C for 100 minutes. As is clear from the figure, Mg in the alloy
When an equivalent amount of ZnC #2 is added, almost 100% of Mg is extracted into the salt bath to obtain an A/-Zn alloy, and the Mg content in the resulting alloy is about 0.01 wt%.
It can be seen that there are fewer 10 losses on 6s.

この(1)式に示されるZ n C(1、!によるMg
の置換反応は一種のテルミット反応であり、発熱を伴な
い短時間で完結する。実施例として、A6−Mg合金(
Mg10%) 5 g )fi:Z n c 7!23
 g (当ritMgに対して)とをNaC1!−KC
7! (モル比1X1’)15gの混合物に添加し、6
50℃に反応管を保持すると、第4図に示す如く、30
分で脱Mg率が100%に達する。
Mg due to Z n C (1,!) shown in this formula (1)
The substitution reaction is a type of thermite reaction, which is completed in a short time without exothermic heat. As an example, A6-Mg alloy (
Mg10%) 5 g) fi: Z n c 7!23
g (for this ritMg) and NaC1! -KC
7! (Molar ratio 1X1') Add to 15g mixture, 6
When the reaction tube is maintained at 50°C, as shown in Fig.
The Mg removal rate reaches 100% in minutes.

第5図は処理温度と脱Mg率との関係を示すグラフであ
る。400℃から塩浴が熔融し、ZnCβ2− K C
1−N a C(l融体とAff−Mg合金が反応を開
始し、反応率は600°Cで100%に達する。
FIG. 5 is a graph showing the relationship between treatment temperature and Mg removal rate. The salt bath melts from 400℃, and ZnCβ2-K C
The 1-N a C (l melt and the Aff-Mg alloy start to react, and the reaction rate reaches 100% at 600°C.

この温度ではAl−Mg合金、Al−Z r+金合金液
体となり、反応が液−液間で起るため迅速に進行する。
At this temperature, the Al-Mg alloy and the Al-Zr+gold alloy become liquids, and the reaction proceeds quickly because it occurs between liquid and liquid.

上記脱Mg反応によって抽出されるΔpススクラップ中
不純物は殆どなく、卜J a C(1−K Ce −M
 g G 7!2融体中のM g CA’ 2は高純度
であるから、−Jl貨の熔融塩電解の操業(20%Na
Cd、2096KCI!、5 Q%M g C12浴)
の場合と同様に高純度のMg(99,9%)を1埋るこ
とができる。
There are almost no impurities in the Δp scrap extracted by the above de-Mg reaction, and J a C (1-K Ce -M
Since M g CA' 2 in the g G 7!2 melt is of high purity, the operation of -Jl molten salt electrolysis (20% Na
Cd, 2096KCI! , 5 Q%M g C12 bath)
As in the case of 1, high purity Mg (99.9%) can be filled.

一力、Δ12−Z n合金は真空蒸留法によりZ nと
八Cとに分Mllするが、ZnはISP法の蒸留亜鉛程
度に純度を上げることができる。また、八βはアルミニ
ウムスクラップ中に含まれるMg、Zn以外のFe 、
 S i等の残留物により、ホールエール法による純度
(99,8%)には達しないが、更に電M、精製により
純度を」二げればよく、この場合にはに記NaC1−K
(,1−MgCl12を利用することができる。
First, the Δ12-Zn alloy is separated into Zn and 8C by vacuum distillation, but Zn can be made as pure as distilled zinc by the ISP method. In addition, 8β is Fe other than Mg and Zn contained in aluminum scrap,
Although the purity (99.8%) obtained by the Whole Yale method cannot be reached due to residues such as Si, it is sufficient to increase the purity by further electrochemical purification.
(,1-MgCl12 can be used.

このように、マグネシウムを含有するスクラップを塩浴
中で塩化亜鉛と反応さ・Uる本発明によれば次のような
効果がある。
As described above, the present invention, in which scrap containing magnesium is reacted with zinc chloride in a salt bath, has the following effects.

■ 従来の塩化亜鉛の単独使用では、その吸湿性が問題
であったが、塩化亜鉛を他の塩と混合熔融して、例えば
Z n Cj! 2  N a CIt −K Cj!
塩浴をつくり、この中でアルミニウムスクラップと反応
させることにより吸湿性を抑制でき、取扱いが容易とな
る。
■ Conventional use of zinc chloride alone has had a problem with its hygroscopicity, but by mixing and melting zinc chloride with other salts, for example, Zn Cj! 2 Na CIt -K Cj!
By creating a salt bath and reacting it with aluminum scrap in the salt bath, hygroscopicity can be suppressed and handling becomes easier.

