JPS6324054B2 - - Google Patents

Info

Publication number
JPS6324054B2
JPS6324054B2 JP13099383A JP13099383A JPS6324054B2 JP S6324054 B2 JPS6324054 B2 JP S6324054B2 JP 13099383 A JP13099383 A JP 13099383A JP 13099383 A JP13099383 A JP 13099383A JP S6324054 B2 JPS6324054 B2 JP S6324054B2
Authority
JP
Japan
Prior art keywords
inp
scrap
alkali
reaction
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13099383A
Other languages
Japanese (ja)
Other versions
JPS6024331A (en
Inventor
Hiroo Tsucha
Iwao Kyono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP58130993A priority Critical patent/JPS6024331A/en
Publication of JPS6024331A publication Critical patent/JPS6024331A/en
Publication of JPS6324054B2 publication Critical patent/JPS6324054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、―族化合物半導体の一種、InP
をその主成分とするスクラツプより、有価物であ
るInを回収する方法に関する。 ―族化合物半導体を用いた素子の製造工程
には、(1)族(Al・Ga・In)、族(P・As・
Sb)等の原料元素からの化合物合成、(2)合成し
た化合物からの単結晶製造、(3)単結晶からの製品
切り出し・研磨等の加工、(4)加工した単結晶表面
での素子作成等の段階があるが、これら工程での
製品歩留りは低く、一般に使用した原料の90%前
後は工程上のロスとなる。これらの工程で生じた
スクラツプには、Ga・In等の高価な希元素が主
に化合物半導体の形で多量に含まれており、これ
らの有価物を回収することは、経済性や資源の有
効利用の点で重要な意味を持つている。 本発明は、特にInPの製造・加工の工程で生じ
る、InPを主成分としたスクラツプから、有価物
であるInを高収率で、かつ安全に回収することを
目的とする。 InPと同じ―族化合物半導体であるGaAs
からのGa回収法については既にいくつかの方法
が提案されている。これらの処理法のうち、InP
からのIn回収法に応用できるものとしては、(1)熱
分解法、(2)湿式処理法の2つの方法がある。 しかし、(1)の熱分解法でInPを処理した場合
は、成分のリンが有毒な蒸気として揮発し、冷却
した時は有毒で自然発火性の黄リンとなるため処
理の操作が極めて危険であり、装置の作成・運転
は困難である。一方、(2)の湿式処理について発明
者ら自身が検討した結果、InPと酸との反応性が
小さいため、極めて濃厚な酸や強酸化性の薬品
を、InPに対し大過剰量使用する必要があること
が判明した。このように、Inに対して多量の酸類
を含有する浸出液からInを回収することは技術的
に困難で、また経済性の点で問題がある。 発明者らは、上記の点を改善するため種々検討
した結果、InPが溶融状態のアルカリ金属水酸化
物の作用により分解し、金属Inを遊離する反応を
見出した。本発明は、溶融アルカリを利用した処
理法により、InPスクラツプから、安全に、経済
的に、高収率で、Inを金属状態で回収することを
特徴とするものである。 次に、処理の方法及び条件を説明する。 InPの分解に用いる溶融アルカリとしては、
NaOH,KOH等のアルカリ金属水酸化物及びこ
れらに融点の低下、反応の促進や調節などのため
に他の無機塩類を添加したものが利用できるが、
安価であること・入手が容易であることなどから
NaOHが適当である。実験の結果、溶融NaOH
によるInPの分解は、次の形の反応であることが
判明した。 2InP+10NaOH→2In+2Na3PO4+2Na2O+
5H2 ……(1) 以下に述べる諸条件(InP粒径・添加方法・温
度等)を守る限りでは、副反応はほとんどなく、
黄リン・リン化水素等の有毒物質は全く生じなか
つた。反応の進向とともに生じるNa3PO4のため
融体の粘り性が大きくなり、混合・撹拌が困難と
なり反応に支障を生じるので、アルカリを理論必
要量に対し過剰に用いる必要がある。例えば
NaOHの場合は理論量の1.5〜4倍当量を使用す
るのが好ましい。 溶融アルカリによる処理の対象となるスクラツ
プはInPを主成分とするものであれば、その形態
は塊状でも粉末でもかまわない。通常のInPスク
ラツプに混入する不純物には、グラフアイト・セ
ツコウ・石英・ガラスなどの無機物と、ワツク
ス・切削油などの有機物があるが、これらは溶融
アルカリ処理により分解してアルカリスカムに溶
解するか、又は未反応のまま金属Inに不溶の状態
で残るため、回収Inと容易に分離できるが、InP
以外の異物が多い場合は、前処理により異物を除
去しておくことが好ましい。 処理にあたつては、反応を円滑にするため、
InPスクラツプを粉砕する。粒は、16メツシユ
(1mm)以下になつていれば、特に問題なく処理
できる。 処理温度を高くするとInP分解反応は速くなる
が、金属Inのアルカリへの溶解反応も速くなるた
めInの回収率が低下する。反応温度はNaOHの
融点以上好ましくは380℃付近(370〜400℃)が
適当である。 InP粉末とアルカリを反応させる時、最初から
両者を全量混合してから加熱溶融すると、反応熱
のため急激に温度が上がつて極めて激しい反応が
起こる。このため処理にあたつては、あらかじめ
溶融したアルカリに分解速度に応じてInP粉末を
添加する方法が好ましい。InP添加速度はInP粒
径・処理温度・反応容器の大きさと熱放散速度な
どにより調節する必要がある。 本発明におけるInPスクラツプ溶融アルカリ処
理用の装置の例を図1に示した。図の1は反応容
器、2は溶体撹拌用のインペラーで、これらは溶
融アルカリへの耐食性を考慮して、鉄やステンレ
ス製のものを用いる。アルカリ3は、あらかじめ
容器1の中に入れておき、電気炉で380℃に加
熱・溶融する。溶融アルカリを撹拌しながら、4
の添加用じようごを用いて、InPの粉末7を温度
コントロールしながら添加する。処理装置は、ア
ルカリ飛沫が飛び散るのを防ぐため、フタ5で覆
い、H2ガスを除くため全体を排気する。6は排
気口である。 全体の処理フローを図2に示した。処理するス
クラツプは、粉砕後ふるい分けして1mm以下の径
にそろえて、上記の装置により溶融アルカリ処理
を行う。溶融アルカリ処理後、容器の底にたまつ
た金属Inは、熱いうちに容器を傾けて流し出す
か、又は十分冷却してから水浸出してアルカリス
カムやIn以外の異物を洗い流した後に金属Inを加
熱溶融して取り出す。金属状態のInの回収率は、
原料スクラツプ中のInに対し最高98〜99%に達す
る。純粋なInP粉末を分解した場合、回収Inはご
く少量のNaと容器から汚染したFeを含むのみ
で、ほぼ99.9%の純度となる。 アルカリスカムには、原料中のInのうちの2%
未満が溶解している。このIn分は、アルカリスカ
ム水浸出液をPH6〜8に中和すれば水酸化物とな
つて沈殿し、容易に回収される。未反応のInP微
粉末がスカムに混入した場合も、中和により水酸
化Inのゲル状沈殿に巻き込まれて容易に液から分
離される。 回収された金属Inは、通常のIn製造工程、例え
ばIn電解精製工程などに戻し、容易に工業用用途
として問題ない純度(99.99%以上)に精製・再
