JPS63287054A - One-transistor type dynamic memory cell - Google Patents

One-transistor type dynamic memory cell

Info

Publication number
JPS63287054A
JPS63287054A JP62122024A JP12202487A JPS63287054A JP S63287054 A JPS63287054 A JP S63287054A JP 62122024 A JP62122024 A JP 62122024A JP 12202487 A JP12202487 A JP 12202487A JP S63287054 A JPS63287054 A JP S63287054A
Authority
JP
Japan
Prior art keywords
memory cell
electrode
transistor
capacitor
dynamic memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62122024A
Other languages
Japanese (ja)
Other versions
JP2554332B2 (en
Inventor
Katsuhiro Tsukamoto
塚本 克博
Masahiro Shimizu
雅裕 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62122024A priority Critical patent/JP2554332B2/en
Priority to US07/158,323 priority patent/US4855953A/en
Publication of JPS63287054A publication Critical patent/JPS63287054A/en
Priority to US07/793,971 priority patent/US5250458A/en
Application granted granted Critical
Publication of JP2554332B2 publication Critical patent/JP2554332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To reduce the area of a memory cell, by providing two capacitors up and down in parallel in the insides of grooves, which are formed in the surface of a semiconductor substrate, and introducing impurities from the same layer as a poly Si layer, which is to become a memory device furthermore. CONSTITUTION:Grooves 11a and 11b are formed in an Si substrate 1. Then a first memory capacitor is formed with p<+> regions 21a and 21b and poly Si electrodes 22a and 22b so as to hold capacitor insulating films 4a and 4b, which are formed on the bottom surfaces and the side surfaces of the grooves 11a and 11b. A second memory capacitor is formed with the electrodes 22a and 22b and a poly Si electrode 5 so as to hold capacitor insulating films 24a and 24b, which are formed on the surfaces of the electrodes 22a and 22b. Poly Si layers 100a and 100b are formed at the same time when the electrodes 22a and 22b are formed. Impurities are implanted into the layers 100a and 100b. Thereafter, the source and the drain of a writing transistor are formed by the diffusion of the impurities from the layers 100a and 100b. Thus the two capacitors are provided in parallel. Contact holes for connecting the electrodes 22a and 22b to the substrate 1 are not required. Therefore, the occupying area of the memory cells can be reduced remarkably.

Description

【発明の詳細な説明】 従来は、微細加工技術と絶縁膜等の薄膜化によってメモ
リキャパシタの容量の確保が行なわれてきた。しかし、
微細加工と薄膜化には限界があり、限られたセル面積の
中でより多くのメモリキャパシタ容量を確保するために
種々のメモリセルが提案されている。第6図は、例えは
アイイーイーイー トランザクションズ エレクト四ン
 デバイシーズ、第1CD −31巻、146〜フ53
頁(工IClCl 、 Trams、][flsotr
o21 Deviaas   vol、KD−31、P
P)46〜フ53)に1ア コルゲーテイツト キャパ
シターセル1(%A’ Oorrugatel 0ap
aoitor 0ell (000)’ )としてH,
スナミ(H,Sunami )等により示されている溝
堀り型のメモリセルであり、第3図(&)Ifi平面図
、(b)はそのA−Bにおける断面図を示している。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, the capacity of a memory capacitor has been secured by microfabrication techniques and thinning of insulating films and the like. but,
There are limits to microfabrication and film thinning, and various memory cells have been proposed in order to secure more memory capacitor capacity within a limited cell area. Figure 6 is an example of IEE Transactions Electronic Devices, Volume 1 CD-31, 146-F53.
Page (Engineering IClCl, Trams,] [flsotr
o21 Deviaas vol, KD-31, P
P) 46-53) 1 corrugated capacitor cell 1 (%A' Oorrugatel 0ap
aoitor 0ell (000)' ) as H,
This is a trench-type memory cell shown by Sunami (H, Sunami) et al., and FIG. 3 (&) Ifi is a plan view, and FIG.

図において、(1)はP形シリコン基板、C2)は素子
間分離用のフィールド酸化膜、C3)は素子間分離用の
チャネルストップP中領域、(4)はキャパシタ絶縁膜
、(5)はメモリ容量の対向電極を構成するセルプレー
ト電極、(6)はワード線信号が印加されアクセストラ
ンジスタのゲート電極を構成するワード線、(7)はビ
ット線に接続されるN十領域、(8)はコンタクト孔、
(9)はビット線を構成する金属配線、aGはメモリセ
ル門の記憶端子を構成しシリコン基板(1)と反対導電
型であるN型反転層あるいはN+領領域0け溝堀り領域
である。このメモリセルMは、半導体基板中に溝を形成
し、その側面部もメモリ容量として利用することにより
実質的な面積の増加を図ろうとするものである。
In the figure, (1) is a P-type silicon substrate, C2) is a field oxide film for isolation between elements, C3) is a channel stop P middle region for isolation between elements, (4) is a capacitor insulating film, and (5) is a (6) is a word line to which a word line signal is applied and forms the gate electrode of an access transistor; (7) is an N+ region connected to a bit line; (8) is the contact hole,
(9) is a metal wiring constituting a bit line, and aG is an N-type inversion layer or a grooved N+ region which constitutes a storage terminal of a memory cell gate and is of the opposite conductivity type to the silicon substrate (1). . This memory cell M is intended to substantially increase the area by forming a trench in a semiconductor substrate and using the side surfaces of the trench as a memory capacity.

