JPS63288045A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63288045A
JPS63288045A JP12128287A JP12128287A JPS63288045A JP S63288045 A JPS63288045 A JP S63288045A JP 12128287 A JP12128287 A JP 12128287A JP 12128287 A JP12128287 A JP 12128287A JP S63288045 A JPS63288045 A JP S63288045A
Authority
JP
Japan
Prior art keywords
wiring
film
adhered
films
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12128287A
Other languages
Japanese (ja)
Inventor
Shigeru Kawamata
川又 繁
Yutaka Misawa
三沢 豊
Naohiro Monma
直弘 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12128287A priority Critical patent/JPS63288045A/en
Publication of JPS63288045A publication Critical patent/JPS63288045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the metal of a wiring pattern from scattering at the time of fusing, from moving from a prescribed position by surface tension and from cohering to swell by a method wherein an insulating film on metal wiring films is fixed by suppressing the wiring pattern from its upper surface and a tunnel, through which a wiring passes, is formed. CONSTITUTION:An SiO2 insulating film 3 is adhered on a semiconductor substrate 1 comprising functional elements 2 constituted therein and thereafter, prescribed patterns are each formed on contact regions by a lithography technique. Al is adhered on the whole surface of the substrate 1, whereon contact holes 4 are opened, using a bias sputtering method and so on and after that, a wiring pattern is formed by a lithography technique. A form maintaining film 6, with which Al wiring films 4 are covered and which consists of SiO2, is adhered on the whole surface of the substrate 1 by a sputtering method and so on and the adhered forms of the films 5 are changed to remove the contact holes 4 in regions where are wanted to flatten and the film 6 on other step part. When the substrate 1 is heated at the melting point, 660 deg.C, or more of the films 5 using infrared rays or a laser beam and so on, the Al is instantaneously changed into a liquid phase state from a solid phase state, flows in a contact hole 3 and the surface is flattened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSIなどにおける半導体装置の製造方法に係
り、特にコンタクト孔などの段差部での金属膜のつき廻
りを改善するに好適な半導体装置の配線形成方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device such as an LSI, and particularly to a semiconductor device suitable for improving the distribution of a metal film at a stepped portion such as a contact hole. The present invention relates to a wiring forming method.

〔従来の技術〕[Conventional technology]

サブミクロンのLSIではコンタクト孔は微細なうえ、
アスペクト比(高さ/径)が1以上になる0段差被覆性
の良いバイアス・スパッタ等で金属膜を被着してもコン
タクト孔では側壁が互いに被着粒子の陰になり底部にお
ける膜厚が極めて薄くなる。コンタクト部では断線やエ
レクトロマイグレーションによる導通不良が発生する。
In submicron LSI, contact holes are minute and
Even if a metal film is deposited using bias sputtering, etc., which has an aspect ratio (height/diameter) of 1 or more and has good zero-level coverage, the side walls of the contact hole will be in the shadow of each other and the film thickness at the bottom will be small. It becomes extremely thin. In the contact portion, conduction failure occurs due to disconnection or electromigration.

そこで、釡属膜を加熱溶融してコンタクト孔内に流動さ
せて埋込む配線の平坦化技術が開示されている。
Therefore, a technique for flattening the wiring has been disclosed in which a metal film is melted by heating and flowed into the contact hole to be buried.

LSIの配線材料にはAQが最も広く用いられている。AQ is the most widely used wiring material for LSI.

AQの融点は660’Cである。金属を溶融して配線を
平坦化するのに支配的な力はその温度における表面張力
と粘性である。800”CにおけるAQの表面張力は5
20dy■3− ”で水の8倍と大きく、粘性は1.4
 X 10−” poiseで水と同程度である。この
ため、溶融したAQをコンタクト孔に埋込む方法は配線
の表面を容易に平坦化できる。
The melting point of AQ is 660'C. The dominant forces in melting the metal and flattening the wiring are surface tension and viscosity at that temperature. The surface tension of AQ at 800"C is 5
20dy■3-” is 8 times larger than water and has a viscosity of 1.4
X 10-'' poise is comparable to that of water. Therefore, the method of burying molten AQ into the contact hole can easily flatten the surface of the wiring.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

