JPS6027613A - Recovery of indium-gallium - Google Patents

Recovery of indium-gallium

Info

Publication number
JPS6027613A
JPS6027613A JP13099583A JP13099583A JPS6027613A JP S6027613 A JPS6027613 A JP S6027613A JP 13099583 A JP13099583 A JP 13099583A JP 13099583 A JP13099583 A JP 13099583A JP S6027613 A JPS6027613 A JP S6027613A
Authority
JP
Japan
Prior art keywords
scrap
alloy
compound semiconductor
scum
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13099583A
Other languages
Japanese (ja)
Other versions
JPS6316338B2 (en
Inventor
Hiroo Tsuchiya
弘雄 土屋
Iwao Kyono
京野 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP13099583A priority Critical patent/JPS6027613A/en
Publication of JPS6027613A publication Critical patent/JPS6027613A/en
Publication of JPS6316338B2 publication Critical patent/JPS6316338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover a valuable In.Ga safely, in high yield, from an In alloy scrap containing III-group and V-group elements, by treating the scrap with molten alkali metal hydroxide. CONSTITUTION:An In alloy scrap composed mainly of In and containing III- group and V-group elements such as Ga, As, P, etc. as alloy components is treated with molten alkali metal hydroxide to effect the separation and recovery of Ga from the alloy. When the liquid-phase epitaxial growth scrap composed mainly of indium is treated with molten alkali, a part of the unreacted compound semiconductor powder is suspended in the form of fine powder in the alkali scum, and the remaining part thereof is left in the form attached to the crude In. The fine powder of the compound semiconductor dissolved or suspended in the scum and the component (Ga.In) are precipitated together with gallium hydroxide precipitate and recovered in the recovery of Ga by neutralizing the leached liquid of the scum.

Description

【発明の詳細な説明】 本発明は、工nをその主成分とし、Gaを合金成分とし
て、又はGa−A3・PをGaAs −GaP ・工n
Pなどの化合物半導体の形の混合物として含有するIn
合金スクラップから、有価物である工n*Gaを回収す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for forming GaAs-GaP as a main component and Ga as an alloy component, or GaAs-GaP as an alloy component.
In contained as a mixture of compound semiconductors such as P
The present invention relates to a method for recovering n*Ga, which is a valuable material, from alloy scrap.

Inは、 GagIn、−rAsyP、−yなどの三元
系・四元系のm−v族化合物半導体の液相エピタキシャ
ル成長(Lpg)用の溶媒として用いられるが、この時
使用する工na 用いた原料Inのはとんどがスクラッ
プとなる。通常このLPEtスクラップはInを主成分
とし、Gat−(101〜2係程度含′んだ合金で、 
As−P表どのV族元素が主にI−V族化合物半導体の
形で0.01〜14程度添加されている。
In is used as a solvent for liquid phase epitaxial growth (Lpg) of ternary and quaternary m-v group compound semiconductors such as GagIn, -rAsyP, and -y. Most of the In will be scrapped. Usually, this LPEt scrap is an alloy whose main component is In and contains Gat-(101~2).
In the As-P table, approximately 0.01 to 14 group V elements are added, mainly in the form of a group IV compound semiconductor.

In−Gaは高価り希元素であり、これらの有価物を高
収車で経済的に回収することは重要な意味を持つ。
In-Ga is an expensive rare element, and it is important to economically recover these valuables using high-yield vehicles.

本発明は、上記のLPInスクラップから、有価物であ
るIn−Gaを高収率でかつ安全に分離回収することを
目的とする。
An object of the present invention is to safely separate and recover In-Ga, which is a valuable material, from the above-mentioned LPIn scrap at a high yield.

LPEスクラップからの有価物回収のプロセスには、(
a)含有する1t−v族化合物半導体の分解、(b)工
nとGaの分離、(C)■niaの回収等の段階がある
。このうち、(a)のIn−Ga回収は、 (a)(b
)の処理の結果として、In−Ga製造工程に戻入可能
な形でIn−Gaが回収できれば十分である。
The process of recovering valuables from LPE scrap includes (
There are steps such as a) decomposition of the 1t-v group compound semiconductor contained, (b) separation of n and Ga, and (C) recovery of nia. Among these, (a) In-Ga recovery is as follows: (a) (b)
), it is sufficient that In-Ga can be recovered in a form that can be returned to the In-Ga production process.

(a)の化合物半導体の分解法としては、GaAθスク
ラップの処理の従来法である(1)熱分解法。
The method for decomposing the compound semiconductor (a) is (1) thermal decomposition method, which is a conventional method for processing GaAθ scrap.