従来の改良されたダイナミックメモリセルは以上のよう
に構成されているため、さらに高集積化全図るためには
溝堀り領域(X1a)と(1111)間の間隔をつめな
ければならない。そのため、対向する記憶端子(log
)と(xob)間の間隔が狭くなって、側面に生じる空
乏層がつながり、隣り合うメモリセルM間にリークが発
生し、記憶された情報が破壊されるという問題があり、
必ずしも高集積化には対応できないという欠点があった
Since the conventional improved dynamic memory cell is constructed as described above, the distance between the grooved regions (X1a) and (1111) must be reduced in order to achieve higher integration. Therefore, the opposing memory terminal (log
) and (xob) become narrower, and the depletion layers formed on the sides are connected, causing leakage between adjacent memory cells M, resulting in the destruction of stored information.
The drawback is that it cannot necessarily support high integration.

また、溝を利用してメモリ容量の増加を図った別の例と
して、第6図に示すものが考えられる。
Further, as another example in which the memory capacity is increased using grooves, the one shown in FIG. 6 can be considered.

この第6囮において、(1)ないしく4)、(a)ない
しく9)は第3図に示したメモリセルと同一または相当
の部分であり、Iは溝堀掘り領域、(2)はセルプレー
ト電極となる高濃度のP属領域、勿は記憶端子を構成す
るポリシリコン電極、@はコンタクト孔である。
In this sixth decoy, (1) to 4), (a) to 9) are the same or equivalent parts to the memory cell shown in FIG. 3, I is a grooved area, and (2) is a A high-concentration P group region that becomes a cell plate electrode, of course a polysilicon electrode that forms a memory terminal, and @ is a contact hole.

このようなダイナミックメモリセルでは、電荷蓄積電極
のを、読み出し、書き込みトランジスタのN+領領域7
)に接続するためのコンタクト孔@を開ける必要があり
、高密度化に対して障害となる。
In such a dynamic memory cell, the charge storage electrode is read and written to the N+ region 7 of the write transistor.
), it is necessary to open a contact hole @ for connection to the terminal, which poses an obstacle to higher density.

さらに極めて薄いキャパシタ絶縁膜(4)上で写真製版
を行うため、フォトレジストを使用することなどによる
不純物汚染やキャパシタ絶縁膜(4)の損傷が避けられ
ず、キャパシタ絶縁膜(4)の電気的信頼性を著しく劣
化させるという不都合を生じていた。
Furthermore, since photolithography is performed on an extremely thin capacitor insulating film (4), impurity contamination and damage to the capacitor insulating film (4) due to the use of photoresist are unavoidable, resulting in electrical damage to the capacitor insulating film (4). This has caused the inconvenience of significantly deteriorating reliability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のダイナミックメモリセルは以上のように構成され
て≠るため、必ずしも高集積化に対応できず、また、第
5図の従来例では記憶端子が半導体基板内にあるため、
α線等により発生したキャリアが記憶端子に流れ込み、
記憶情報が破壊されるというソフトエラーが発生するな
どの問題点があった。
Because the conventional dynamic memory cell is configured as described above, it cannot necessarily support high integration, and in the conventional example shown in FIG. 5, the memory terminal is inside the semiconductor substrate.
Carriers generated by alpha rays, etc. flow into the memory terminal,
There were problems such as the occurrence of soft errors in which stored information was destroyed.

また、ポリシリコンを電荷著積ノードとするメモリセル
の場合、基板に接続するためのコンタクト孔を形成しな
ければならず、メモリセル面積の増大、キャパシタ絶縁
膜の電気的信頼性の劣化という問題点があった。
In addition, in the case of a memory cell that uses polysilicon as a charge accumulation node, a contact hole must be formed for connection to the substrate, which increases the memory cell area and degrades the electrical reliability of the capacitor insulating film. There was a point.

