JPS6214708Y2 - - Google Patents
Info
- Publication number
- JPS6214708Y2 JPS6214708Y2 JP4051182U JP4051182U JPS6214708Y2 JP S6214708 Y2 JPS6214708 Y2 JP S6214708Y2 JP 4051182 U JP4051182 U JP 4051182U JP 4051182 U JP4051182 U JP 4051182U JP S6214708 Y2 JPS6214708 Y2 JP S6214708Y2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- film
- conversion element
- transparent conductive
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 239000010408 film Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 19
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 ITO Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Facsimile Heads (AREA)
Description
【考案の詳細な説明】
本考案は薄膜形光電変換素子アレイに関し、特
に透明基板の下方から受光する光電変換素子の構
造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film photoelectric conversion element array, and more particularly to the structure of a photoelectric conversion element that receives light from below a transparent substrate.
従来、フアクシミリ送信機用の光電変換素子と
しては、IC技術等で製作されているMOSやCCD
の1次元アレイが一般に用いられている。しかし
作成しうるシリコン単結晶の大きさに限界がある
ためにアレイの長尺化が困難であり、原稿の読取
幅の拡張に対しては、光電変換素子の密度を高く
しなければならず価格、性能にも影響していた。
また、原稿からの画像は縮小結像して光電変換素
子に照射するので、このためのレンズ系が必要と
なる。このレンズ系は、縮小率が大きくなる程そ
の光路長を長くしなければならないため、装置の
小形化に不利であることと、光路の微妙な調整が
必要になつていた。このことから、最近厚稿の幅
と光電変換装置とを1:1で対応させ、前記レン
ズ系を不要とした密着形の読取り装置が実用化さ
れつつある。当然、光電変換素子アレイは原稿幅
と同等の長さが必要となり、各素子の電気的特性
は全長に渡つて安定で、しかも均一であることが
要求される。 Traditionally, photoelectric conversion elements for facsimile transmitters have been MOS and CCD fabricated using IC technology.
One-dimensional arrays of are commonly used. However, there is a limit to the size of the silicon single crystal that can be created, making it difficult to lengthen the array, and in order to expand the reading width of documents, the density of photoelectric conversion elements must be increased, which increases the cost. , which also affected performance.
Furthermore, since the image from the original is reduced and formed and irradiated onto the photoelectric conversion element, a lens system for this purpose is required. In this lens system, the optical path length must be increased as the reduction ratio increases, which is disadvantageous for miniaturizing the device and requires delicate adjustment of the optical path. For this reason, close-contact reading devices that have a 1:1 correspondence between the width of the thick manuscript and the photoelectric conversion device and do not require the lens system have recently been put into practical use. Naturally, the photoelectric conversion element array needs to have a length equivalent to the width of the document, and the electrical characteristics of each element are required to be stable and uniform over the entire length.
第1図は従来の光電変換素子の一例の断面図で
ある。 FIG. 1 is a cross-sectional view of an example of a conventional photoelectric conversion element.
絶縁基板1の上に共通電極2が形成され、この
上にCdS,CdSe,Se等の光電変換材料列3が形
成され、更にこの上にSnO2,ITOの透明導電層
4とAl,Cr,Au等の分離された不透明電極層5
が配置されている。原稿からの画像光束10は上
方から照射され、不透明電極層5で遮光されてい
ない透明導電層4の露出している部分と、共通電
極2とが相対している部分で光電変換素子列の1
ビツトを構成するものである。 A common electrode 2 is formed on an insulating substrate 1, a photoelectric conversion material array 3 made of CdS, CdSe, Se, etc. is formed on this, and a transparent conductive layer 4 made of SnO 2 , ITO, Al, Cr, etc. is further formed on this. Separated opaque electrode layer 5 of Au etc.
is located. The image light beam 10 from the original is irradiated from above, and the exposed portion of the transparent conductive layer 4 that is not shielded by the opaque electrode layer 5 and the common electrode 2 are opposed to one of the photoelectric conversion element arrays.