(11)湿式処理法が一般的に応用できるが、LPEス
クラップ中の化合物半導体スクラップ含有量は少ないた
め、スクラップ全体を処理すふには上記(i) (it
)のどちらの方法も不適当であシ、何らかの前処理で化
合物半導体部分と合金部分を分離して、集めた半導体部
分のみを分解処理する方が有利である。また、仮に半導
体部分のみを分離して分解する場合でも、(1)の熱分
解法では化合物半導体の成分のAs−Pが揮発・凝縮し
て有毒で自然発火性の黄リンや黄色ヒ素と々るため処理
操作が危険である。また、 (+1)の湿式処理法では
、一般に化合物半導体に対して大過剰の濃厚々酸や酸化
性試薬を用すて浸出処理する必要があり、このようなI
n−Gaに対し多量の酸類を含有する浸出液からIn−
Gaを工程に戻し入れ可能な形で回収することは困難を
伴う。
(11) Wet processing methods can generally be applied, but since the compound semiconductor scrap content in LPE scrap is small, the above (i) (it
Both of the above methods are inappropriate, and it is more advantageous to separate the compound semiconductor portion and the alloy portion through some pretreatment and then decompose only the collected semiconductor portion. Furthermore, even if only the semiconductor part is separated and decomposed, in the thermal decomposition method (1), the As-P component of the compound semiconductor will volatilize and condense, producing toxic and pyrophoric yellow phosphorus and yellow arsenic. Processing operations are dangerous. In addition, in the wet processing method (+1), it is generally necessary to perform leaching treatment using a large excess of concentrated sulfuric acid or an oxidizing reagent for the compound semiconductor.
In-Ga from the leachate containing a large amount of acids
Recovering Ga in a form that can be returned to the process is difficult.

(b)のInとGaの分離については1通常の湿式分離
法9例えば溶媒抽出やイオン交換法が応用できるが、工
nに対し小量しか含まれないGaを分離するために、ス
クラップ全部を溶解することは不経済である。
Regarding the separation of In and Ga in (b), ordinary wet separation methods9 such as solvent extraction and ion exchange methods can be applied, but in order to separate Ga, which is contained in a small amount relative to n, it is necessary to Melting is uneconomical.

本発明は、上記の従来技術の欠点を克服した方法であり
、■溶融アルカリに対する反応性の差を利用したInと
Gaの分離、■溶融濾過に上る工ntたけIn合金と化
合物半導体の分離、■酸化剤を含有した溶融アルカリに
よる化合物半導体の分解の5つの方法を組み合わせて、
LPEスクラップから工n−Gaを分離回収することを
目的とするものである。
The present invention is a method that overcomes the drawbacks of the above-mentioned conventional techniques. (1) Separation of In and Ga using the difference in reactivity to molten alkali; (2) Separation of In alloy and compound semiconductor using an additional process of melt filtration; ■By combining five methods of decomposing compound semiconductors using molten alkali containing an oxidizing agent,
The purpose is to separate and recover n-Ga from LPE scrap.

次に、各発明の方法・条件を説明する。Next, the methods and conditions of each invention will be explained.

まず、特許請求の範囲第1項記載の発明について述べる
First, the invention described in claim 1 will be described.

In−Gaは、溶融アルカリと反応してアルカリスカム
曳に々るといわれている。例えば、溶融NaOHに対し
ては(1)、(2)の式で示す反応が生じるといわれて
いる。
It is said that In-Ga reacts with molten alkali to remove alkali scum. For example, it is said that reactions expressed by equations (1) and (2) occur with respect to molten NaOH.

2Ga+6NaOH−+ 2Na、Ga01+5H,−
−−−−−(1)2工n+6NaOH−+ 2Na3工
n03+3H1−(2)本発明者らが種々の条件で検討
した結果、(1)式と(2)式の反応速度には大きな差
があり、(l)のGa溶解の反応は速いが、(2)のI
n溶解は比較的遅いことが判明した。このため、 In
とGaの合金を溶融してアルカリを作用させれば、 G
aが選択的にアルカリに溶解し合金中のGa含有率が低
下し。
2Ga+6NaOH-+ 2Na, Ga01+5H,-
-------(1) 2nd n + 6NaOH-+ 2Na3nd n03+3H1- (2) As a result of the inventors' studies under various conditions, it was found that there is a large difference in the reaction rate between equations (1) and (2). Yes, the reaction of Ga dissolution in (l) is fast, but I in (2)
n dissolution was found to be relatively slow. For this reason, In
If an alloy of and Ga is melted and an alkali is applied to it, then G
a is selectively dissolved in alkali, and the Ga content in the alloy decreases.