との発明は上記のような問題点を解消するためになされ
たもので、キャパシタ絶縁膜の劣化を防止できるととも
に、縮小されたメモリセルの中で充分なメモリ容量を確
保することができ、かつ、隣接するメモリセル間のリー
クの増大をも避けることのできる高集積化に適した1ト
ランジスタ型ダイナミツクメモリセルを得ることを目的
とする。
The invention was made to solve the above-mentioned problems, and it is possible to prevent deterioration of the capacitor insulating film, secure sufficient memory capacity in a reduced memory cell, and An object of the present invention is to obtain a one-transistor type dynamic memory cell suitable for high integration and capable of avoiding an increase in leakage between adjacent memory cells.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかるlトランジスタ型ダイナミックメモリ
セルは、半導体基板表面に形成された溝の内部に、シリ
コン基板と第1のポリシリコン電極とで形成される第1
の容量を形成し、さらにその上に第1のポリシリコン電
極と第2のポリシリコン電極とで形成される第2の容量
を積み上げ、この2つの容量を並列的に用−1また記憶
端子となる第1の電極のポリシリコン層と読み出し、書
き込みトランジスタのソース、ドレイン電極を形成する
ポリシリコン層が同一の層からなり、記憶端子と読み出
し書き込みトランジスタとを接続するコンタクト穴をな
くした構造とする。
The l-transistor type dynamic memory cell according to the present invention has a first polysilicon electrode formed of a silicon substrate and a first polysilicon electrode inside a groove formed on a surface of a semiconductor substrate.
A second capacitor formed by a first polysilicon electrode and a second polysilicon electrode is stacked on top of the second capacitor, and these two capacitors are connected in parallel to a memory terminal. The polysilicon layer of the first electrode and the polysilicon layer forming the source and drain electrodes of the read/write transistor are made of the same layer, and the structure is such that there is no contact hole connecting the storage terminal and the read/write transistor. .

〔作用〕[Effect]

この発明においては、半導体基板表面に形成された溝の
内部で、第1のポリシリコン電極の下層にシリコン基板
との間の第1の容量を形成し、また第1のポリシリコン
電極の上層には第2のポリシリコン電極との間の第2の
容量を形成し、2つの容量を並列的に用いることにより
、メモリ容量が飛躍的に増大し、1に記憶端子が基板か
ら分離されて隣り合うメモリセル間のリークやソフトエ
ラーに強い構造になる@ また、記憶端子である第1のポリシリコン電極ト読み出
し書き込みトランジスタのソース・ドレイン電極を形成
するポリシリコンとを同一の層とすることにより、記憶
端子と読み出し、書き込みトランジスタとを接続するコ
ンタクト孔をなくして、メモリセル面積を著しく小さく
することができ、キャパシタ絶縁膜の劣化を防止できる
In this invention, a first capacitance between the first polysilicon electrode and the silicon substrate is formed in the lower layer of the first polysilicon electrode within a groove formed on the surface of the semiconductor substrate, and a first capacitance is formed in the upper layer of the first polysilicon electrode. forms a second capacitor with the second polysilicon electrode, and by using the two capacitors in parallel, the memory capacity can be dramatically increased. The structure is resistant to leaks and soft errors between matching memory cells. Also, by making the first polysilicon electrode, which is the memory terminal, and the polysilicon, which forms the source and drain electrodes of the read/write transistor, in the same layer. By eliminating the contact hole connecting the storage terminal and the read/write transistor, the memory cell area can be significantly reduced, and deterioration of the capacitor insulating film can be prevented.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(−)は本発明の一実施例によるlトランジスタ型ダ
イナミックメモリセルの平面図で、第1図(′b)はそ
の人−Bにおける断面図である〇第1図において、a5
は溝掘り領域、@は第1の容量Molのシリコン基板側
電極となる高濃度のP型領域、−は記憶端子となる第1
のポリシリコン電極、(財)は第2の容量MO2の誘電
体を形成するキャパシタ絶縁!、(s)は第2の容量M
O2の対向電極となる第2のポリシリコン電極であるセ
ルプレート! 極、(?&)()b)はアクセストラン
ジスタA!のソース・ドレイン領域、(6−)はアクセ
ストランジスタATのゲート電極、(loo&)(lo
ob)はポリシリコン電極−と同一のポリシリコン層で
あり、ソース・ドレイン(ツー)(ツb)の電極を形成
するポリシリコン層である。Mは1トランジスタ1キヤ
パシタから成る1メモリセルで記憶装置の記憶容量(ビ
ット数)に応じて多数マイリクス状に配列されている0
コンタクト孔(8)は隣接した2つのメモリセルMに共
通に且つ境界部に設けられている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure (-) is a plan view of an l-transistor type dynamic memory cell according to an embodiment of the present invention, and Figure 1 ('b) is a cross-sectional view at person-B. In Figure 1, a5
is a grooved region, @ is a high concentration P-type region which becomes the silicon substrate side electrode of the first capacitor Mol, - is the first region which becomes a memory terminal
Polysilicon electrode, which forms the dielectric of the second capacitor MO2 capacitor insulation! , (s) is the second capacity M
Cell plate which is the second polysilicon electrode which becomes the counter electrode of O2! The pole, (? &) () b) is the access transistor A! (6-) is the gate electrode of the access transistor AT, (loo &) (lo
ob) is the same polysilicon layer as the polysilicon electrode -, and is a polysilicon layer forming source/drain (2) (tube) electrodes. M is one memory cell consisting of one transistor and one capacitor, and a large number of 0 cells are arranged in a MYRIX shape depending on the storage capacity (number of bits) of the storage device.
The contact hole (8) is provided in common between two adjacent memory cells M and at the boundary.