生できる。又スカムから回収したInを含有した沈
殿は、希鉱酸によりInを溶解・浸出して、In湿式
製造工程の原料として利用できる。 以上のように、本発明によりInPを主成分とす
る化合物半導体スクラツプから高収率で安全にIn
を、大半を金属の形で回収することができる。 最後に、実施例により本発明を説明する。 実施例 1 ステンレス製100mlビーカー(50φ×70h)に30
gのNaOHをとり、電気炉に入れて加熱溶融し
た。溶体の温度を380℃とし、撹拌しながら16〜
32メツシユ(1〜0.5mm)に粉砕、ふるい分けし
たInP粉末10.0gを50分かけて加え、さらに添加
後20分加熱撹拌を続けた後、ビーカーごと取り出
し放冷した。アルカリスカムを水で溶かして除
き、ビーカーの底にたまつた金属Inを取り出し
た。未反応のInPはほとんど認められなかつた。
回収した金属Inの量は7.7〜7.8gで反応したInP
に対する回収率は99%以上であつた。回収金属In
の発光定性分析結果は表1のとおりであつた。 スカム中に溶解したInは、原料中の全Inのうち
2%未満であり、これらInはスカムの浸出液をPH
6〜8に中和すると、全て沈殿し、完全に回収さ
れた。 実施例 2 グラフアイト・セツコウ・ワツクスなどの不純
物を含んだInP単結晶切出工程のスクラツプ
(100メツシユ以下、InP含有率91%)100gを用
意した。500mlステンレスビーカー(80φ×130h)
に、NaOH300gをとり、電気炉で加熱・溶融
し、380℃の温度で撹拌しながら、上記スクラツ
プ粉末を60分かけて加え、さらに添加後20分反応
させた。放冷後、アルカリスカムや未反応の粉を
水洗して除き、金属In71.1gを回収した(回収率
99%)。回収金属Inの発光定性分析結果は、表1
のとおりであつた。 【表】
[Detailed Description of the Invention] The present invention relates to InP, a type of - group compound semiconductor.
This invention relates to a method for recovering In, a valuable material, from scrap whose main component is In. The manufacturing process of devices using - group compound semiconductors includes (1) group (Al, Ga, In), group (P, As,
Synthesis of compounds from raw material elements such as Sb), (2) Production of single crystals from the synthesized compounds, (3) Processing such as cutting and polishing of products from single crystals, (4) Creation of elements from processed single crystal surfaces. However, the product yield in these processes is low, and generally around 90% of the raw materials used are lost during the process. The scrap generated in these processes contains large amounts of expensive rare elements such as Ga and In, mainly in the form of compound semiconductors, and recovering these valuables is an economical and effective use of resources. It has important meaning in this respect. The purpose of the present invention is to recover InP, which is a valuable material, in a high yield and safely from scrap mainly composed of InP, which is generated particularly in the process of manufacturing and processing InP. GaAs, which is a - group compound semiconductor like InP
Several methods have already been proposed for recovering Ga from. Among these processing methods, InP
There are two methods that can be applied to recovering In from: (1) thermal decomposition method and (2) wet treatment method. However, when InP is treated using the thermal decomposition method (1), the phosphorus component evaporates as toxic vapor, and when cooled it becomes toxic and pyrophoric yellow phosphorus, making the treatment operation extremely dangerous. However, it is difficult to create and operate the device. On the other hand, as a result of the inventors' own study of the wet treatment in (2), the reactivity between InP and acid is small, so it is necessary to use extremely concentrated acids or strong oxidizing chemicals in large excess amounts relative to InP. It turns out that there is. As described above, it is technically difficult to recover In from a leachate containing a large amount of acids relative to In, and there are also problems in terms of economic efficiency. As a result of various studies to improve the above-mentioned points, the inventors discovered a reaction in which InP is decomposed by the action of a molten alkali metal hydroxide to liberate metal In. The present invention is characterized by recovering In in a metallic state from InP scrap safely, economically, and in high yield by a treatment method using molten alkali. Next, the processing method and conditions will be explained. The molten alkali used to decompose InP is