溶融したAQはスパッタ等の成膜装置で被着した膜に比
べて光の反射率が高い、ステッパーでウェハ上に配線パ
ターンを転写する工程では反射により微細な配線を精度
高く形成できない、また、溶融によって被着AQ膜が段
差部で平坦化されるために膜厚が場所によって異なり、
同時にエツチングすることが困難になる。
Melted AQ has a higher light reflectance than a film deposited using a film forming device such as sputtering, and in the process of transferring wiring patterns onto a wafer using a stepper, it is not possible to form fine wiring with high precision due to reflection. As the deposited AQ film is flattened at the stepped portions by melting, the film thickness varies depending on the location.
It becomes difficult to etch at the same time.

そこで、予めAIIMをバターニングして配線パターン
を形成しておき、その後加熱処理する方法で溶融すれば
上記問題を解決できる。
Therefore, the above problem can be solved by patterning AIIM in advance to form a wiring pattern and then melting it by heat treatment.

ところが、平面図を第4図(a)に、そのX−X′部の
縦断面図を第4図(b)に示すようにパターン形成後に
加熱する方法では、溶融したAQの表面張力で点状に凝
集してしまい、配線が連続にならず断線する問題があっ
た8 本発明の目的はこのような問題点を解決するためになさ
れたもので、微細な配線パターンを形成した後加熱処理
して配線金属を溶融し、くぼみに流動させて埋込むこと
のできる信頼性の優れた半導体装置の配線形成方法を提
供することにある。
However, in the method of heating after pattern formation, as shown in FIG. 4(a), whose plan view is shown in FIG. 4(a), and in FIG. There was a problem that the wires would not be continuous and would be disconnected.8 The purpose of the present invention was to solve these problems. It is an object of the present invention to provide a highly reliable method for forming wiring in a semiconductor device, in which wiring metal can be melted and flowed into a recess to be buried therein.

【問題点を解決するための手段〕[Means for solving problems]

上記目的は半導体基板上に絶縁膜を被着する工程と、該
絶縁膜にコンタクト孔を開口する工程と。
The above purpose is a step of depositing an insulating film on a semiconductor substrate, and a step of opening a contact hole in the insulating film.

該コンタクト孔を含む前記絶縁膜上に配線金属を被着し
、パターン形成後して配線パターンを形成する工程と、
該配線パターンを含む前記半導体基板上に絶縁膜を被着
し、前記コンタクト孔を含む段差部の領域に開口を形成
する工程と、前記配線金属膜を融点以上の温度に加熱し
て溶融し、くぼみに流動せしめる工程とを有する本発明
の半導体装置の配線形成方法により、達成される。
depositing a wiring metal on the insulating film including the contact hole and forming a wiring pattern after patterning;
a step of depositing an insulating film on the semiconductor substrate including the wiring pattern and forming an opening in a step region including the contact hole; heating the wiring metal film to a temperature equal to or higher than its melting point to melt it; This is achieved by the method for forming interconnections in a semiconductor device of the present invention, which includes a step of causing the flow to flow into the recesses.

〔作用〕[Effect]

本発明の配線金属膜上の絶縁膜は配線パターンを上面か
ら押さえて固定し、配線が通るトンネルを形成するので
、ある形状を維持する動きをする。
The insulating film on the wiring metal film of the present invention presses and fixes the wiring pattern from above and forms a tunnel through which the wiring passes, so it moves to maintain a certain shape.

それによって、配線パターンの金属が溶融時に飛散した
り1表面張力で所定の位置を移動したり、凝集して盛り
上がるのを防ぐことができるので。
This prevents the metal in the wiring pattern from scattering during melting, from moving in a predetermined position due to surface tension, or from agglomerating and swelling.

溶融した配線はパターン形成時の断面形状を保持し、寸
断されないため断線することがない。
The molten wiring retains its cross-sectional shape at the time of pattern formation and is not cut into pieces, so there is no disconnection.

また、溶融して平坦化するコンタクト孔や他の段差部領
域では配線金属膜上の絶aljに予め開口しておき、そ
の後溶融するのでつき廻りの悪い状態が維持されること
がなく、周囲を絶縁膜で囲まれた内側で溶融して流動し
、くぼみが埋められ平坦化される。
In addition, in contact holes and other stepped areas that are melted and flattened, they are opened in advance on the wiring metal film, and then melted, so that a state of poor rolling performance is not maintained, and the surrounding area is It melts and flows inside the insulating film, filling the depression and flattening it.