This is what makes up the bit.
しかしながら、通常この種の光電変換素子の電
気信号レベルは、10-12〜10-6程度の非常に小さ
い値であり、光電変換材3に僅かのピンホールが
存在すると光信号に関係なく電気信号が発生す
る。特に、不透明電極層5と共通電極2と相対し
ている部分の方が面積が広いので暗電流が発生し
易く、S/N劣化への影響が大きい。また、光電
変換材3の上部に設置する透明導電層4は、通常
形成時の基板温度を300℃以上の高温にするが、
光電変換材3に悪影響があるため低温で形成しな
ければならない。この結果、所望の小さい値の電
気抵抗が得られず、S/N、光応答特性等が悪化
する。 However, the electrical signal level of this type of photoelectric conversion element is usually a very small value of about 10 -12 to 10 -6 , and if there is a slight pinhole in the photoelectric conversion material 3, the electrical signal will be lost regardless of the optical signal. occurs. In particular, since the area of the opaque electrode layer 5 facing the common electrode 2 is larger, dark current is more likely to occur, which has a large effect on S/N deterioration. In addition, the transparent conductive layer 4 installed on the top of the photoelectric conversion material 3 is normally formed at a substrate temperature of 300°C or higher;
Since it has an adverse effect on the photoelectric conversion material 3, it must be formed at a low temperature. As a result, a desired small value of electrical resistance cannot be obtained, and S/N, optical response characteristics, etc. deteriorate.
第2図は従来の光電変換素子の他の例の断面図
である。 FIG. 2 is a sectional view of another example of a conventional photoelectric conversion element.
この例は前述の光電変換材3にピンホールがあ
つても暗電流を増加させないようにブリツジ形に
構成したものである。しかし、受光部は不透明電
極層5と不透明共通電極層2の無い対向した部分
になる。このため、例えば8ビツト/mm程度の密
度を得るにはその開口部の寸法は0.1mm×0.1mm程
になり、暗電流は減少するが、明電流も減少し結
果としてS/Nの向上は実現できない。 In this example, the above-mentioned photoelectric conversion material 3 is constructed in a bridge shape so that even if there is a pinhole, the dark current will not increase. However, the light-receiving portion is a portion facing each other without the opaque electrode layer 5 and the opaque common electrode layer 2. Therefore, in order to obtain a density of, for example, 8 bits/mm, the dimensions of the opening will be approximately 0.1 mm x 0.1 mm, and although the dark current will decrease, the bright current will also decrease, and as a result, the S/N will not improve. It can't be achieved.
この他、いずれの構造に於いても、高密度配線
であるので、耐環境性をうるために、基板上全域
に亘り保護コートが必要となる。しかし、基板の
上方から受光する場合には、この保護コート材は
透明な材料を使う必要があり、しかも厳密な膜厚
制御をしないと感度のばらつきが生じる。従つ
て、使用する材料が限定される上、製造技術がよ
り複雑となるので、低価格化、高性能化が困難で
あるという欠点があつた。 In addition, since both structures have high-density wiring, a protective coat is required over the entire surface of the substrate in order to obtain environmental resistance. However, when light is received from above the substrate, it is necessary to use a transparent material as the protective coating material, and if the film thickness is not strictly controlled, variations in sensitivity will occur. Therefore, the materials to be used are limited and the manufacturing technology becomes more complicated, making it difficult to lower the price and improve the performance.
本考案の目的は上記欠点を除去し、光電特性、
価格、信頼性等を大幅に改善し、実用に供し得る
ようにした薄膜形光電変換素子アレイを提供する
ことにある。 The purpose of this invention is to eliminate the above drawbacks, improve photoelectric properties,
It is an object of the present invention to provide a thin film type photoelectric conversion element array which has significantly improved cost, reliability, etc., and which can be put to practical use.