Alkali metal hydroxides such as NaOH and KOH, and other inorganic salts added to these to lower the melting point and accelerate and control the reaction, can be used.
Because it is cheap and easy to obtain, etc.
NaOH is suitable. As a result of the experiment, molten NaOH
The decomposition of InP by is found to be a reaction of the following form. 2InP+10NaOH→2In+2Na 3 PO 4 +2Na 2 O+
5H 2 ...(1) As long as the conditions described below (InP particle size, addition method, temperature, etc.) are observed, there will be almost no side reactions.
No toxic substances such as yellow phosphorus or hydrogen phosphide were generated. As the reaction progresses, the viscosity of the melt increases due to Na 3 PO 4 , which makes mixing and stirring difficult and hinders the reaction, so it is necessary to use an excess of alkali relative to the theoretically required amount. for example
In the case of NaOH, it is preferred to use 1.5 to 4 equivalents of the theoretical amount. The scrap to be treated with molten alkali may be in the form of lumps or powder as long as it has InP as its main component. The impurities that are mixed into normal InP scrap include inorganic substances such as graphite, clay, quartz, and glass, and organic substances such as wax and cutting oil. , or it remains unreacted and insoluble in the metal In, so it can be easily separated from the recovered In, but InP
If there are many other foreign substances, it is preferable to remove them by pre-treatment. During processing, in order to facilitate the reaction,
Grind InP scrap. As long as the grains are 16 mesh (1 mm) or less, they can be processed without any problems. Increasing the treatment temperature speeds up the InP decomposition reaction, but also speeds up the dissolution reaction of metallic In in alkali, which lowers the In recovery rate. The reaction temperature is suitably higher than the melting point of NaOH, preferably around 380°C (370-400°C). When reacting InP powder with an alkali, if the two are mixed together in their entirety and then heated and melted, the heat of reaction causes the temperature to rise rapidly and an extremely violent reaction to occur. Therefore, in the treatment, it is preferable to add InP powder to a pre-molten alkali according to the decomposition rate. The InP addition rate needs to be adjusted depending on the InP particle size, processing temperature, reaction vessel size, heat dissipation rate, etc. An example of an apparatus for treating InP scrap with molten alkali according to the present invention is shown in FIG. In the figure, 1 is a reaction vessel, 2 is an impeller for stirring the solution, and these are made of iron or stainless steel in consideration of corrosion resistance to molten alkali. Alkali 3 is placed in container 1 in advance and heated and melted at 380°C in an electric furnace. While stirring the molten alkali,
Using an addition funnel, add InP powder 7 while controlling the temperature. The processing apparatus is covered with a lid 5 to prevent alkali droplets from scattering, and the entire apparatus is evacuated to remove H 2 gas. 6 is an exhaust port. The overall processing flow is shown in Figure 2. The scrap to be treated is crushed and sieved to a diameter of 1 mm or less, and then subjected to molten alkali treatment using the above-mentioned equipment. After the molten alkali treatment, metal In accumulated at the bottom of the container can be poured out by tilting the container while it is still hot, or it can be cooled sufficiently and then leached with water to wash away the alkali scum and foreign substances other than In. Heat it to melt it and take it out. The recovery rate of metallic In is