半導体記憶装置の動作中、基板(1)、(社)は図示し
な一基板電位発生回路により0〜−3〔v〕の負電位に
保持され、セルプレート(5)はOa A voo 。
During operation of the semiconductor memory device, the substrate (1) is held at a negative potential of 0 to -3 [V] by a substrate potential generation circuit (not shown), and the cell plate (5) is Oa A voo.

Too (Tooけ電源電圧)等のOlたけ正電位の一
定値に保持される。
It is held at a constant value of a positive potential such as Too (Too minus power supply voltage).

このメモリセルは、シリコン基板(1)に溝Iを掘った
後湾の底面及び側面を酸化するなどして形成された第1
のキャパシタ絶縁膜(4)をはさんで、P+領域(至)
と第1ポリシリコン電極口とにより第1のメモリ容量M
Oユを形成し、さらに第1のポリシリコン電極−の表面
を醸化するなどして形成された第2のキャパシタ絶縁膜
(財)をはさんで、第1のポリシリコン電極−と第2の
ポリシリコン電極(5)とにより第2のメモリ容量MO
2を形成し、これを第1のメモリ容fiMO1の上部に
積み上ける構造となっている。記憶端子となる第1のポ
リシリコン電極@の形成と同時に、ポリシリコン層α0
0)が形成され、次にポリシリコン層(100)に不純
物イオンを注入し、その後ゲート電極(6&)の底部が
形成されるべき部分のポリシリコン71(1oo)を除
去し、然る後熱処理によるポリシリコン層aoo>カら
の不純物拡散により読み出し、書き込みトランジスタの
ソース・ドレイン領域(7)が形成される。
This memory cell is formed by digging a groove I in a silicon substrate (1) and then oxidizing the bottom and side surfaces of the groove.
across the capacitor insulating film (4), the P+ region (to)
and the first polysilicon electrode port, the first memory capacity M
The first polysilicon electrode and the second The polysilicon electrode (5) of the second memory capacitor MO
2 and stacked on top of the first memory capacity fiMO1. At the same time as forming the first polysilicon electrode @ which will become the memory terminal, the polysilicon layer α0
0) is formed, then impurity ions are implanted into the polysilicon layer (100), and then the polysilicon 71 (1oo) in the area where the bottom of the gate electrode (6&) is to be formed is removed, followed by heat treatment. The source/drain regions (7) of the read and write transistors are formed by impurity diffusion from the polysilicon layer aoo>.

従って、記憶端子のとトランジスタのに+領域(7)と
は同一の層αOQ)を介して継がっていることになり、
コンタクト孔等の余分の面積を必要とせず、記憶端子の
に蓄えられた電荷が、アクセストランジスタATのソー
ス・ドレイン領域()&)()b)を介してビット線(
9)に読み出される。
Therefore, the storage terminal and transistor region (7) are connected via the same layer αOQ).
The charge stored in the storage terminal is transferred to the bit line (
9).

こうして、第1ポリシリコン電極をシリコン基板に接続
するためのコンタクト孔を作る必要のない本実施例によ
るメモリセルでは、メモリセルの占有面積を大幅に縮小
することが可能になる。また、第4図に示したコンタク
ト孔を有する従来のメモリセルでは、キャパシタ絶縁膜
(4)にコンタクト孔を開ける必要かあることから、上
述したようにキャパシタ絶縁膜の電気的信頼性が著しく
劣化されるという不都合が生じていたが、本発明の構造
を用いれは、キャパシタ絶縁膜(4)を形成した後スフ
に第1のポリシリコン電極b (100)を堆積し、キ
ャパシタ絶縁膜(4)を保護してしまうので、そのよう
な不都合は完全に取り除くことができる。
In this way, in the memory cell according to this embodiment, which does not require forming a contact hole for connecting the first polysilicon electrode to the silicon substrate, it is possible to significantly reduce the area occupied by the memory cell. In addition, in the conventional memory cell having the contact hole shown in FIG. 4, it is necessary to open a contact hole in the capacitor insulating film (4), which significantly deteriorates the electrical reliability of the capacitor insulating film as described above. However, when using the structure of the present invention, after forming the capacitor insulating film (4), the first polysilicon electrode b (100) is deposited on the surface of the capacitor insulating film (4). , such inconveniences can be completely eliminated.