本考案の薄膜形光電変換素子アレイは、下面か
ら受光する絶縁性透明基板と、前記基板の上面に
設けられ、少くとも受光部を覆う透明導電膜と前
記受光部に帯状開口部を有する不透明導電膜との
二層から成る共通電極と、前記不透明導電膜の前
記帯状開口部以外の前記共通電極を少くとも覆う
ように設けられた絶縁層と、前記絶縁層及び開口
部の透明導電膜との上に設けられ少くとも前記共
通電極より広い幅を有する光電変換材膜と、該光
電変換材膜の上に設けられ複数の分離されて配置
された信号取出電極とを含んで構成される。 The thin film photoelectric conversion element array of the present invention includes an insulating transparent substrate that receives light from the bottom surface, a transparent conductive film provided on the top surface of the substrate and covering at least a light receiving section, and an opaque conductive film having a band-shaped opening in the light receiving section. a common electrode consisting of two layers with a film, an insulating layer provided to cover at least the common electrode other than the band-shaped opening of the opaque conductive film, and a transparent conductive film in the insulating layer and the opening. The photoelectric conversion material film is provided on the photoelectric conversion material film and has a width at least wider than the common electrode, and a plurality of signal extraction electrodes are provided on the photoelectric conversion material film and are arranged separately.
本考案によれば、透明導電膜からなる受光部以
外の共通電極上には絶縁層があるために、例えば
受光部分以外の光電変換材膜にピンホールがあつ
ても、絶縁層によつて遮ぎられ暗電流の増加は無
い。また透明導電膜は光電変換材膜を形成する以
前に設置するので、基板の温度を充分高くでき
る。このため低抵抗の透明導電膜が得られる。従
つて、従来の光電変換素子アレイにおいて問題に
なつていたS/N、および光応答が改善され、他
にも基板の下方から受光するため、耐環境性のた
めの保護コートは特に透明である必要が無く、充
分厚く基板の上面に形成した配線、光電変換材膜
に塗布することができる。しかもその膜厚に不均
一性があつても光電特性に何ら影響を与えること
が無い。 According to the present invention, since there is an insulating layer on the common electrode other than the light receiving part made of a transparent conductive film, for example, even if there is a pinhole in the photoelectric conversion material film other than the light receiving part, it can be blocked by the insulating layer. There is no increase in dark current. Further, since the transparent conductive film is provided before forming the photoelectric conversion material film, the temperature of the substrate can be sufficiently raised. Therefore, a transparent conductive film with low resistance can be obtained. Therefore, the S/N and optical response, which were problems in conventional photoelectric conversion element arrays, are improved, and in addition, since light is received from below the substrate, the protective coat for environmental resistance is particularly transparent. It is not necessary and can be applied sufficiently thickly to the wiring and photoelectric conversion material film formed on the upper surface of the substrate. Moreover, even if there is non-uniformity in the film thickness, it does not affect the photoelectric characteristics in any way.
次に、本考案の実施例について図面を用いて説
明する。 Next, embodiments of the present invention will be described using the drawings.
第3図は本考案の一実施例の断面図である。 FIG. 3 is a sectional view of an embodiment of the present invention.