■ 塩浴を用いることにより、反応生成物である塩化ア
ルミニウムを塩浴中に捕集し、従来ダスト或いはヒユー
ムとし゛ζ操業上のトラブルとなっていた塩化アルミニ
ウムをスクラップ中のマグネシウムと反応させ、脱マグ
ネシウムを行うごとができる(式(2)及び(3)参照
)。
■ By using a salt bath, aluminum chloride, which is a reaction product, is collected in the salt bath, and aluminum chloride, which has traditionally been treated as dust or fume and caused operational troubles, is reacted with magnesium in the scrap and desorbed. This can be done with magnesium (see formulas (2) and (3)).

■ 塩浴を用いるごとにより、アルミニウムスクラップ
に直接塩化亜鉛を作用させる場合(第14図参照)と異
なり、スクラップ表面での局部的な激しい反応がなく、
反応をゆるやかに行ね・U、かつ液−液反応であり十分
な接触が行われるため、反応率が高く、短時間で終了す
る(第4図参照)。
■ By using a salt bath, unlike when zinc chloride is applied directly to aluminum scrap (see Figure 14), there is no localized violent reaction on the scrap surface.
The reaction should be carried out slowly. Since it is a liquid-liquid reaction and sufficient contact takes place, the reaction rate is high and it completes in a short time (see Figure 4).

■ 反応終了後の塩浴は、そのままM g Ce 2−
N a Cl −K Cj!塩浴としζ、マグネシウム
電解を実施することができる。
■ After the reaction, the salt bath is used as it is for M g Ce 2-
NaCl-KCj! With a salt bath, magnesium electrolysis can be carried out.

■ 本発明に用いる塩化亜鉛を利用して脱マグネシウム
によるアルミニウムの製造と亜鉛製針を同時に行うこと
が可能となる。
(2) Using the zinc chloride used in the present invention, it becomes possible to simultaneously produce aluminum by demagnesizing and manufacture zinc needles.

叩ら、現在亜鉛の製錬はZ n S精鉱を乾式法又は湿
式電解の何れかで行っているが、第61氷1に示すよう
に、ZnS精鉱を酸素及び塩素により直接塩化してZn
CJzを製造し、この7. rtCI12を本発明に実
施した後、N a CIt −K CIM g CIt
2浴の電解により得られる塩素ガスをZn5IN#Jλ
の塩化に循環便用することむこより達成できる。
Currently, zinc is smelted using either the dry method or wet electrolysis method using ZnS concentrate, but as shown in No. 61 Ice 1, ZnS concentrate is directly chlorinated with oxygen and chlorine. Zn
CJz is manufactured and this 7. After implementing rtCI12 in the present invention, N a CIt −K CIM g CIt
Chlorine gas obtained by two-bath electrolysis is used as Zn5IN#Jλ
This can be achieved by using circulating stools to reduce chloride.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明に供するへ〇−Mg合金とZnC
n2との反応状況を示すDT八し1、第2図は同じくA
l−Mgと7. n Cり2の置1負反)、6GこおL
Jる塾マグネシウムに及ぼす7. n Ce 2の添J
X1電の効果を示すグラフ、第3図乃至第5図【よそ4
1゜ぞれ本発明の実施例を示すグラフ、第6図(よ本発
明の適用例を示す亜鉛製錬方法のフローシートである。 特許出願人   社団法人 11本tjl業会同   
  リケンニL業株式会社 遣謄1昨Iσ・・鳴し睨Mg+−、汝け°’−4Z n
 CE 2 ’AiJ呼tn 妓釆(650°C、lO
o#−)今に+z n’f)a ZnCQ2’Jit−
紅第4図 反圧時間(介) 解M9,7処JJL暗朋〜311生 650°C、A(2−Mg 会i: l g 、 No
(J!−KCQ’、 3gZnCQz  :  Ig J’JQMg 、1)代シ逼υ1ノ傷i二’/ifミと
、・τ二jノ1生ZnCQ2: 3g 、村: 5g 
、 No(4−K(4: 15g 、 1004菓(l
(至) ZnS確払
Figure 1 is for explaining the present invention.〇-Mg alloy and ZnC
DT Yashi 1 showing the reaction situation with n2, Figure 2 is also A
l-Mg and 7. n Cri 2 position 1 negative reversal), 6G Koo L
7. Effect on Jurujuku magnesium. n Ce 2 attachment J
Graphs showing the effects of X1 electricity, Figures 3 to 5
Figure 1 is a graph showing an example of the present invention, and Figure 6 is a flow sheet of a zinc smelting method showing an example of application of the present invention.
Rikenni L-gyo Co., Ltd. Transfer 1 Last Iσ...Nailing glare Mg+-, you °'-4Z n
CE 2 'AiJ calltn 妓釆(650°C, lO
o#-) now +z n'f) a ZnCQ2'Jit-
Red Fig. 4 Reaction time (intermediate) Solution M9, 7 place JJL dark ~ 311 raw 650 ° C, A (2-Mg meeting i: l g, No
(J!-KCQ', 3gZnCQz: Ig J'JQMg, 1) 代し逼υ1の出i2'/ifmi and, τ2jノ1生ZnCQ2: 3g, Village: 5g
, No (4-K (4: 15g, 1004 confections (l)
(To) ZnS confirmed payment