InとGaの分離が可能である。一方、アルカリスカム
に溶解したGaは、スカムを水で浸出して得た液を中和
すれば水酸化ガリウムとkって沈殿し容易に回収される
。従って、この方法によりインジウムを主成分とするL
PEスクラップ中のGaを容易に分離して、Xnを粗メ
タルとして回収できる。
Separation of In and Ga is possible. On the other hand, Ga dissolved in the alkali scum is easily recovered by leaching the scum with water and neutralizing the solution, which precipitates as gallium hydroxide. Therefore, by this method, L containing indium as the main component
Ga in PE scrap can be easily separated and Xn can be recovered as a crude metal.

種々の検討の結果、インジウムを主成分とするLPBス
クラップに含有されている化合物半導体のうち、工nP
は溶融アルカリの作用により分解して金属Inを遊離す
ることが判明した。例えばNaOHをm−た。場合、こ
の反応は次の式で表わされる。
As a result of various studies, it was found that among the compound semiconductors contained in LPB scrap whose main component is indium, nP
It was found that metal In was decomposed by the action of molten alkali to liberate metal In. For example, NaOH was m-. In this case, this reaction is expressed by the following formula:

2工nP+1ONaOH−+ 2In + 2Na3P
O,+ 2Na、O+ 5H,−+31一方、他のi−
v族化合物半導体は、InPに比べて反応性が乏しく、
一部は分解してスカムに溶解するが、大部分は未反応の
一11残ることが判明した。インジウムを主成分とする
LP’にスクラップを溶融アルカリ処理した場合、未反
応の化合物半導体粉末は一部は微粉末とがってアルカリ
スカムに懸濁し、残りは粗Inに付着して残る。スカム
に溶解・懸濁した化合物半導体の微粉及び成分(Ga・
In)は、スカム浸出液を中和してGaを回収する時、
水酸化ガリウム沈殿とともに沈殿し2回収される。
2nP + 1ONaOH- + 2In + 2Na3P
O, + 2Na, O+ 5H, -+31 while other i-
Group V compound semiconductors have poor reactivity compared to InP,
It was found that some of it decomposed and dissolved into scum, but the majority remained unreacted. When scrap is treated with molten alkali to produce LP' containing indium as a main component, some of the unreacted compound semiconductor powder becomes fine powder and is suspended in the alkali scum, and the rest remains attached to the crude In. Compound semiconductor fine powder and components (Ga,
In), when neutralizing the scum leachate and recovering Ga,
It precipitates together with gallium hydroxide and is recovered.

溶融アルカリ処理に用いるアルカリとしては。As an alkali used for molten alkali treatment.

Na0H−KOHなどのアルカリ金属水酸化物及びとれ
らに融点の低下・反応の促進等のために他の無機塩類を
添加したものが利用できるが1価格の点からはNaOH
が適当である。
Alkali metal hydroxides such as Na0H-KOH and other inorganic salts added to them to lower the melting point and accelerate the reaction can be used, but from the point of view of price, NaOH
is appropriate.

NaOHを用いた処理では、融体の温度がIJaOHの
融点以上であれば、スクラップからのGa溶解反応が起
こる。温度が高いほどGa除去速度が早く々るが、同時
にInのアルカリへの溶解量も増加するため、極端に高
温にするのは不利で9反応温度としては350〜400
℃の範囲、好ましくは380℃付近が適当である。
In the treatment using NaOH, if the temperature of the melt is equal to or higher than the melting point of IJaOH, a Ga dissolution reaction from the scrap occurs. The higher the temperature, the faster the Ga removal rate, but at the same time the amount of In dissolved in the alkali increases, so it is disadvantageous to use an extremely high temperature.9 The reaction temperature is 350 to 400.
C., preferably around 380.degree. C. is suitable.

使用するアルカリの量は、スクラップ中のGa含有量に
よル調整する必要があるが、Na0Eiを用いる時はス
クラップ中のGa全含有量の10〜15倍((1)式の
反応に対して5.8〜a7倍当量)用いれば十分である
。ただし0反応容器内で融解したスクラップの表面を覆
いつくすのに十分な量のアルカリを用いる必要があるた
め、スクラップ中のGaが少ない場合でも最低限スクラ
ップ全量の10係程度のNaOHを用いる必要がある。
The amount of alkali used needs to be adjusted depending on the Ga content in the scrap, but when using Na0Ei, the amount of alkali used is 10 to 15 times the total Ga content in the scrap (for the reaction of equation (1)). It is sufficient if 5.8 to a7 times equivalent) is used. However, it is necessary to use a sufficient amount of alkali to completely cover the surface of the scrap melted in the zero reaction vessel, so even if the Ga content in the scrap is small, it is necessary to use at least NaOH in an amount of about 10 times the total amount of scrap. be.