ガラスよりなる絶縁性透明基板11上にCr,
Ta,Al等の不透明な金属層12を約1000Åの厚
さに蒸着し、帯状の開口部を設ける。さらに、
ITOやSnO2等の透明導電層13をこの開口部部
分にのみ設置し、開口部端でそれぞれが電気的に
接続させる。次に、SiO2,Al2O3,Si3N4等の絶
縁層14を、少なくとも金属層12上を覆う領域
に約5000Åの厚さに設置し、透明導電層13の
上、すなわち受光部を構成するための窓を金属層
12の開口部に対応させて設けている。さらにこ
の上に例えばアモルフアス・シリコン膜15を生
成し、電気信号を取り出すための高密度配線電極
16をその上に設置する。このような構造の光電
変換素子アレイは、基板11の下方より原稿から
の画像光束10を受光するので、不透明金属層1
2の開口部以外からは不必要な光信号電流が混入
することが無いように充分遮光できる構造にでき
るため、解像度の高いセンサを得ることができ
る。 Cr on the insulating transparent substrate 11 made of glass,
An opaque metal layer 12 such as Ta or Al is deposited to a thickness of about 1000 Å, and a band-shaped opening is provided. moreover,
A transparent conductive layer 13 made of ITO, SnO 2 or the like is installed only in this opening portion, and each is electrically connected at the edge of the opening. Next, an insulating layer 14 made of SiO 2 , Al 2 O 3 , Si 3 N 4 or the like is provided to a thickness of approximately 5000 Å in a region covering at least the metal layer 12, and is placed on the transparent conductive layer 13, that is, in the light receiving area. A window for forming the metal layer 12 is provided corresponding to the opening of the metal layer 12. Further, for example, an amorphous silicon film 15 is formed on this, and a high-density wiring electrode 16 for extracting electrical signals is placed thereon. Since the photoelectric conversion element array having such a structure receives the image light beam 10 from the original from below the substrate 11, the opaque metal layer 1
Since the structure can sufficiently block light so that unnecessary optical signal current does not enter from other than the opening 2, a sensor with high resolution can be obtained.
S/Nを劣化させる大きな原因となつていた高
密度配線電極16と光電変換材膜となるアモルフ
アス・シリコン膜15を挾む金属層12との間を
流れる暗電流は、その間に絶縁層14を介在させ
たことによつて極めて減少し、S/Nは格段に大
きくできる。この絶縁層14の膜厚は1000Å程度
から効果が表われ、増加するほど安定になるが、
5000Å以上でほぼ飽和する。逆に、2μm以上に
なると、光電変換材膜にクラツクが入つたり、ス
パツタによる生成の際には長時間必要となつたり
するのであまり意味がなくなる。 The dark current that flows between the high-density wiring electrode 16 and the metal layer 12 sandwiching the amorphous silicon film 15, which is a photoelectric conversion material film, which is a major cause of deterioration of S/N, is caused by the insulating layer 14 between them. By interposing the signal, the signal is significantly reduced, and the S/N can be significantly increased. The effect becomes apparent when the film thickness of this insulating layer 14 is about 1000 Å, and as it increases, it becomes more stable.
Almost saturated at 5000 Å or more. On the other hand, if the thickness is 2 μm or more, cracks may occur in the photoelectric conversion material film, or a long time may be required for generation by sputtering, so it is not very meaningful.
第4図は本考案の他の実施例の断面図である。FIG. 4 is a cross-sectional view of another embodiment of the present invention.
原稿からの画像光束10を、不必要な光信号電
流が混入しないように遮光するための不透明金属
層22は、透明導電層23を設置した後形成して
いる。このような構造にすることは、通常、透明
導電層23の導電性、透明性を確保するには、か
なり高度な製造技術を必要とし、そのパターン化
を透明であるため非常に困難である。従つて、絶
縁性透明基板21上に透明導電層23だけが形成
されている時点で確実に共通電極としての性能を
確認した上で、暗電流を減少させるための絶縁層
24、アモルフアス・シリコン膜25、高密度配
線電極26等が形成できるようになる。また、絶
縁層24には、不透明金属層22に設けた受光開
口部に対応して窓を設けるが、この時例えばフツ
酸を用いたケミカルエツチを行なう時には、この
透明導電層23面で確実に絶縁層24のエツチが
終了し、多少エツチ過多であつても基板21面ま
で損傷を与えることが無くなり、画像光束10の
散乱を考える必要がない。 An opaque metal layer 22 for blocking the image light beam 10 from the original to prevent unnecessary optical signal current from being mixed in is formed after the transparent conductive layer 23 is installed. Creating such a structure usually requires a fairly sophisticated manufacturing technology to ensure the conductivity and transparency of the transparent conductive layer 23, and patterning it is very difficult because it is transparent. Therefore, after confirming the performance as a common electrode when only the transparent conductive layer 23 is formed on the insulating transparent substrate 21, the insulating layer 24 and the amorphous silicon film for reducing dark current are formed. 25, high-density wiring electrodes 26, etc. can be formed. Further, the insulating layer 24 is provided with a window corresponding to the light-receiving opening provided in the opaque metal layer 22. At this time, when performing chemical etching using, for example, hydrofluoric acid, the surface of the transparent conductive layer 23 is reliably etched. Etching of the insulating layer 24 is completed, and even if the etching is a little excessive, the surface of the substrate 21 will not be damaged, and there is no need to consider scattering of the image light beam 10.
光電変換素子アレイは信号のレベルが10-12〜
10-6A程度と非常に小さいので、本考案による暗
電流の減少対策は、S/Nを向上させるのに極め
て効果的なものであり、実質的な高感度化を実現
するものである。また、温度変化に対する暗電流
の増加も小さくなり、とくに温度上昇を伴なう回
路装置が近傍に存在しても充分その性能を発揮で
きるようになる。 The photoelectric conversion element array has a signal level of 10 -12 ~
Since the dark current is very small at about 10 -6 A, the measures taken to reduce the dark current according to the present invention are extremely effective in improving the S/N ratio and substantially increasing the sensitivity. Further, the increase in dark current due to temperature changes is also reduced, and even if there is a circuit device in the vicinity that is accompanied by a temperature rise, it is possible to sufficiently exhibit its performance.
本考案による薄膜形光電変換素子アレイを例え
ば、フアクシミリ送信機に用いれば、光電変換材
膜のアモルフアス・シリコンの形成は容易に長尺
化ができるので、縮小レンズ系を不要としたA4
判、B4判等の密着形イメージセンサが、低価格
高感度で且つ高信頼性で得られるようになる。 If the thin-film photoelectric conversion element array according to the present invention is used in a facsimile transmitter, for example, the amorphous silicon photoelectric conversion material film can be easily formed into a long length, making it possible to create an A4 format that eliminates the need for a reduction lens system.
Close-contact image sensors for B4 and B4 formats will now be available at low cost, with high sensitivity, and with high reliability.
以上詳細に説明したように、本考案によれば、
光電特性と信頼性を改善し、かつ低価格の光電変
換素子アレイが得られるという効果が得られる。 As explained in detail above, according to the present invention,
The effect is that the photoelectric characteristics and reliability are improved, and a low-cost photoelectric conversion element array can be obtained.
第1図は従来の光電変換素子の一例の断面図、
第2図は従来の光電変換素子の他の例の断面図、
第3図は本考案の一実施例の断面図、第4図は本
考案の他の実施例の断面図である。
1……絶縁基板、2……共通電極、3……光電
変換材料列、4……透明導電層、5……不透明電
極層、10……画像光束、11……絶縁性透明基
板、12……金属層、13……透明導電層、14
……絶縁層、15……アモルフアス・シリコン
膜、16……配線電極、21……絶縁性透明基
板、22……金属層、23……透明導電層、24
……絶縁層、25……アモルフアス・シリコン
膜、26……配線電極。
Figure 1 is a cross-sectional view of an example of a conventional photoelectric conversion element.
FIG. 2 is a cross-sectional view of another example of a conventional photoelectric conversion element.
FIG. 3 is a cross-sectional view of one embodiment of the present invention, and FIG. 4 is a cross-sectional view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Common electrode, 3... Photoelectric conversion material row, 4... Transparent conductive layer, 5... Opaque electrode layer, 10... Image light flux, 11... Insulating transparent substrate, 12... ...Metal layer, 13...Transparent conductive layer, 14
... Insulating layer, 15 ... Amorphous silicon film, 16 ... Wiring electrode, 21 ... Insulating transparent substrate, 22 ... Metal layer, 23 ... Transparent conductive layer, 24
... Insulating layer, 25 ... Amorphous silicon film, 26 ... Wiring electrode.
Claims (1)
板の上面に設けられ、少くとも受光部を覆う透
明導電膜と前記受光部に帯状開口部を有する不
透明導電膜との二層から成る共通電極と、前記
不透明導電膜の前記帯状開口部以外の前記共通
電極を少くとも覆うように設けられた絶縁層
と、前記絶縁層及び開口部の透明導電膜との上
に設けられ少くとも前記共通電極より広い幅を
有する光電変換材膜と、該光電変換材膜の上に
設けられた複数の分離されて配置された信号取
出電極とを含むことを特徴とする薄膜形光電変
換素子アレイ。 (2) 実用新案登録請求の範囲第(1)項記載の薄膜形
光電変換素子アレイにおいて、絶縁層膜厚が
0.1μm以上であるもの。 (3) 実用新案登録請求の範囲第(1)項記載の薄膜形
光電変換素子アレイにおいて、光電変換材膜が
アモルフアス・シリコンで作られているもの。[Claims for Utility Model Registration] (1) An insulating transparent substrate that receives light from the bottom surface, a transparent conductive film provided on the top surface of the substrate and covering at least a light receiving part, and an opaque conductive film having a band-shaped opening in the light receiving part. a common electrode consisting of two layers with a film, an insulating layer provided to cover at least the common electrode other than the band-shaped opening of the opaque conductive film, and a transparent conductive film in the insulating layer and the opening. It is characterized by comprising a photoelectric conversion material film provided above and having a width at least wider than the common electrode, and a plurality of separately arranged signal extraction electrodes provided above the photoelectric conversion material film. Thin film photoelectric conversion element array. (2) In the thin film photoelectric conversion element array described in claim (1) of the utility model registration claim, the thickness of the insulating layer is
Those with a diameter of 0.1 μm or more. (3) In the thin film photoelectric conversion element array described in claim (1) of the utility model registration, the photoelectric conversion material film is made of amorphous silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4051182U JPS58142948U (en) | 1982-03-23 | 1982-03-23 | Thin film photoelectric conversion element array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4051182U JPS58142948U (en) | 1982-03-23 | 1982-03-23 | Thin film photoelectric conversion element array |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58142948U JPS58142948U (en) | 1983-09-27 |
JPS6214708Y2 true JPS6214708Y2 (en) | 1987-04-15 |
Family
ID=30051726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4051182U Granted JPS58142948U (en) | 1982-03-23 | 1982-03-23 | Thin film photoelectric conversion element array |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58142948U (en) |
-
1982
- 1982-03-23 JP JP4051182U patent/JPS58142948U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58142948U (en) | 1983-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5233181A (en) | Photosensitive element with two layer passivation coating | |
US4889983A (en) | Image sensor and production method thereof | |
EP0108480B1 (en) | Photoelectric conversion element | |
US4650984A (en) | Photosensor array for treating image information | |
US6455836B1 (en) | Metallic optical barrier for photo-detector array is also interconnecting electrode | |
EP0488131B1 (en) | Solid-state image pickup device | |
EP0183525B1 (en) | Image sensor | |
JPS6214708Y2 (en) | ||
US4698495A (en) | Amorphous silicon photo-sensor for a contact type image sensor | |
JPS6089967A (en) | Photoelectric conversion element | |
JPS58162055A (en) | Thin film photoelectric converter | |
JPS6327871B2 (en) | ||
JP2000507401A (en) | Corrosion resistant imaging system | |
JPS61189065A (en) | Image sensor | |
JPH02132860A (en) | Close contact type image sensor | |
JPS58201357A (en) | Thin film type photoelectric conversion element | |
JPS59151456A (en) | Photoelectric conversion element for hybrid integrated photosensor and manufacture thereof | |
JPS60263457A (en) | Photoelectric conversion element array for hybrid integrated photosenser | |
JP3407917B2 (en) | Light sensor | |
JPH021866Y2 (en) | ||
JPS60219522A (en) | Photosensor | |
JP2573342B2 (en) | Light receiving element | |
JPH021865Y2 (en) | ||
JPH0682851B2 (en) | Photo sensor array | |
JPS61166162A (en) | Image sensor |