It reaches a maximum of 98-99% of In in raw material scrap. When pure InP powder is decomposed, the recovered In contains only a small amount of Na and Fe contaminated from the container, resulting in a purity of approximately 99.9%. Alkali scum contains 2% of the In in the raw materials.
Less than 10% is dissolved. When the alkali scum water leachate is neutralized to pH 6 to 8, this In content becomes a hydroxide and precipitates, and is easily recovered. Even if unreacted InP fine powder is mixed into the scum, it will be caught up in the gel-like precipitate of In hydroxide by neutralization and easily separated from the liquid. The recovered metal In can be returned to the normal In manufacturing process, such as the In electrolytic refining process, and can be easily purified and recycled to a purity (99.99% or higher) that is acceptable for industrial use. In addition, the In-containing precipitate recovered from the scum can be used as a raw material for the In wet manufacturing process by dissolving and leaching the In with dilute mineral acid. As described above, according to the present invention, InP can be safely produced in high yield from compound semiconductor scrap containing InP as the main component.
can be recovered, mostly in the form of metals. Finally, the present invention will be explained by examples. Example 1 30 in a stainless steel 100ml beaker (50φ x 70h)
g of NaOH was placed in an electric furnace and heated to melt. The temperature of the solution was set to 380℃, and while stirring
10.0 g of InP powder that had been crushed and sieved into 32 meshes (1 to 0.5 mm) was added over 50 minutes, and after the addition, heating and stirring were continued for 20 minutes, and then the whole beaker was taken out and allowed to cool. The alkali scum was dissolved and removed with water, and the metal In that had accumulated at the bottom of the beaker was taken out. Almost no unreacted InP was observed.
The amount of recovered metal In was 7.7 to 7.8 g.
The recovery rate was over 99%. Recovered metal In
The results of qualitative luminescence analysis are shown in Table 1. The In dissolved in the scum accounts for less than 2% of the total In in the raw material, and these In dissolve the scum leachate into pH
When neutralized to 6-8, all precipitated and were completely recovered. Example 2 100 g of scrap from the InP single crystal cutting process (100 mesh or less, InP content 91%) containing impurities such as graphite, wax, and wax was prepared. 500ml stainless steel beaker (80φ×130h)
Next, 300 g of NaOH was taken, heated and melted in an electric furnace, and while stirring at a temperature of 380° C., the above scrap powder was added over 60 minutes, and the mixture was allowed to react for another 20 minutes after the addition. After cooling, alkali scum and unreacted powder were removed by washing with water, and 71.1 g of metal In was recovered (recovery rate
99%). The luminescence qualitative analysis results of recovered metal In are shown in Table 1.
It was as follows. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図1は溶融アルカリ処理用の装置の一例を、図
2は全体の処理フローを示す。
FIG. 1 shows an example of an apparatus for molten alkali treatment, and FIG. 2 shows the overall treatment flow.