溶融アルカリ処理の装置の一例を図1に示した。図の1
は反応容器、2は溶体攪拌用のインペラーで、これらは
溶融アルカリへの耐食性を考慮して鉄やステンレス製の
ものを用いる。アルカリ3とスクラップ4を容器にとり
、電気炉で約380℃に加熱・溶融する。処理装置は。
An example of an apparatus for molten alkali treatment is shown in FIG. Figure 1
2 is a reaction vessel, and 2 is an impeller for stirring the solution, which are made of iron or stainless steel in consideration of corrosion resistance to molten alkali. Alkali 3 and scrap 4 are placed in a container and heated and melted at about 380°C in an electric furnace. The processing equipment.

アルカリ飛沫が飛び散るのを防ぐためフタ5で覆い、ミ
ストやH,ガスを除くため全体を排気口6から排気する
。反応時間は、処理前のスクラップ中のGa含有率や反
応容器の大きさにより調節する必要があるが、Inのア
ルカリへの溶解ロスは温度・使用薬品量・反応時間を正
しく選べば0.1係以下にとどまる。
It is covered with a lid 5 to prevent alkali droplets from scattering, and the whole is exhausted from an exhaust port 6 to remove mist, H, and gas. The reaction time needs to be adjusted depending on the Ga content in the scrap before treatment and the size of the reaction vessel, but the loss of In dissolution into alkali can be 0.1 if the temperature, amount of chemicals used, and reaction time are selected correctly. Stay below the relevant level.

処理後、容器の底にたまったInは熱いうちに容器に傾
けて流し出すか、又は十分に冷却してから水浸出してス
カムを溶かし出した後、加熱して金属Inを取り出す。
After the treatment, the In that has accumulated at the bottom of the container is poured out by tilting it into the container while it is still hot, or it is sufficiently cooled and water is leached out to dissolve the scum, and then heated to take out the metal In.

スカムに混入したIn・Gafiは水浸出・中和・濾過
操作によシ回収される。
In.Gafi mixed in the scum is recovered by water leaching, neutralization, and filtration operations.

次に、特許請求の範囲第2項記載の発明について述べる
Next, the invention described in claim 2 will be described.

本発明者らはInを主成分とし、As、Pをm−v族化
合物半導体の形で含むIn合金スクラップを溶融した場
合に、As、pは溶融物の表層に浮遊する残渣中に大部
分が集まることを見出した。
The present inventors found that when In alloy scrap containing In as a main component and As and P in the form of an m-v group compound semiconductor was melted, As and P were mostly present in the residue floating on the surface of the melt. It was found that the

このためLPΣスクラップに含まれるP−As はIn
メタル中にはほとんど固溶せず、その大半はInやGa
と化合して金属Inより比重の小さな化合物半導体の粒
子となって表層に析出することが判明した。従って、L
PInスクラップを溶融し融点付近に保持し、容器の器
壁に設けた細孔を通して濾過すれば、スクラップに含ま
れるP・A8の大半を化合物半導体微粉の形で除き、P
−Aθを含まぬ金属In又はIn−Ga合金を得ること
ができる。とのp過操作は、(1)IIpBスクラップ
原料、 (il)溶融アルカリ処理によりLEEスクラ
ップからGaを除いて得た粗工nのどちらにも適用でき
る。
Therefore, P-As included in LPΣ scrap is In
It is hardly dissolved in metal, and most of it is In and Ga.
It was found that the compound semiconductor particles, which have a specific gravity smaller than that of metal In, are precipitated on the surface layer. Therefore, L
If PIn scrap is melted and maintained near its melting point and filtered through pores in the container wall, most of the P・A8 contained in the scrap will be removed in the form of compound semiconductor fine powder, and PIn
-A metallic In or In-Ga alloy that does not contain Aθ can be obtained. The p-filtration operation can be applied to both (1) IIpB scrap raw material and (il) rough material obtained by removing Ga from LEE scrap by molten alkali treatment.

溶融濾過用の容器はガラス、石英あるいはステンレス鋼
など溶融インジウムと反応し々い材質の容器の底面に直
径0.1ないし1四の孔を1個ないし複数個設けたもの
が好適である。
The container for melt filtration is preferably made of a material that easily reacts with molten indium, such as glass, quartz, or stainless steel, and has one or more holes with a diameter of 0.1 to 14 in the bottom surface.

最後に特許請求の範囲第6項記載の発明について述べる
Finally, the invention described in claim 6 will be described.