Claims (1)

【特許請求の範囲】[Claims] マグネシウムを含有するスクラップをNaCβ−K C
6を主成分とする塩浴中で塩化亜鉛と反応さ、1、生成
したへe−Zn合金とN a C(!−1(CIM g
 C(12浴とを分離することを特徴とするスクラップ
中のマグネシウムを除去、回収する方法。
Scrap containing magnesium is converted into NaCβ-K C
6 was reacted with zinc chloride in a salt bath mainly composed of 1, e-Zn alloy and NaC(!-1(CIM g
A method for removing and recovering magnesium in scrap, which is characterized by separating magnesium from C(12 bath).
JP57168252A 1982-09-29 1982-09-29 Method for removing and recovering magnesium from scrap Granted JPS5959846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168252A JPS5959846A (en) 1982-09-29 1982-09-29 Method for removing and recovering magnesium from scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168252A JPS5959846A (en) 1982-09-29 1982-09-29 Method for removing and recovering magnesium from scrap

Publications (2)

Publication Number Publication Date
JPS5959846A true JPS5959846A (en) 1984-04-05
JPS6136570B2 JPS6136570B2 (en) 1986-08-19

Family

ID=15864562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168252A Granted JPS5959846A (en) 1982-09-29 1982-09-29 Method for removing and recovering magnesium from scrap

Country Status (1)

Country Link
JP (1) JPS5959846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526039B1 (en) * 2002-09-10 2005-11-09 인하대학교 산학협력단 Method for purifying magnesium scrap with vacuum distillation
US8002872B2 (en) * 2005-11-22 2011-08-23 Carbontech, Llc Methods of recovering and purifying secondary aluminum
US8409419B2 (en) 2008-05-21 2013-04-02 Paul R. Kruesi Conversion of carbon to hydrocarbons
WO2021145293A1 (en) * 2020-01-15 2021-07-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal removal method and metal recovery method
CN114945436A (en) * 2020-01-15 2022-08-26 丰田通商株式会社 Metal remover

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526039B1 (en) * 2002-09-10 2005-11-09 인하대학교 산학협력단 Method for purifying magnesium scrap with vacuum distillation
US8002872B2 (en) * 2005-11-22 2011-08-23 Carbontech, Llc Methods of recovering and purifying secondary aluminum
EP1971708A4 (en) * 2005-11-22 2011-08-31 Paul R Kruesi Methods of recovering and purifying secondary aluminum
US8409419B2 (en) 2008-05-21 2013-04-02 Paul R. Kruesi Conversion of carbon to hydrocarbons
WO2021145293A1 (en) * 2020-01-15 2021-07-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal removal method and metal recovery method
CN114945692A (en) * 2020-01-15 2022-08-26 丰田通商株式会社 Metal removing method and metal recovering method
CN114945436A (en) * 2020-01-15 2022-08-26 丰田通商株式会社 Metal remover
CN114945692B (en) * 2020-01-15 2024-04-30 丰田通商株式会社 Metal removal method and metal recovery method

Also Published As

Publication number Publication date
JPS6136570B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
US2376696A (en) Production of alumina
JP4899167B2 (en) Method for producing Ge by reduction of GeCl4 using liquid metal
JPS5959846A (en) Method for removing and recovering magnesium from scrap
US2621120A (en) Process of refining aluminum
JPS6191335A (en) Method for recovering platinum group metal
RU2624749C2 (en) Method of obtaining beryllium oxide and beryllium metal
KR101865262B1 (en) Method for refining carbon concentration using edta
FR2651799A1 (en) PROCESS FOR SEPARATING ZIRCONIUM-HAFNIUM
US2753256A (en) Method of producing titanium
US2766110A (en) Method of refining uranium
FR2600343A1 (en) PROCESS FOR RECOVERING ALUMINUM AND LITHIUM FROM METAL WASTE
US2381291A (en) Process for producing beryllium
JP2547500B2 (en) How to reduce tantalum
US2076067A (en) Process of making beryllium
JPH048493B2 (en)
JPS5959845A (en) Refining method of zinc
US4349516A (en) Process for treating the gas stream from an aluminum value chlorination process
JPS63159223A (en) Production of high-purity zirconium tetrachloride
US3856511A (en) Purification of crude aluminum
JPH01502916A (en) Method for producing and purifying Group 4B transition metal-alkali metal-fluoride salt
JPS63291819A (en) Recovery of gallium
GB1452228A (en) Process for producing elemental copper
US4881971A (en) Refining of lead-debismuthizing
US3527599A (en) Process for the production of iva and va metals of the periodic system and their alloys
US1247619A (en) Recovery of alkali.