JPS6327871B2 - - Google Patents

Info

Publication number
JPS6327871B2
JPS6327871B2 JP54123598A JP12359879A JPS6327871B2 JP S6327871 B2 JPS6327871 B2 JP S6327871B2 JP 54123598 A JP54123598 A JP 54123598A JP 12359879 A JP12359879 A JP 12359879A JP S6327871 B2 JPS6327871 B2 JP S6327871B2
Authority
JP
Japan
Prior art keywords
light
photoconductive material
blocking wall
transmitting portion
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123598A
Other languages
Japanese (ja)
Other versions
JPS5648184A (en
Inventor
Koji Mori
Koichi Sakurai
Osamu Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12359879A priority Critical patent/JPS5648184A/en
Publication of JPS5648184A publication Critical patent/JPS5648184A/en
Publication of JPS6327871B2 publication Critical patent/JPS6327871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration

Description

【発明の詳細な説明】 本発明は光読取素子に関する。[Detailed description of the invention] The present invention relates to an optical reading element.

従来光画像を読取る素子としては、 (1) アモルフアスと光導電材料の接合を使用した
もの(撮像管として使用) (2) 透明電極となるSnO2とアモルフアス材料を
使用した密着型光読取素子 等が知られているが、前者は撮像管への応用で
は、10×10mm2程度の素子面にレンズ系を介して画
像情報が入力されるが、レンズ系等の光学系が必
要となり、またこの撮像管では1/30秒程度の光
応答速度であるから高速読取素子には応用できな
いし、また後者においては長尺の読取素子を作る
ことは可能であるが、光応答速度が遅く、画素密
度が6dots/mm程度であり10dots/mm以上に高く
ならない欠点がある。
Conventional elements for reading optical images include: (1) those using a bond between amorphous amorphous and a photoconductive material (used as an image pickup tube); (2) contact type optical reading elements that use amorphous material and SnO 2 as a transparent electrode, etc. However, in the former case, when applied to an image pickup tube, image information is input to an element surface of about 10 x 10 mm 2 through a lens system, but an optical system such as a lens system is required, and this Image pickup tubes have a light response speed of about 1/30 second, so they cannot be applied to high-speed reading elements, and although it is possible to make long reading elements with the latter, the light response speed is slow and the pixel density is low. It has the disadvantage that it is only about 6 dots/mm and cannot be higher than 10 dots/mm.

本発明は前述の欠点を除去して、光応答速度が
大きく、製造工程も簡単で且つ高密度、長尺の光
読取素子を得ようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks and obtain a long optical reading element with high optical response speed, simple manufacturing process, high density, and long length.

第1図は本発明光読取素子の製造工程を示す。
1は透明なガラス基板でその表面一面に、例えば
Alのような金属層2を、光を通さない程度の厚
さに蒸着する。次に普通の方法でAlをエツチン
グして第1図bのように光遮断用壁3と光電流取
出し用電極4を交互に形成する。光遮断用壁3と
光電流取出し用電極4のない部分は光を透過す
る。その結果、ガラス表面上の光を透過する部分
に対向して光電流取出し用電極4が形成されるこ
とになる。次にCdS,CdSe,ZnSe等の−族
の化合物からなる光導電材料の薄膜5をスパツタ
リングまたは蒸着により、さらにその上に
As2Se3,As2S3,SeTeAs等のカルコゲナイドア
モルフアス材料及び光導電材料とヘテロ接合を作
る材料の薄膜6をスパツタリングまたは蒸着によ
り、それぞれ大面積化して形成する。この場合そ
のヘテロ接合面は長尺(約300mmまで)にわたつ
て非モザイク状に形成されるようにする。アモル
フアスの上面にはさらにAuの電極7を形成する。
FIG. 1 shows the manufacturing process of the optical reading element of the present invention.
1 is a transparent glass substrate with, for example,
A metal layer 2 such as Al is deposited to a thickness that does not allow light to pass through. Next, Al is etched using a conventional method to alternately form light blocking walls 3 and photocurrent extraction electrodes 4 as shown in FIG. 1b. A portion without the light blocking wall 3 and the photocurrent extraction electrode 4 transmits light. As a result, the photocurrent extraction electrode 4 is formed opposite the light-transmitting portion on the glass surface. Next, a thin film 5 of a photoconductive material made of - group compounds such as CdS, CdSe, ZnSe, etc. is further deposited on top of it by sputtering or vapor deposition.
A thin film 6 of a material that forms a heterojunction with a chalcogenide amorphous material such as As 2 Se 3 , As 2 S 3 , or SeTeAs and a photoconductive material is formed in a large area by sputtering or vapor deposition. In this case, the heterojunction surface is formed in a non-mosaic manner over a long length (up to about 300 mm). Further, an Au electrode 7 is formed on the upper surface of the amorphous layer.

さらに次のようにしてもよい。すなわち、ガラ
ス1の表面に光を透過する程度のAl薄膜2′を形
成し、スパツタリング、エツチングにより光電流
取出し用電極を形成し、次いで前記の例と同様に
して光導電材料の薄膜5、アモルフアスの薄膜
6、電極7を形成し、これらと反対側のガラスの
表面上にスパツタリング、エツチングで光遮断用
壁をつくる。ここに光透過用のAl薄膜の厚さは
2000Å位までで、光遮断用壁と光電流取出し用電
極の厚さは、電気的損失を考慮して2000Å以上と
する。
Furthermore, the following may be used. That is, a thin Al film 2' that allows light to pass through is formed on the surface of the glass 1, a photocurrent extraction electrode is formed by sputtering and etching, and then a thin film 5 of a photoconductive material and an amorphous amorphous material are formed in the same manner as in the previous example. A thin film 6 and an electrode 7 are formed, and a light-blocking wall is formed on the surface of the glass opposite to these by sputtering and etching. Here, the thickness of the Al thin film for light transmission is
The thickness of the light blocking wall and the photocurrent extraction electrode should be at least 2000 Å in consideration of electrical loss.

今、第2図のようにバイアスし、光を入射する
と、光遮断用壁のない部分で光の入射した部分で
はCdSの暗抵抗と光照射時抵抗の比が102〜106
オーダー範囲で変化し、光電流Ipが流れる。
Now, when the bias is applied as shown in Figure 2 and light is incident, the ratio of the dark resistance of CdS to the resistance during light irradiation is in the order range of 10 2 to 10 6 in the area where there is no light blocking wall and where the light is incident. The photocurrent Ip flows.

本発明のように光遮断用壁3と光電流取出し電
極4を配置することは容易でしかも非常に緻密に
形成することは可能であり、一方、光導電材料と
カルコゲナイド系アモルフアスとによる非モザイ
ク状p−nヘテロ接合は容易にできるとともに、
光の入射した部分と入射しない部分との抵抗の大
きさの差が著しいので、光遮断壁の部分の抵抗は
大きく、隣接する光入射部分との遮断を良好にす
る。前述のように光入射部分と非入射部分は非常
に緻密に形成することができるから、結局非常に
細かい感光素子の配列を長尺にわたつて形成する
ことが可能となる。そしてその密度は18dots/mm
の高いものとなる。
It is easy to arrange the light shielding wall 3 and the photocurrent extraction electrode 4 as in the present invention, and it is also possible to form them very densely. A p-n heterojunction can be easily formed, and
Since there is a significant difference in resistance between the portion where light is incident and the portion where light is not incident, the resistance of the portion of the light blocking wall is large, making it possible to effectively block the adjacent light incident portion. As described above, since the light incident portion and the non-light incident portion can be formed very densely, it becomes possible to form a very fine array of photosensitive elements over a long length. And its density is 18dots/mm
The value will be high.

以上の通りであるから、本発明の光読取素子
は、簡単な工程で製造できて製造費も安く、しか
も素子の密度も高く、また薄膜で形成されている
ので応答速度も約1μsecまで向上できる利点があ
る。
As described above, the optical reading element of the present invention can be manufactured through a simple process, the manufacturing cost is low, the density of the element is high, and since it is formed of a thin film, the response speed can be improved to about 1 μsec. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光読取素子の製造工程の説明
図、第2図は本発明光読取素子の一実施例の模式
図および等価電気回路を示す。 1……ガラス基板、2……金属層、2′……電
極、3……光遮断用壁、4……光電流取出し用電
極、5……光電材料薄膜、6……アモルフアス材
料薄膜、7……電極。
FIG. 1 is an explanatory diagram of the manufacturing process of the optical reading element of the present invention, and FIG. 2 is a schematic diagram and an equivalent electric circuit of one embodiment of the optical reading element of the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Metal layer, 2'... Electrode, 3... Light blocking wall, 4... Electrode for photocurrent extraction, 5... Photoelectric material thin film, 6... Amorphous material thin film, 7 ……electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 透明基板表面に光遮断用壁を各遮断用壁の両
側には光溶過部分が存在するように、また前記光
透過部分に対向して光電流取出し用電極をその先
端が前記光透過部分に接するようにそれぞれ形成
し、それらを共に覆う如く光導電材料とそれとヘ
テロ接合を形成し得る材料とでヘテロ接合を長尺
にわたつて非モザイク状に形成したことを特徴と
する光読取素子。
1. Install a light-blocking wall on the surface of the transparent substrate so that there is a light-transmitting portion on both sides of each blocking wall, and place a photocurrent extraction electrode opposite the light-transmitting portion so that its tip is connected to the light-transmitting portion. 1. An optical reading element characterized in that a photoconductive material is formed so as to be in contact with the photoconductive material, and a material capable of forming a heterojunction with the photoconductive material covers the photoconductive material, and a heterojunction is formed in a long length in a non-mosaic manner.
JP12359879A 1979-09-26 1979-09-26 Photoreading element Granted JPS5648184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12359879A JPS5648184A (en) 1979-09-26 1979-09-26 Photoreading element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12359879A JPS5648184A (en) 1979-09-26 1979-09-26 Photoreading element

Publications (2)

Publication Number Publication Date
JPS5648184A JPS5648184A (en) 1981-05-01
JPS6327871B2 true JPS6327871B2 (en) 1988-06-06

Family

ID=14864569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12359879A Granted JPS5648184A (en) 1979-09-26 1979-09-26 Photoreading element

Country Status (1)

Country Link
JP (1) JPS5648184A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189393A (en) * 1981-05-18 1982-11-20 Seiko Epson Corp Semiconductor storage device
JPS5882564A (en) * 1981-11-12 1983-05-18 Fuji Xerox Co Ltd Amorphous silicon photo receiving element
JPS58144226U (en) * 1982-03-25 1983-09-28 東北リコ−株式会社 light detection element
JPS58147094U (en) * 1982-03-25 1983-10-03 東北リコ−株式会社 light detection element
JP4827396B2 (en) * 2003-10-06 2011-11-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5648184A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
US4307372A (en) Photosensor
US4354104A (en) Solid-state image pickup device
JPS60161664A (en) Tightly adhered two-dimensional image readout device
US4227078A (en) Photo-sensor
JPS6327871B2 (en)
JPS628951B2 (en)
US4671853A (en) Image sensor manufacturing method
JPS5840856A (en) Array for photosensor
JPH0534463A (en) X-ray image sensor
JPS6317554A (en) Photoconductive device
JP2573342B2 (en) Light receiving element
JPS58195356A (en) Adhesion type image sensor
JPS637473B2 (en)
JPH0715144Y2 (en) Coplanar type optical sensor
JPS5884457A (en) Long thin film reading device
JPS6214708Y2 (en)
KR0139818B1 (en) Photo-piode of inage sensor for facsimiie
JPS62252968A (en) Amorphous silicon image sensor
KR910005603B1 (en) Photo electric converter
JPS59151456A (en) Photoelectric conversion element for hybrid integrated photosensor and manufacture thereof
JPS61280659A (en) Contact type image sensor
JPS60147158A (en) Image sensor of adherent type
JPH0524195Y2 (en)
JP2639663B2 (en) Photoelectric conversion element
JPS61181158A (en) Contact type image sensor