酸化剤を含有した溶融アルカリ(以後酸化性溶融アルカ
リとも略称する)を用いれば、溶融アルカリ単独では分
解が困難なI−V族化合物半導体を容易に分解できる。
By using a molten alkali containing an oxidizing agent (hereinafter also referred to as oxidizing molten alkali), it is possible to easily decompose a group IV compound semiconductor that is difficult to decompose using a molten alkali alone.

酸化剤としては。As an oxidizing agent.

溶融アルカリと混合するものであれば大半のものが利用
できるが1例えばアルカリとしてRaOHを用いる場合
は亜硝酸ナトリウムNaN01などが有用である。Na
OH系の酸化性融剤を用いれば。
Most materials that can be mixed with molten alkali can be used; for example, when RaOH is used as the alkali, sodium nitrite NaN01 is useful. Na
If an OH-based oxidizing flux is used.

次の反応により化合物半導体中の全成分がアルカリスカ
ムに溶解する。
All the components in the compound semiconductor are dissolved into the alkali scum by the following reaction.

I nP + bhoH+ 4(o)耐Na1InOB
+Na5PO,+3H10−=・(41GaAs + 
61iaO)I+ 4(0)→Na、GaO,+Na1
AeO,−14)1,0=−=−(5)金属Inも、酸
化性溶融アルカリには容易に溶解する。
InP + bhoH+ 4(o) Na1InOB
+Na5PO, +3H10-=・(41GaAs +
61iaO) I+ 4(0) → Na, GaO, +Na1
AeO, -14) 1,0=-=- (5) Metal In also easily dissolves in oxidizing molten alkali.

2工n + 6 NaOH+ 3(0)→2Nal工n
O@+3H!O−(6)従って、■に述べた溶融濾過処
理で得た金属Inと化合物半導体粉末残渣の混合物は酸
化性アルカリにより容易にスカムに溶解する。
2nd + 6 NaOH+ 3(0) → 2Nal
O@+3H! O-(6) Therefore, the mixture of metal In and compound semiconductor powder residue obtained by the melt filtration treatment described in (1) is easily dissolved into scum by the oxidizing alkali.

スカムに溶解した成分のうち、Ga・Inはスカム水浸
出液を中和すれば水酸化物となって沈殿し容易に分離・
回収される。回収し九沈殿は。
Among the components dissolved in the scum, Ga and In precipitate as hydroxides when the scum water leachate is neutralized and are easily separated and separated.
It will be collected. Collect nine precipitates.

通常の湿式法によりGa・Inを分離回収することが可
能である。
It is possible to separate and recover Ga.In by a normal wet method.

処理にm−る試薬の量はスクラップの組成により異りる
が、アルカリ・酸化剤とも理論的必要量の2〜3倍を用
いる必要がある。NaOH−NaMO1混合物を用いる
場合は、MaOHとNano、の重量5:1の混合物を
スクラップ重量の10倍用いれば十分分解できる。
The amount of reagent used in the treatment varies depending on the composition of the scrap, but it is necessary to use two to three times the theoretically required amount of both the alkali and the oxidizing agent. When using a NaOH-NaMO1 mixture, sufficient decomposition can be achieved by using a 5:1 mixture of MaOH and Nano by 10 times the weight of the scrap.

温度は、アルカリの融点以上であれば(4)〜(6)の
反応は円滑に進行するが450℃以上の温度では容器の
耐食性に問題が生じ、また反応が激しく々り危険となる
ので、極端な高温で分解するのは好ましくガい。Na0
H−Nano、の場合は。
If the temperature is above the melting point of the alkali, the reactions (4) to (6) will proceed smoothly, but if the temperature is above 450°C, there will be problems with the corrosion resistance of the container, and the reaction will be violent and cause danger. It is preferable to decompose at extremely high temperatures. Na0
In the case of H-Nano.

350〜400℃の範囲で処理するのが安全である。It is safe to process at a temperature in the range of 350 to 400°C.

処理するスクラップは反応を円滑にするため。The scrap to be processed is to facilitate the reaction.

前亀って粉砕・細断することが好ましく、金属Inと化
合物半導体粉末の混合物は、敷料程度の大きさにすれば
十分である。
It is preferable to pulverize and shred the metal In and compound semiconductor powder, and it is sufficient to make the mixture of metal In and compound semiconductor powder into a size similar to that of bedding.

酸化性溶融アルカリによる゛処理には、原料スクラップ
装入口4を設けたとと以外社第1の発明の説明において
述べた溶融アルカリ処理に用いたものと同じ型の装置が
利用できる。その−例を図2に示した。
For the treatment with oxidizing molten alkali, the same type of equipment as that used for the molten alkali treatment described in the description of the company's first invention can be used, except that it is provided with a raw material scrap charging port 4. An example of this is shown in FIG.