また、本実施例のメモリセルでは、シリコン基板(1)
に形成した溝の側壁を利用してキャパシタの表面積を実
効的に大きくするとともに、第2図の等価回路から明ら
かなように、記憶端子となる第1ポリシリコン電極勾の
上下に各々シリコン基板(社)、第2ポリシリコン電極
r5)を対向電極とする第1、第2のメモリ容量Mol
、MO2が形成されているので、メモリ容量が飛躍的に
増大する。例えば、シリコン基板(至)上のキャパシタ
絶縁膜(4)の厚さと、第1ポリシリコン電極(至)上
のキャパシタ絶縁膜(財)の厚さが同じであれば、記憶
端子(至)からみたメモリ容量は容量Mol、102が
図示しない電源を介して並列接続されるため、はぼ2倍
に増加する。この時、シリコン基板6!Dとの間に形成
する第1のメモリ容量Molは、シリコン基板表面(2
)の濃度が低いと、空乏層の拡がりのため容量が低下す
る@この現象を防止するため、第1のメモリ容量Mol
を形成するシリコン基板@の表面濃度は1.0181b また゛、このメモリセルでは、第1のメモリ容量の対向
電極となる半導体基板表面@は半導体基板(1)と同じ
導電型であるため、隣接するメモリセル間が空乏層でつ
ながりメモリセル間にリーク力発生するという従来例で
述べた問題は全く発生しない。このため、隣接するメモ
リセル間の距離は加工限界で決まる最小値まで縮小する
ことが可能であり、高密度化に対して極めて大きなメリ
ットを有している。
In addition, in the memory cell of this example, the silicon substrate (1)
The surface area of the capacitor is effectively increased by utilizing the side walls of the groove formed in the groove, and as is clear from the equivalent circuit of FIG. 2, silicon substrates ( Inc.), the first and second memory capacitors Mol with the second polysilicon electrode r5) as the counter electrode.
, MO2 are formed, the memory capacity increases dramatically. For example, if the thickness of the capacitor insulating film (4) on the silicon substrate (to) and the thickness of the capacitor insulating film (material) on the first polysilicon electrode (to) are the same, then from the storage terminal (to) The memory capacity as seen is approximately doubled because the capacities Mol and 102 are connected in parallel via a power supply (not shown). At this time, silicon substrate 6! The first memory capacity Mol formed between the silicon substrate surface (2
), the capacitance decreases due to the expansion of the depletion layer.
The surface concentration of the silicon substrate @ forming the is 1.0181b. Also, in this memory cell, since the semiconductor substrate surface @ which becomes the counter electrode of the first memory capacitor is of the same conductivity type as the semiconductor substrate (1), the adjacent The problem described in the conventional example that memory cells are connected by a depletion layer and leakage force occurs between memory cells does not occur at all. Therefore, the distance between adjacent memory cells can be reduced to a minimum value determined by processing limits, which has an extremely large advantage in increasing density.

さらに、本実施例では記憶端子のが半導体基板(1)か
ら絶縁された構造になっているため、アルファ粒子等に
より半導体基板(1)中に発生した電荷が記憶端子のに
流れ込み記憶情報が破壊されるというソフトエラーの問
題もほぼ全面的に解決することができる。
Furthermore, in this embodiment, since the storage terminal is insulated from the semiconductor substrate (1), charges generated in the semiconductor substrate (1) due to alpha particles etc. flow into the storage terminal and destroy the stored information. It is also possible to almost completely solve the problem of soft errors.

さらに第3図に示すように、半導体基板(1)のソース
・ドレイン領域(looa)を除く表面領域とポリシリ
コン電極(1ooa)との電気的接触面積を制限するよ
うに表面領域上にシリコン酸化膜等の絶縁膜(log)
を形成し、この絶縁膜(101)上にコンタクト孔(8
)が位置するようにすることにより、特に面積を大きく
することなくソース・ドレイン領域(〒a)の接合面積
を著るしく小さくすることが可能である。このためアル
ファ粒子等により半導体基板(1)中に発生した重荷が
ソース・ドレイン領域()&)に流れ込み記憶情報が破
壊されるいわゆるビット線をモードのソフトエラーを極
めて小さくすることができる0また、ビット線電9)の
寄生容量として作用するソース・ドレイン(7&)の接
合容量も著るしく小さくなるため 続出信号” −f To (O8Hメ−T: IJ容量
、OBはビット線容量、voはメモリセルに書込まれた
電圧)が大きくなり、ノイズに強く、動作マージンの大
きな記憶装置を提供することができる。
Further, as shown in FIG. 3, silicon oxide is applied to the surface region so as to limit the electrical contact area between the surface region of the semiconductor substrate (1) excluding the source/drain region (LOOA) and the polysilicon electrode (1OOA). Insulating film (log)
A contact hole (8) is formed on this insulating film (101).
), it is possible to significantly reduce the junction area of the source/drain region (a) without particularly increasing the area. For this reason, the burden generated in the semiconductor substrate (1) by alpha particles, etc. flows into the source/drain region () &), destroying the stored information. , the junction capacitance of the source and drain (7&), which acts as a parasitic capacitance of the bit line voltage 9), also becomes significantly smaller, resulting in a continuous signal "-f To (O8H-T: IJ capacitance, OB is the bit line capacitance, vo (voltage written to the memory cell) becomes large, making it possible to provide a memory device that is resistant to noise and has a large operating margin.