〔実施例〕〔Example〕

本発明の一実施例を第1図により説明する。第1図(a
)に8いて、機能素子2を構成した半導体基板1に5i
ns絶縁膜3を被着した後、リソグラフィ技術によって
コンタクト領域に所定のパターンを形成する1次に5反
応性イオンエツチングRIE等を用いて5iOz絶縁膜
3に半導体基板1に達するまでエツチングしてコンタク
ト孔4を設ける0次に、第1図(b)のようにコンタク
ト孔4を開口した半導体基板1上にバイアス・スパッタ
等を用いて八Ωを全面に被着し、その後リングラフィに
よって配線パターンを形成し、RIE等を用いてエツチ
ングしてAQ配線膜5を形成する0次に、第1図(c)
に示すようにAQ配線瞑5を覆って半導体基板1の全面
に5iOzから成る形状維持膜6をスパッタ等で0.1
〜1.0μmの厚さに被着し、その後第1図(d)に示
すようにAll配線lI5の被着形状を変え平坦化した
い領域のコンタクト孔4や他の段差部上の形状維持膜6
を除去する0次に、第1図(e)に示すように半導体基
板1をA1配線膜5の融点660℃以上に赤外或いはレ
ーザ等を用いて加熱すると、AQは固相状態から液相状
態に瞬時に変化し、コンタクト孔4やその他の段差部で
は溶融したAQの表面張力や位置のエネルギーによって
流動し、コンタクト領域及びその近傍からコンタクト孔
3に流れ込み表面が平坦化される。この時、形状維持膜
6で覆われたAΩ配線1lI5は同時に溶融するので膜
質が改善されるが、形状はパターン形成時の状態を維持
してほぼ平行四辺形になっている。形状維持膜6はその
まま残して眉間の絶縁膜の一部として用いることができ
る。
An embodiment of the present invention will be explained with reference to FIG. Figure 1 (a
) and 5i on the semiconductor substrate 1 that constitutes the functional element 2.
After depositing the ns insulating film 3, a predetermined pattern is formed in the contact area using lithography technology, and the 5iOz insulating film 3 is etched until it reaches the semiconductor substrate 1 using first and fifth reactive ion etching RIE, etc., to form a contact. Forming holes 4 Next, as shown in FIG. 1(b), 8Ω is deposited on the entire surface of the semiconductor substrate 1 with contact holes 4 using bias sputtering, etc., and then a wiring pattern is formed by phosphorography. Then, the AQ wiring film 5 is formed by etching using RIE or the like, as shown in FIG. 1(c).
As shown in the figure, a shape maintaining film 6 made of 5 iOz is deposited on the entire surface of the semiconductor substrate 1 by sputtering or the like to cover the AQ wiring line 5.
The film is deposited to a thickness of ~1.0 μm, and then, as shown in FIG. 1(d), the shape of the deposited All wiring II5 is changed and a shape-maintaining film is applied over the contact hole 4 and other step portions in the area to be flattened. 6
Next, as shown in FIG. 1(e), when the semiconductor substrate 1 is heated to the melting point of the A1 wiring film 5 of 660° C. or higher using infrared or laser, AQ changes from the solid phase to the liquid phase. In the contact hole 4 and other stepped portions, the melted AQ flows due to surface tension and potential energy, flows into the contact hole 3 from the contact region and its vicinity, and flattens the surface. At this time, the AΩ wiring 1lI5 covered with the shape maintaining film 6 is melted at the same time, so that the film quality is improved, but the shape maintains the state at the time of pattern formation and becomes approximately a parallelogram. The shape maintaining film 6 can be left as is and used as part of the insulating film between the eyebrows.

本発明の一実施例によればAQ配線パターンを形成後A
Qを溶融しても第2図に示す平面図のように配線は連続
で、コンタクト部の段差は平坦化され、配線パターンに
形状不良が生じない。
According to one embodiment of the present invention, after forming the AQ wiring pattern,
Even if Q is melted, the wiring will be continuous as shown in the plan view shown in FIG. 2, the steps at the contact portion will be flattened, and no shape defects will occur in the wiring pattern.

本発明の他の実施例を第3図により説明する。Another embodiment of the present invention will be described with reference to FIG.

形状維持H6を形成し、平坦化したい領域のコンタクト
孔4や段差部上の形状維持膜6を除去する工程までは前
記本発明の一実施例と同一であり省略する1次に、形状
維持膜6上に5iOzと屈折率の異なる5iaNaから
成る反射制御膜7をプラズマCVD等で被着する。AQ
配線膜5を溶融する加熱方法の一つであるレーザの入射
エネルギーは固体界面での反射によって大幅に変化する
ことが知られている。AQ配線膜5の表面の絶縁膜の厚
みにより1反射膜や逆に反射防止膜として働くためで形
状維持膜6とその上の反射制御H7の厚さの組合せを例
えばそれぞれ0.6 μmと0.1μmとすると反射膜
として働く、そこで、レーザ照射時にAQ配線膜5の溶
融したくない領域の形状維持IIIG上のみに反射制御
膜7を形成して他の領域を除去する。その後、レーザを
照射してAQ配線1lI5を溶融して、コンタクト孔4
や他の段差部に流動させてくぼみを埋めることにより表
面の平坦な配線が形成できる。
The steps of forming the shape retaining layer H6 and removing the contact hole 4 in the region to be flattened and the shape retaining film 6 on the stepped portion are the same as in the embodiment of the present invention, and are omitted. A reflection control film 7 made of 5iaNa having a refractive index different from that of 5iOz is deposited on the surface of the reflection control film 6 by plasma CVD or the like. AQ
It is known that the incident energy of a laser, which is one of the heating methods for melting the wiring film 5, changes significantly due to reflection at a solid interface. Depending on the thickness of the insulating film on the surface of the AQ wiring film 5, it acts as a reflective film or an anti-reflection film, so the combination of the thicknesses of the shape maintaining film 6 and the reflection control film H7 thereon is set to 0.6 μm and 0.0 μm, respectively. When the thickness is .1 μm, it acts as a reflective film, so the reflection control film 7 is formed only on the shape maintenance IIIG in the region of the AQ wiring film 5 that is not desired to be melted during laser irradiation, and the other regions are removed. After that, laser is irradiated to melt the AQ wiring 1lI5 and contact hole 4
Wiring with a flat surface can be formed by flowing it to other stepped portions and filling in the depressions.

本実施例では配線材料としてAQ配線股について示した
がこれに限定されるものではなく、他の配線材料につい
ても同じ効果が得られる。
In this embodiment, AQ wiring crotch is used as the wiring material, but the present invention is not limited to this, and the same effect can be obtained with other wiring materials.

また、本実施例では形状維持膜6として5iOzについ
て述べたが、これに限定されるものではな(,5iaN
4やPSG、a−5i等、或は高融点金属やその化合物
であっても良い。
Further, in this embodiment, 5iOz was described as the shape maintaining film 6, but it is not limited to this (, 5iaN
4, PSG, a-5i, etc., or a high melting point metal or a compound thereof.

また、上記実施例では1層目の配線のコンタクト孔の場
合について示したが、本発明の技術的範囲は多層配線に
おけるスルホール等の広義のコンタクト孔や配線の場合
にも適用できるものである。
Furthermore, although the above embodiments have been described with respect to the case of contact holes in the first layer wiring, the technical scope of the present invention is also applicable to the case of contact holes and wiring in a broad sense such as through holes in multilayer wiring.

〔発明の効果〕〔Effect of the invention〕

以上説明したように配線パターン上に形状維持用絶縁膜
を設ける本発明の配線形成法によれば、従来技術では実
現の困難であった配線パターン形成後に加熱して溶融す
る方法でAQ配線はどこの領域でも連続で断線すること
は全くなく1反射率の低い溶融前にパターンニングでき
るため容易に精度の高い微細な配線を形成できる。
As explained above, according to the wiring forming method of the present invention in which a shape-maintaining insulating film is provided on the wiring pattern, AQ wiring can be formed anywhere by heating and melting after wiring pattern formation, which was difficult to realize with conventional techniques. There is no continuous disconnection even in the region of 1, and since patterning can be performed before melting, which has a low reflectance, it is possible to easily form fine wiring with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の半導体装置の配線形成
方法の一実施例を工程順に示す縦断面図、第2図は第1
図(e)の平面図、第3図は本発明の他の実施例を示す
縦断面図、第4図(a)は従来の配線形成方法の問題点
を説明するための平面図、(b)は縦断面図である。
1(a) to 1(e) are vertical cross-sectional views showing one embodiment of the method for forming interconnects in a semiconductor device according to the present invention in the order of steps, and FIG.
FIG. 3 is a plan view showing another embodiment of the present invention, FIG. ) is a longitudinal sectional view.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁膜で被覆された機能素子を有する半導体基板に
コンタクト孔を開口し、配線金属膜を被着して機能素子
からの引き出し配線を形成する半導体装置の製造方法に
おいて、前記コンタクト孔を開口した前記半導体基板上
に前記配線金属膜を被着し、パターンニングして配線パ
ターンを形成する工程と、前記配線パターンを含む前記
半導体基板上に絶縁膜を被着し、前記コンタクト孔を含
む段差部の領域に開口を形成する工程と、前記配線金属
膜を融点以上の温度に加熱して溶融し、くぼみに流動せ
しめる工程とを含むことを特徴とする半導体装置の製造
方法。
1. A method for manufacturing a semiconductor device in which a contact hole is opened in a semiconductor substrate having a functional element covered with an insulating film, and a wiring metal film is deposited to form lead wiring from the functional element, in which the contact hole is opened. a step of depositing the wiring metal film on the semiconductor substrate and patterning it to form a wiring pattern; depositing an insulating film on the semiconductor substrate including the wiring pattern and forming a step including the contact hole; 1. A method for manufacturing a semiconductor device, comprising the steps of: forming an opening in a region of the semiconductor device; and heating the wiring metal film to a temperature higher than its melting point to melt it and cause it to flow into the recess.
JP12128287A 1987-05-20 1987-05-20 Manufacture of semiconductor device Pending JPS63288045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12128287A JPS63288045A (en) 1987-05-20 1987-05-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12128287A JPS63288045A (en) 1987-05-20 1987-05-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63288045A true JPS63288045A (en) 1988-11-25

Family

ID=14807396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12128287A Pending JPS63288045A (en) 1987-05-20 1987-05-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63288045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527106A (en) * 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Method for forming a patterned substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527106A (en) * 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー Method for forming a patterned substrate
US8652345B2 (en) 2008-06-30 2014-02-18 3M Innovative Properties Company Method of forming a patterned substrate

Similar Documents

Publication Publication Date Title
US5061655A (en) Method of producing SOI structures
US5160523A (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US4748491A (en) Redundant circuit of semiconductor device and method of producing same
US20090305020A1 (en) Glass substrate and a manufacturing method thereof
JPS58210634A (en) Preparation of semiconductor device
JPS61268042A (en) Redundant circuit for semiconductor device
JPS63288045A (en) Manufacture of semiconductor device
KR940001504B1 (en) Semiconductor device and manufacturing method thereof
JPS60227446A (en) Manufacture of semiconductor device
JPS63222445A (en) Bump-electrode forming method
JP2506019B2 (en) Transmission mask manufacturing method
JPS63316456A (en) Semiconductor device and manufacture thereof
JP2766912B2 (en) Manufacturing method of integrated circuit device
JPH06104171A (en) Manufacture of semiconductor device
JPS58115835A (en) Formation of buried wirings of semiconductor device
JPS63215055A (en) Wiring formation for semiconductor device
US5498769A (en) Method for thermally treating resist film and forming undercut pattern
JPS59121923A (en) Manufacture of semiconductor device
JPS63169043A (en) Method of forming wiring in semiconductor device
JPS6193650A (en) Manufacture of semiconductor device
GB2026797A (en) Microelectronic circuit and method of manufacture
JPH04127524A (en) Method of filling contact hole with metal
JPS5892226A (en) Manufacture of integrated circuit element
JPH0590203A (en) Manufacture of semiconductor device
JPH05102316A (en) Manufacture of semiconductor device