図の中で、1は反応容器、2は溶体攪拌用のインペラー
で、これらは耐食性を考慮して鉄やステンレス製のもの
を用いる。アルカリ及び酸化剤は、あらかじめ容器1の
中に入れておき、全体を電気炉で加熱溶融する。溶融ア
ルカリを撹拌しなから4の添加用じょうごを用いてスク
ラップ7を加える。この時、急激力反応を防ぐためスク
ラップは小量ずつ加え、溶体の温度が400℃以下を保
つように調節することが好ましい。処理装置は、アルカ
リ飛沫が飛び散るのを防ぐため、フタ5で覆い、ガスや
ミストを排気口6から排気する。
In the figure, 1 is a reaction vessel, 2 is an impeller for stirring the solution, and these are made of iron or stainless steel in consideration of corrosion resistance. The alkali and oxidizing agent are placed in a container 1 in advance, and the whole is heated and melted in an electric furnace. While stirring the molten alkali, add scrap 7 using addition funnel 4. At this time, in order to prevent a sudden force reaction, it is preferable to add scrap little by little and adjust the temperature of the solution to be maintained at 400° C. or less. The processing device is covered with a lid 5 to prevent alkali droplets from scattering, and gas and mist are exhausted from an exhaust port 6.

試薬が過剰にあれば、スクラップ添加終了後30分以内
に分解反応は終了する。反応後、全体を放冷してからス
カムを水浸出する。Gaは。
If there is an excess of reagent, the decomposition reaction will be completed within 30 minutes after the end of scrap addition. After the reaction, the whole is allowed to cool and the scum is leached with water. Ga is.

ガリウム酸イオンとして完全に溶解し、Inは一部が水
に溶ける他、大部公社水酸化物と々り液に懸濁する。液
に溶解・懸濁したGa・工nは、浸出液をpH6〜8に
中和すれば水酸化物となってほぼ完全に沈殿する。沈殿
を分離した後のν液は、公知の方法によりムθ除去処理
を行った後に廃棄する。
In is completely dissolved as gallium ion, and In is partially dissolved in water and also suspended in Obe Kosha hydroxide solution. When the leachate is neutralized to a pH of 6 to 8, the Ga dissolved and suspended in the liquid becomes hydroxide and almost completely precipitates. The ν solution after separating the precipitate is subjected to a Mu θ removal treatment by a known method and then discarded.

以上、3つの発明を組み合わせることにょシ。I decided to combine the above three inventions.

LPFiスクラップから有価物(Ga、In)を分離・
回収できる。この処理フローの例を図3に示した。ここ
では、まず■の溶融アルカリ処理により合金中のGaを
除いた後に、■の濾過を行い化合物半導体成分を分離す
る例を示したが、スクラップの組成によっては■の濾過
を最初に行いAB−P分を除込た合金を溶融アルカリ処
理する方法も可能である。又、化合物半導体成分の含有
量が極めて少々い場合には■および■の段階だけですま
せる場合もあり得る。
Separation of valuables (Ga, In) from LPFi scrap
It can be recovered. An example of this processing flow is shown in FIG. Here, we have shown an example in which first Ga is removed from the alloy by the molten alkali treatment (■), and then the compound semiconductor component is separated by filtration (2). It is also possible to treat the alloy from which the P content has been removed with molten alkali. In addition, if the content of the compound semiconductor component is extremely small, it may be possible to perform only steps (1) and (2).

最後に、実施例により本発明を説明する。Finally, the present invention will be explained by examples.

実施例1 ステンレス製100−ビーカー(sogx7oh)に工
n99qb−Ga21の合金200fと1/i 〜32
メツシュ(1〜0.5簡)は粉砕したGaAs+・工n
Pの粉末各19を混合して取り、NaOH50f(Ga
に対し7.3倍当量)加えて、全体を電気炉で380℃
に加熱して内容物を溶融し3時間攪拌した。工nPの4
7 ’1. GaAeの57%が主に微細な懸濁物と々
カアルカリスカムに混入し、残りの工nP−GaAsは
処理後の合金表面に付着した11残った。処理後の合金
中のGa含有率は0.021i以下壕で低下した。処理
後の合金を濾過して表面の粉末を除いて得た回収Inか
らは発光定性分析ではPは検出されず、Asはかろうじ
て存在が認められる程度であった。
Example 1 In a stainless steel 100-beaker (sogx7oh), alloy 200f of n99qb-Ga21 and 1/i ~ 32
The mesh (1 to 0.5 pieces) is crushed GaAs +
Mix and take 19 pieces of P powder, and add 50f of NaOH (Ga
7.3 times equivalent) and heated the whole thing in an electric furnace at 380°C.
The contents were melted and stirred for 3 hours. Engineering nP 4
7'1. 57% of the GaAe was mainly mixed into the fine suspension and the alkali scum, and the remaining nP-GaAs remained attached to the alloy surface after treatment. The Ga content in the alloy after treatment decreased by 0.021i or less. In the recovered In obtained by filtering the treated alloy to remove surface powder, no P was detected by qualitative luminescence analysis, and the presence of As was barely recognized.