また、読み出し書き込みトランジスタのゲート長は、ソ
ース・ドレイン(7)の電極を形成するポリシリコン電
極(looa) 、 (100b)の間隔により決まっ
てしまうため、ゲート電極(6)はポリシリコン電極(
looa) 、 (loob)に乗り上げた構造になり
、ゲート電極(6)の幅を広くとることができるため、
ゲート電極(6)の配線抵抗を低下させることができる
Furthermore, the gate length of the read/write transistor is determined by the interval between the polysilicon electrodes (LOOA) and (100B) that form the source/drain electrodes (7), so the gate electrode (6) is
LOOA) and (LOOB), and the width of the gate electrode (6) can be made wider.
The wiring resistance of the gate electrode (6) can be reduced.

さらに、本実施例では、電荷蓄積領域のと読み出し書き
込みトランジスタのソース・ドレイン領域()a)、(
)b)の電極を形成するポリシリコン層(loo&) 
、 (loot))が同一のポリシリコン層で形成され
ているため、上記ポリシリコンパターン間に厚い絶縁膜
(2)を埋込むことにより、メモリセルM間分離領域を
形成することが可能となる。第4図に示すように、従来
のメモリセルでは、選択酸化法を利用した10008分
離法が広範に用いられてきたが、酸化膜の横方向成長に
よるバーズ・ピークの発生が避けられず、素子間分離領
域の幅を狭くするのに限界があった。未実施例では、ポ
リシリコン層のパターンb 、 (100)を形成した
あと、ポリシリコン層のない領域に、イオン注入法衣ど
を用いて、基板濃度を濃くする不純物ドーピング領域t
S>を形成し、さらに、ポリシリコン層のない領域に、
酸化膜などの絶縁膜(2)を埋込んで素子分離領域を形
成する0この素子分離領域形成法では、バーズ・ピーク
が全く発生しな−ため、写真製版技術で決まる最小寸法
まで分離領域の幅を狭くすることか可能であり、記憶装
置の高密度化に極めて大きな効果を発揮する。
Furthermore, in this embodiment, the charge storage region and the source/drain region of the read/write transistor ()a), (
) Polysilicon layer (loo&) forming the electrode of b)
, (root)) are formed of the same polysilicon layer, it is possible to form an isolation region between memory cells M by embedding a thick insulating film (2) between the polysilicon patterns. . As shown in Figure 4, in conventional memory cells, the 10008 isolation method using selective oxidation has been widely used, but the generation of bird peaks due to the lateral growth of the oxide film is unavoidable, and the device There was a limit to how narrow the width of the separation area could be. In a non-example, after forming a polysilicon layer pattern b (100), an impurity doping region t is formed in the region where there is no polysilicon layer using an ion implantation method to increase the substrate concentration.
S> is formed, and further, in the region where there is no polysilicon layer,
The device isolation region is formed by burying an insulating film (2) such as an oxide film. This method of forming the device isolation region does not generate any bird peaks, so the isolation region can be formed to the minimum size determined by photolithography. It is possible to narrow the width, which is extremely effective in increasing the density of storage devices.