Claims (1)

【特許請求の範囲】[Claims] 1 InPを主成分とし、InP以外の化合物半導体
をほとんど含まない―族化合物半導体スクラ
ツプから、有価物としてInを回収するに当り、該
スクラツプを溶融状態のアルカリ金属水酸化物中
に添加してInP分解反応を行なうことを特徴とす
る―族化合物半導体スクラツプの処理方法。
1 When recovering In as a valuable material from - group compound semiconductor scrap, which contains InP as the main component and contains almost no compound semiconductors other than InP, the scrap is added to a molten alkali metal hydroxide to form InP. A method for processing - group compound semiconductor scrap characterized by carrying out a decomposition reaction.
JP58130993A 1983-07-20 1983-07-20 Treatment of scrap of iii-v group compound semiconductor Granted JPS6024331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130993A JPS6024331A (en) 1983-07-20 1983-07-20 Treatment of scrap of iii-v group compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130993A JPS6024331A (en) 1983-07-20 1983-07-20 Treatment of scrap of iii-v group compound semiconductor

Publications (2)

Publication Number Publication Date
JPS6024331A JPS6024331A (en) 1985-02-07
JPS6324054B2 true JPS6324054B2 (en) 1988-05-19

Family

ID=15047418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130993A Granted JPS6024331A (en) 1983-07-20 1983-07-20 Treatment of scrap of iii-v group compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6024331A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177505B (en) * 2023-03-03 2024-06-25 安徽工业大学 Method for efficiently recycling indium and phosphorus in indium phosphide waste material by using molten salt system

Also Published As

Publication number Publication date
JPS6024331A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
CA2580398C (en) Process for the production of ge by reduction of geci4, with liquid metal
JPS59146920A (en) Manufacture of pure metal silicon
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
KR20150114383A (en) System and method for rare earths extraction
WO2001055462A1 (en) Process for refining silver bullion with gold separation
JP2022544670A (en) Process for refining graphite materials
EP0271845B1 (en) Process for recovering gallium trichloride from gallium-containing waste
US2974013A (en) Boron nitride production
CN116497235A (en) Method for extracting lithium from low-lithium clay
JPS6324054B2 (en)
US2063811A (en) Process of decomposing beryllium minerals
RU2309122C2 (en) Method of processing beryllium-containing concentrates
JPS6335414A (en) Manufacture of sodium tetraborate pentahydrate
JPS6324055B2 (en)
US2381291A (en) Process for producing beryllium
CN112867692A (en) Integrated production of high purity silicon and alumina
JPS6027613A (en) Recovery of indium-gallium
JP3885913B2 (en) Method for purifying recovered gallium
KR101486668B1 (en) Recovery of metalic tin from waste materials by aqueous extraction
JPH01191753A (en) Treatment of indium-containing scrap
US1845145A (en) Process of making an alloy
JPS63291819A (en) Recovery of gallium
JPH03265519A (en) Production of zirconium oxychloride
JPS6049701B2 (en) Method for removing arsenic and/or copper in molten metal
US1986567A (en) Process of recovering beryllium oxide