スカム水浸出液を中和してpH7とし、液に溶解したG
aを沈殿させた。中和後の液中In−Gaの溶存量は1
 ppm未満であシ、スカムに溶解又は懸濁したIn−
Ga分は完全に沈殿した。沈殿を371 HOIにより
浸出し、未反応の化合物半導体粉末を残してGa・In
水酸化物を溶解・回収した。
The scum water leachate was neutralized to pH 7, and the G dissolved in the liquid was
a was precipitated. The amount of In-Ga dissolved in the solution after neutralization is 1
Less than ppm, In-
Ga content was completely precipitated. The precipitate was leached out using 371 HOI, leaving the unreacted compound semiconductor powder behind.
The hydroxide was dissolved and recovered.

スカムに溶解した工nは110qで1元のスクラップか
らのInロス率はα055qbであった。
The amount of n dissolved into the scum was 110q, and the In loss rate from scrap of 1 yuan was α055qb.

実施例2 ステンレス製100−ビーカー(50躍X70h)に兎
OH15f、 Halo、 5ft−とり電気炉で68
0℃に加熱して溶融した。溶体を攪拌しなからcL5〜
1tの試料を加え、30分反応させた。処理試料は(1
)1nF 、 (ii) Ga’F 、(iii) I
nAs、 (iv) GaAsの粉末(16〜52メツ
シュ)および(v)金属Inと工nP粉末混合物の5種
類である。いずれの試料も完全に分解し、スカム水浸出
液を中和して、 Ga・Inを水酸化物として回収する
ξとができた。回収率は表1のとおシであった。
Example 2 A stainless steel 100mm beaker (50cm x 70h) was heated with a rabbit OH15f, Halo, and a 5ft electric furnace.
It was heated to 0°C to melt. cL5~ without stirring the solution
1 ton of sample was added and reacted for 30 minutes. The processed sample is (1
)1nF, (ii) Ga'F, (iii) I
nAs, (iv) GaAs powder (16 to 52 mesh), and (v) metal In and metal nP powder mixture. All samples were completely decomposed, the scum water leachate was neutralized, and Ga.In was recovered as hydroxide. The recovery rate was as shown in Table 1.

表 1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

図1は溶融アルカリ処理用装置の一例を1図2は酸化性
溶融アルカリ処理用装置の一例會。 図3は全体の処理フローを示す。 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並川啓志 昭和58年9月Z日 特許庁長官 若杉和夫殿 1、事件の表示 昭和58・年特許願第 130j95号2発明の名称 インジウム・ガリウムの回収方法 3 補正をする者 事件との関係 特許出願人 住 所 東京都港区虎ノ門二丁目10番1号名 称 日
本鉱業株式会社 代表者 笠 原 幸 雄 4代理人 〒105 電話582−2111 住 所 東京都港区虎ノ門二丁目10番1号Z補正の内
容 (1) 明細書3頁7行目の「(a)のIn−Ga回収
は」を「(C)の−・軌回収は」と補正する。 (2) 明細書14頁9行目の「け粉砕した」を「に粉
砕した」と補正する。 (3) 明細書14頁1o行目の「加え」を「を加えJ
と補正する。 以 上
Figure 1 shows an example of an apparatus for treating molten alkali, and Figure 2 shows an example of an apparatus for treating oxidizing molten alkali. FIG. 3 shows the overall processing flow. Patent applicant: Japan Mining Co., Ltd. Patent attorney (7569) Keishi Namikawa September 1980 Z Patent Office Commissioner Kazuo Wakasugi 1. Case description 1982 Patent application No. 130j95 2. Name of the invention Indium gallium Recovery method 3 Relationship with the case of the person making the amendment Patent applicant address 2-10-1 Toranomon, Minato-ku, Tokyo Name Nippon Mining Co., Ltd. Representative Yukio Kasahara 4 Agent 105 Telephone 582-2111 Address Location: 2-10-1 Toranomon, Minato-ku, Tokyo Contents of the Z amendment (1) On page 3, line 7 of the specification, “(a) In-Ga recovery” is changed to “(C) In-Ga recovery” and correct it. (2) On page 14, line 9 of the specification, "ke shattered" is amended to "ke shattered". (3) Change “addition” in line 1o on page 14 of the specification to “addition J
and correct it. that's all

Claims (2)

【特許請求の範囲】[Claims] (1) Inを主成分とし、これに合金成分又は混合物
として、Ga・A日・P等の璽族・V族元素を含むIn
合金スクラップから、有価物としてIn・Ga tl−
回収するに当たカ、当該スクラップを溶融状態のアルカ
リ金属水酸化物により処理して合金から()a1分離・
回収することを特徴とするインジウム・ガリウムの回収
方法。
(1) In containing In as a main component and containing Group V elements such as Ga, A, and P as alloy components or mixtures.
From alloy scrap, In・Ga tl-
During recovery, the scrap is treated with molten alkali metal hydroxide to separate ()a1 from the alloy.
A method for recovering indium and gallium.
(2) Inを主成分とし、 As−Pを厘−V族化合
物半導体の形で含むIn合金スクラップからks−P含
有成分を分離するに当たり、Mスクラップを溶融状態で
ヂ遇することを特徴とするインジウム・ガリウムの回収
方法。 (s)I−V族化合物半導体と金属Inを主な成分とす
る化合物半導体スクラップから、有価物としてIn−G
a 11−回収するに当たり、当該スクラップを酸化剤
を含んだ溶融状態のアルカリ金属水酸化物により処理す
ることを特徴とするインジウム・ガリウムの回収方法。
(2) In separating the ks-P containing component from the In alloy scrap containing In as a main component and As-P in the form of a lin-V group compound semiconductor, M scrap is treated in a molten state. How to recover indium and gallium. (s) In-G as valuable material from compound semiconductor scrap whose main components are I-V compound semiconductors and metal In.
a11- A method for recovering indium-gallium, which comprises treating the scrap with a molten alkali metal hydroxide containing an oxidizing agent.
JP13099583A 1983-07-20 1983-07-20 Recovery of indium-gallium Granted JPS6027613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13099583A JPS6027613A (en) 1983-07-20 1983-07-20 Recovery of indium-gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13099583A JPS6027613A (en) 1983-07-20 1983-07-20 Recovery of indium-gallium

Publications (2)

Publication Number Publication Date
JPS6027613A true JPS6027613A (en) 1985-02-12
JPS6316338B2 JPS6316338B2 (en) 1988-04-08

Family

ID=15047470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13099583A Granted JPS6027613A (en) 1983-07-20 1983-07-20 Recovery of indium-gallium

Country Status (1)

Country Link
JP (1) JPS6027613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063044A (en) * 2005-08-30 2007-03-15 Dowa Holdings Co Ltd Method for recovering gallium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063044A (en) * 2005-08-30 2007-03-15 Dowa Holdings Co Ltd Method for recovering gallium

Also Published As

Publication number Publication date
JPS6316338B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
BR112021020943B1 (en) PROCESS FOR THE PREPARATION OF PRECURSOR COMPOUNDS FOR LITHIUM BATTERY CATHODES
KR101204995B1 (en) Method of high purity gold refining
US3689253A (en) Reclaiming lead from storage batteries
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
KR20120074167A (en) Recovery method of valuableness metals from copper smelting slag
WO2019180642A1 (en) Method for the selective recovery of tin and a reactor for use in said method
WO2008141409A1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
CA1057506A (en) Method of producing metallic lead and silver from their sulfides
CA1076364A (en) Process for concentrating and recovering gallium
KR19980076556A (en) Recovery of valuable metals from diamond tool scrap
CN110551904A (en) Non-cyanogen gold leaching and gold extraction method for high-sulfur-arsenic-carbon refractory gold concentrate
JPS6027613A (en) Recovery of indium-gallium
EP0189831B1 (en) Cobalt recovery method
US3684489A (en) Method of recovering metals from sulfide-containing mixtures
JP3103507B2 (en) Purification method of impure diamond powder
US5711929A (en) Purification of elemental sulphur
US2241514A (en) Process for the recovery of beryllium metal
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
JPS6024332A (en) Treatment of scrap of iii-v group compound semiconductor
CA1152754A (en) Process for the recovery of gold from carbonaceous ores
CN114182099B (en) Method for extracting gold from electronic waste
JPS6324054B2 (en)
JPH05306419A (en) Method for removing arsenic in arsenic-containing dross
KR101486668B1 (en) Recovery of metalic tin from waste materials by aqueous extraction
JPS59133338A (en) Heavy metal separation for copper containing waste