なお、上記実施例ではメモリセルUにNチャネル形の素
子を用いたが、Pチャネル形の素子を用いてもよく、上
記実施例と同様の効果を奏することは明らかである。
In the above embodiment, an N-channel type element is used for the memory cell U, but it is clear that a P-channel type element may be used and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、シリコン基板に掘っ
た溝の側壁を利用してキャパシタの表面積を実効的に大
きくするとともに、第1のポリシリコン電極からなる記
憶端子の上下に、各々シリコン基板と第2のポリシリコ
ン電極とを対向電極とする2つの容量を並列的に設け、
さらに記憶端子となる第1ポリシリコン層と同一のポリ
シリコン層から不純物を導入して、アクセストランジス
タのソース・ドレイン領域を形成するようにしたので1
キヤパシタ絶縁膜の電気的信頼性の劣化を防止すること
ができ、極めて小さな面積で大きなメモリ容量を形成す
ることができ、また隣接するメモリセル間°のリークや
ソフトエラーに強い1トランジスタ型ダイナミツクメモ
リセルを実現することができる効果がある。
As described above, according to the present invention, the surface area of the capacitor is effectively increased by utilizing the sidewalls of the grooves dug in the silicon substrate, and silicon Two capacitors are provided in parallel with the substrate and the second polysilicon electrode as opposing electrodes,
Furthermore, impurities are introduced into the same polysilicon layer as the first polysilicon layer that will serve as the storage terminal to form the source and drain regions of the access transistor.
A one-transistor type dynamic device that can prevent deterioration of the electrical reliability of the capacitor insulating film, can form a large memory capacity in an extremely small area, and is resistant to leaks between adjacent memory cells and soft errors. This has the effect of realizing a memory cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、) (b)はこの発明の一実施例による1ト
ランジスタ型ダイナミツクメモリセルを示す図、第2図
は第1図に示したメモリセルの等何回路を示す図、第3
図(−) (b)はこの発明の他の実施例による1トラ
ンジスタ型ダイナミツクメモリセルを示す図、第4図(
&) (1))はこの発明の素子間分離領域を拡大した
図、第5図(、) (b) 、第6図(a) (b)は
従来の溝掘り型ダイナミックメモリセルを示す図である
〇 図において、(1)・・・P型シリコン基板、C2)・
・・フィールド酸化膜、(3)・・・チャネルストップ
P+領fi、(4)・・・シリコン基板表面のキャパシ
タ絶縁膜、(5)・・・セルフレート電ti%AT・・
・アクセストランジスタ、(6)・・・ワード線、(7
)・・・N中領域、(8)・・・ビット線フンタクト孔
、(9)・・・ビット線、0・・・溝掘り領域、(財)
・・・P中領域、@・・・記憶端子となる第1ポリシリ
コン電極、(ハ)・・・ポリシリコン間のキャパシタ絶
縁膜、(100)・・・ソース・ドレインの拡散源とな
るポリシリコン層、(ユOX)・・・絶縁膜である。 なお、図中同一符号は同一または相当部分を示すO
1(a) and (b) are diagrams showing a one-transistor type dynamic memory cell according to an embodiment of the present invention, FIG. 2 is a diagram showing the circuits of the memory cell shown in FIG. 1, and FIG.
(-) (b) is a diagram showing a one-transistor type dynamic memory cell according to another embodiment of the present invention, and FIG.
&) (1)) is an enlarged view of the isolation region between elements of the present invention, and Figures 5 (,) (b) and 6 (a) and (b) are diagrams showing conventional trench-type dynamic memory cells. In the diagram, (1)...P-type silicon substrate, C2)
...Field oxide film, (3)...Channel stop P+ region fi, (4)...Capacitor insulating film on the silicon substrate surface, (5)...Self-rate charge ti%AT...
・Access transistor, (6)...word line, (7
)...N middle area, (8)...bit line hole, (9)...bit line, 0...grooving area, (foundation)
... P middle region, @... First polysilicon electrode that becomes a memory terminal, (c)... Capacitor insulating film between polysilicon, (100)... Polysilicon that becomes a source/drain diffusion source Silicon layer (YOX)... is an insulating film. In addition, the same reference numerals in the figures indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)1個のトランジスタと1個の容量で1メモリセル
を構成する半導体記憶装置において、半導体基板表面に
形成された溝の内部にて上記半導体基板とそれに対向し
て形成された第1の電極との間に第1の容量が、 さらに上記第1の電極とその上部に形成された第2の電
極との間に第2の容量が形成され、1メモリセルのメモ
リ容量が上記第1の容量と第2の容量の並列容量であり
、 記憶端子となる上記第1の電極がポリシリコン層からな
り、読み出し、書き込み用の上記トランジスタのソース
・ドレインが上記ポリシリコン層から不純物が導入され
て形成された不純物領域からなり、かつ上記トランジス
タのゲート電極の底部が、ソース・ドレイン電極を形成
するポリシリコン層によつて、その両端が規定されてい
ることを特徴とする1トランジスタ型ダイナミックメモ
リセル。
(1) In a semiconductor memory device in which one memory cell is composed of one transistor and one capacitor, the semiconductor substrate and a first groove formed opposite to the semiconductor substrate are located inside a groove formed on the surface of the semiconductor substrate. A first capacitor is formed between the first electrode and a second electrode formed on the first electrode, and a second capacitor is formed between the first electrode and a second electrode formed on the first electrode, and the memory capacity of one memory cell is equal to the first capacitor. and a second capacitor, the first electrode serving as a storage terminal is made of a polysilicon layer, and the source and drain of the transistor for reading and writing are doped with impurities from the polysilicon layer. A one-transistor type dynamic memory comprising an impurity region formed using a polysilicon layer, and wherein the bottom of the gate electrode of the transistor is defined at both ends by a polysilicon layer forming a source/drain electrode. cell.
(2)上記トランジスタのゲート電極が、ソース・ドレ
インとなるポリシリコン層上に乗り上げた構造になつて
いることを特徴とする特許請求の範囲第1項記載の1ト
ランジスタ型ダイナミックメモリセル。
(2) The one-transistor type dynamic memory cell according to claim 1, wherein the gate electrode of the transistor has a structure in which it rides on a polysilicon layer that serves as the source and drain.
(3)上記トランジスタのソース・ドレイン電極を形成
するポリシリコン層とビット線を形成する配線とのコン
タクトが絶縁膜上に形成されることを特徴とする特許請
求の範囲第1項または第2項に記載の1トランジスタ型
ダイナミックメモリセル。
(3) Claims 1 or 2, characterized in that the contact between the polysilicon layer forming the source/drain electrodes of the transistor and the wiring forming the bit line is formed on an insulating film. 1-transistor type dynamic memory cell described in .
(4)上記第1の容量を形成する半導体基板中の溝の表
面が該半導体基板と同じ導電型を有し、かつ上記読み出
し、書き込み用トランジスタの拡散領域と反対の導電型
を有することを特徴とする特許請求の範囲第1乃至3項
の何れかに記載の1トランジスタ型ダイナミツクメモリ
セル。
(4) The surface of the groove in the semiconductor substrate forming the first capacitor has the same conductivity type as the semiconductor substrate, and has a conductivity type opposite to that of the diffusion region of the read/write transistor. A one-transistor type dynamic memory cell according to any one of claims 1 to 3.
(5)上記半導体基板中の溝の表面濃度が10^1^8
/cm^3以上であることを特徴とする特許請求の範囲
第1〜4項の何れかに記載の1トランジスタ型ダイナミ
ックメモリセル。
(5) The surface concentration of the groove in the semiconductor substrate is 10^1^8
5. The one-transistor type dynamic memory cell according to claim 1, wherein the one-transistor type dynamic memory cell is at least /cm^3.
(6)上記第1の電極パターン同志の間に厚い絶縁膜を
形成し、かつ上記絶縁膜下の基板濃度を高くしたメモリ
セル間分離領域を有することを特徴とする特許請求の範
囲第1ないし5項の何れかに記載の1トランジスタ型ダ
イナミックメモリセル。
(6) A thick insulating film is formed between the first electrode patterns, and an inter-memory cell isolation region is provided with a high substrate concentration under the insulating film. The one-transistor type dynamic memory cell according to any one of Item 5.
JP62122024A 1987-02-25 1987-05-19 1-transistor type dynamic memory cell Expired - Fee Related JP2554332B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62122024A JP2554332B2 (en) 1987-05-19 1987-05-19 1-transistor type dynamic memory cell
US07/158,323 US4855953A (en) 1987-02-25 1988-02-19 Semiconductor memory device having stacked memory capacitors and method for manufacturing the same
US07/793,971 US5250458A (en) 1987-02-25 1991-11-18 Method for manufacturing semiconductor memory device having stacked memory capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122024A JP2554332B2 (en) 1987-05-19 1987-05-19 1-transistor type dynamic memory cell

Publications (2)

Publication Number Publication Date
JPS63287054A true JPS63287054A (en) 1988-11-24
JP2554332B2 JP2554332B2 (en) 1996-11-13

Family

ID=14825699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122024A Expired - Fee Related JP2554332B2 (en) 1987-02-25 1987-05-19 1-transistor type dynamic memory cell

Country Status (1)

Country Link
JP (1) JP2554332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188955A (en) * 1989-01-17 1990-07-25 Sanyo Electric Co Ltd Semiconductor storage device and manufacture thereof
US5275974A (en) * 1992-07-30 1994-01-04 Northern Telecom Limited Method of forming electrodes for trench capacitors
WO2015060144A1 (en) * 2013-10-22 2015-04-30 ソニー株式会社 Memory cell structure, memory manufacturing method, and memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627153A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627153A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Semiconductor memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188955A (en) * 1989-01-17 1990-07-25 Sanyo Electric Co Ltd Semiconductor storage device and manufacture thereof
US5275974A (en) * 1992-07-30 1994-01-04 Northern Telecom Limited Method of forming electrodes for trench capacitors
WO2015060144A1 (en) * 2013-10-22 2015-04-30 ソニー株式会社 Memory cell structure, memory manufacturing method, and memory device
US9595562B2 (en) 2013-10-22 2017-03-14 Sony Corporation Memory cell structure, method of manufacturing a memory, and memory apparatus

Also Published As

Publication number Publication date
JP2554332B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US4855953A (en) Semiconductor memory device having stacked memory capacitors and method for manufacturing the same
JPS62120070A (en) Semiconductor memory
JP2733911B2 (en) Semiconductor device and manufacturing method thereof
JPH0430573A (en) Semiconductor memory device
JPS59125652A (en) Semiconductor memory device
JP3272979B2 (en) Semiconductor device
JPS6145390B2 (en)
JPS6155258B2 (en)
US5068200A (en) Method of manufacturing DRAM cell
US5010379A (en) Semiconductor memory device with two storage nodes
US6911687B1 (en) Buried bit line-field isolation defined active semiconductor areas
JPH04278579A (en) Semiconductor memory device using stack-shaped capacitor
JPH0612805B2 (en) Method of manufacturing semiconductor memory device
JPH03205867A (en) Semiconductor memory
JPS63287054A (en) One-transistor type dynamic memory cell
JPH0365904B2 (en)
JPH077823B2 (en) Semiconductor integrated circuit device
JPS6340362A (en) Semiconductor storage device
JP2645008B2 (en) Semiconductor storage device
JPS63209159A (en) One-transistor type dynamic memory cell
JPS61140171A (en) Semiconductor memory device
JPS63209158A (en) One-transistor type dynamic memory cell
JPH0321103B2 (en)
JPS6167954A (en) Semiconductor memory device and manufacture thereof
JPH05190801A (en) Semiconductor storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees