JPS63277869A - Hydraulic power generation control system - Google Patents

Hydraulic power generation control system

Info

Publication number
JPS63277869A
JPS63277869A JP62110579A JP11057987A JPS63277869A JP S63277869 A JPS63277869 A JP S63277869A JP 62110579 A JP62110579 A JP 62110579A JP 11057987 A JP11057987 A JP 11057987A JP S63277869 A JPS63277869 A JP S63277869A
Authority
JP
Japan
Prior art keywords
control
generator
output
load
surge tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110579A
Other languages
Japanese (ja)
Inventor
Yukinobu Tsushima
対馬 幸悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Control Systems Inc filed Critical Hitachi Ltd
Priority to JP62110579A priority Critical patent/JPS63277869A/en
Publication of JPS63277869A publication Critical patent/JPS63277869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To prevent a rapid change in an amount of used water by preventing a rapid change in the output load of a generator and to prevent elevating movement of a water level in a surge tank, by providing correcting function to hold control of increase and decrease of a load for a specified time during AFC control. CONSTITUTION:A calculator for control inputs information, e.g. the motion states of the main and the auxiliary machine of a hydraulic generator, frequency of a system, an output of a generator, a water level in a surface tank, and performs output of a command through a remote monitoring control device after an output command value to the generator is calculated by automation or manual. After receipt of the command, an automatic load control device performs feedback control on the generator. In which case, during AFC control, control of increase and decrease of a load is held for a specified time set intrinsically to a system. This constitution enables prevention of the occurrence of resonance phenomenon of a water level in a surge tank due to a rapid change in an output load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水力発電所の制御方式に係り、特に周波数制御
時のサージタンク水位の共振を抑えるために好適なAF
C指令値出力方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control system for a hydroelectric power plant, and in particular to an AF suitable for suppressing resonance of a surge tank water level during frequency control.
Regarding C command value output method.

〔従来の技術〕[Conventional technology]

従来、サージタンクの設計条件、使用上の留意点は上記
の文献にも記されているように、一般的であった゛が、
これに対する具体的な対策は行われていなかった。
Conventionally, the design conditions and precautions for use of surge tanks have been general, as described in the above literature.
No specific measures were taken to address this issue.

〔発明が解決しようとする間層点〕[The interlayer point that the invention attempts to solve]

第5図に、ダム、圧力トンネル、サージタンク、水車か
ら成る水力発電所の概略図を示す。
Figure 5 shows a schematic diagram of a hydroelectric power plant consisting of a dam, pressure tunnel, surge tank, and water turbine.

サージタンクは、水車負荷の増減による使用水量の急変
によって生じる水撃作用を吸収し、圧力トンネルへの直
接波及を防いでいるが、このためタンク内の水位は時間
とともに昇降運動をくり返す。この昇降運動は、負荷の
急増、急減の負荷変動がたまたまサージタンクの水面振
動に同調すると、水面振動が共振状態におちいって、た
とえ負荷変動の範囲が小さくとも、異常に大きいサージ
ングを起こすことがある。この場合、下記のような現象
が発生する。
The surge tank absorbs the water hammer effect caused by sudden changes in the amount of water used due to increases and decreases in the turbine load, and prevents it from directly impacting the pressure tunnel, but as a result, the water level in the tank repeatedly rises and falls over time. In this lifting and lowering motion, if load fluctuations such as rapid increases or decreases happen to synchronize with the water surface vibrations of the surge tank, the water surface vibrations will fall into a resonance state and cause abnormally large surging even if the range of load fluctuations is small. be. In this case, the following phenomenon occurs.

(1)サージングが異常に大きくなっても、さらに同様
の制御を続行した場合、タンクから水が溢水する可能性
がある。
(1) Even if the surging becomes abnormally large, if the same control is continued, water may overflow from the tank.

(2)水位が低い位置で共振した場合は、サージタンク
ののみ口から水と共に、水路に空気を流入する場合があ
る。
(2) If resonance occurs at a low water level, air may flow into the waterway along with water from the mouth of the surge tank.

(3)サージタンク自体は、鉄筋コンクリートあるいは
鋼製としているが、サージングのくり返しによって、老
化が早くなる。
(3) The surge tank itself is made of reinforced concrete or steel, but repeated surging causes it to age quickly.

以上に述べたように、サージタンク水面のサージングは
、たとえ共振状態に至らなくても発電設備を含めた制御
系に大きな被害を与えることになる。
As described above, surging on the water surface of the surge tank causes great damage to the control system including the power generation equipment even if it does not reach a resonance state.

ところが、従来は重連の(1)、 (2)に対する対策
のために、第2図に示すようなサージタンク水位の上下
限監視をしているに留まっている。具体的には、水位を
上々限、上限、下限、下々限の4段階で監視し、上限ま
たは下限をオーバーした場合は警報出力して運転員に通
知することで運転員が制御指令値をコントロールするも
のとし、上々限。
However, in the past, in order to take countermeasures against (1) and (2), only the upper and lower limits of the surge tank water level were monitored as shown in Figure 2. Specifically, the water level is monitored in four stages: upper limit, upper limit, lower limit, and lower limit, and if the water level exceeds the upper or lower limit, an alarm is output and the operator is notified, allowing the operator to set the control command value. The maximum limit shall be on control.

下々限をオーバーした場合は、計算機、またはALRに
て自動的に発電機の制御ロックを行うものとしていた。
If the lower limit was exceeded, the generator control was automatically locked using the computer or ALR.

しかし、この方法ではサージタンク水面の共振を抑える
ことにはならず、タンク自体の老化を早める点について
は考慮されていなかった。また水位の異常警報、および
制御ロックのための検出機能の故障した場合の考慮が欠
けていた。
However, this method does not suppress the resonance of the surge tank water surface, and does not take into account the fact that it accelerates the aging of the tank itself. Also, there was a lack of consideration in the event of failure of the water level abnormality alarm and detection function for control lock.

本発明の目的は、これらの欠点を補うため、水面の昇降
運動そのものを抑えることにある。
An object of the present invention is to suppress the vertical movement of the water surface itself in order to compensate for these drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

問題点の解決手段を述べる前に、発電機制御のしくみと
、出力負荷と水位振動の関係について第3図と第4図で
説明する。
Before describing the solution to the problem, the mechanism of generator control and the relationship between output load and water level vibration will be explained with reference to FIGS. 3 and 4.

第3図に示すように、水力発電に対する指令は遠方の制
御所、または指令所から行われる。制御所(指令所)は
、自系統の周波数を取込み、基準周波数に保つように発
電機の指令値を短周期(約10秒〜60秒周期)で計算
し、遠方監視制御装置を介して発電所に出力指令を行う
。これを受けて発電所内の自動負荷制御装置(A L 
R)は、発電機の状態をチェックし、異常のない場合発
電機に対し出力指令を行い、発電機出力値が、指令値と
一致するまで制御を続行する。
As shown in FIG. 3, commands for hydroelectric power generation are issued from a remote control center or command center. The control center (command center) takes in the frequency of its own system, calculates the command value for the generator in short cycles (approximately 10 to 60 second cycles) to maintain the reference frequency, and generates power via a remote monitoring and control device. Issue an output command to the location. In response to this, automatic load control equipment (A L
R) checks the condition of the generator, and if there is no abnormality, issues an output command to the generator, and continues control until the generator output value matches the command value.

このように短い周期で指令値を変化させた場合の水位変
化を第4図にて説明する。第4図の下側のカーブは発電
機の出力負荷を示し、10〜60秒周期で周波数調整の
ための負荷変動を行っている。
The water level change when the command value is changed in such a short cycle will be explained with reference to FIG. 4. The lower curve in FIG. 4 shows the output load of the generator, and the load is varied for frequency adjustment at a cycle of 10 to 60 seconds.

これに対し、サージタンクの水位は、負荷変動による使
用水量の変動の影響で短い周期の振動をくり返す(図の
振幅の大きい部分がこれにあたる)。
On the other hand, the water level in the surge tank repeats short periodic oscillations due to fluctuations in the amount of water used due to load fluctuations (the large amplitude part in the diagram corresponds to this).

長期的には、ゆるやかな水位変化も、瞬間的には、大き
な変化をくり返すことになる。
In the long term, gradual changes in water level may result in repeated large changes in the moment.

従って、この水位の変化である水面振動を抑えることが
重要であり、これは、出力負荷の急変を抑えることで達
成される。
Therefore, it is important to suppress water surface vibration, which is a change in water level, and this can be achieved by suppressing sudden changes in output load.

第1図で詳細について説明する。前述したように、計算
指令値は10〜60秒周期で計算されるが、これを下記
の規則で補正し、計算機から遠方監視制御装置に出力す
る時は1図の補正指令値となるようにする。
Details will be explained with reference to FIG. As mentioned above, the calculation command value is calculated at a cycle of 10 to 60 seconds, but this is corrected according to the rules below so that when outputting from the computer to the remote monitoring control device, the corrected command value is as shown in Figure 1. do.

〈規則1)AFC指令値は、10〜60秒の周期で更新
されるが、一定時間(システム毎に決定する定数)は上
げ、または下げの制御方向を保持するものとする。すな
わち、一度「上げ」 (または「下げ」)方向の指令が
あると、一定時間N分は逆方向の指令値は受付けないも
のとする。
<Rule 1) The AFC command value is updated at a cycle of 10 to 60 seconds, but the control direction of increasing or decreasing is maintained for a certain period of time (constant determined for each system). That is, once a command is given in the "up" (or "down") direction, no command value in the opposite direction will be accepted for a certain period of time N minutes.

〈規則2〉一定時間経過後、同一方向であれば継続制御
し、逆方向であれば直ちに応動するものとする。
<Rule 2> After a certain period of time has elapsed, if the direction is the same, the control shall continue, but if the direction is the opposite direction, the response shall be immediate.

〈規則3〉同一方向への継続制御中は、一定時間のタイ
ムカウントは行わず、方向が変化した時からN分のカウ
ントを開始するものとする。
<Rule 3> During continuous control in the same direction, a time count of a certain period of time is not performed, but a count of N minutes shall be started from the time the direction changes.

〔作用〕[Effect]

前記の問題点解決手段によると、第1図でわかるように
1周波数を一定に保つため、周波数の変化に添って計算
指令値が変化する。この計算指令値がそのまま発ff1
fiに対して出力されると、短い周期で発電負荷が変化
するため、サージタンク水面も振動する可能性が出てく
る。第5図では、最初、上げ方向に2度変化した計算指
令値が、下げ方向に向うが、あらかじめ決められたN分
以内の範囲であるため、本発明である補正機能により現
状指令値を維持する。N分経過後、計算指令値が補正指
令値より低い場合は、直ちに下げ方向に出力指令値を補
正する。また、N分経過後も指令方向に変化がない場合
は、計算指令値に従って補正指令値を変化させる。
According to the above problem solving means, as can be seen in FIG. 1, in order to keep one frequency constant, the calculation command value changes as the frequency changes. This calculation command value is sent as is ff1
When the power is output to fi, the power generation load changes in a short period, so there is a possibility that the water surface of the surge tank will also vibrate. In Fig. 5, the calculated command value, which initially changed by two degrees in the upward direction, now moves downward, but since it is within a predetermined range of N minutes, the current command value is maintained by the correction function of the present invention. do. If the calculated command value is lower than the correction command value after N minutes have elapsed, the output command value is immediately corrected in a downward direction. Further, if there is no change in the command direction even after N minutes have elapsed, the correction command value is changed in accordance with the calculated command value.

以上の補正により、発電負荷の急変が抑えられ、使用水
量の変化も少なくなるためサージタンク水面の共振状態
は防止することができる。
By the above correction, sudden changes in the power generation load are suppressed and changes in the amount of water used are also reduced, making it possible to prevent the resonance state of the surge tank water surface.

〔実施例〕〔Example〕

以下、本発明の一実施例を第6,7図により説明する。 An embodiment of the present invention will be described below with reference to FIGS. 6 and 7.

実施例では、AFC制御周期を30秒、制御方向を保つ
ための一定時間を3分としている。第6図では系統周波
数の変動に対応して、計算指令値が増していくが、この
指令値を受けた指令値出力処理は、当該発電機の負荷変
化速度等、発電機特性により出力指令値を決定し、遠方
監視制御装置に対して出力する。従って発電機に対して
指令値はゆるやかな上昇カーブとなる。AFC制御開始
後、1.5分経過した時点で計算指令値が下げ方向にな
るが、3分間以内であるため前回指令値を維持する。さ
らに、2.5分経過した時点では計算指令値が再度上昇
するため、出力指令値も上昇させる。
In the embodiment, the AFC control period is 30 seconds, and the fixed time for maintaining the control direction is 3 minutes. In Figure 6, the calculated command value increases in response to fluctuations in the grid frequency, but the command value output process that receives this command value is dependent on the generator characteristics such as the load change rate of the generator. is determined and output to the remote monitoring and control device. Therefore, the command value for the generator follows a gradual upward curve. The calculated command value decreases after 1.5 minutes have passed after the start of AFC control, but since it is within 3 minutes, the previous command value is maintained. Furthermore, since the calculation command value increases again after 2.5 minutes, the output command value is also increased.

この後は、逆方向(下向き)制御に変わるまで、継続制
御期間として3分間のカウント範囲外となり、次に下降
方向への制御が始った時点でタイマーカウントを開始す
る。
After this, the continuous control period is outside the counting range of 3 minutes until the control changes to the reverse direction (downward), and the timer count starts when the control in the downward direction starts.

第7図は、第6図に対し、3分間の制御期間終了時点で
計算指令値が、出力指令値と逆方向になっている場合を
示している。この場合、3分間が終了した時点で直ちに
応動し、逆方向への出力指令を行う。
In contrast to FIG. 6, FIG. 7 shows a case where the calculation command value is in the opposite direction to the output command value at the end of the 3-minute control period. In this case, at the end of the 3 minutes, the controller immediately responds and issues an output command in the opposite direction.

以上、本実施例によれば、図でもわかるように計算指令
値(従来の最終出力値)に比べ、上げ。
As described above, according to this embodiment, as can be seen from the figure, the calculation command value (conventional final output value) is increased.

下げ変化の少ない指令値が得られる。しかも、AFC制
御の本来の目的である基準周波数の保持という点でも機
能を損なうことがない。
A command value with little downward change can be obtained. Furthermore, the function of maintaining the reference frequency, which is the original purpose of AFC control, is not impaired.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発電機の出力負荷の急変を抑えること
ができるため、使用水量の急変がなくなる。この結果、
サージタンクの水面の昇降運動を抑え、さらに共振状態
をなくすることができるようになる。この効果として下
記が揚げられる。
According to the present invention, sudden changes in the output load of the generator can be suppressed, thereby eliminating sudden changes in the amount of water used. As a result,
It becomes possible to suppress the rising and falling movement of the water surface of the surge tank and further eliminate resonance conditions. The effects of this are as follows.

(1)サージタンクの余分な水面振動による。制御のロ
ックをなくすることができる。
(1) Due to excess water surface vibration of the surge tank. Control locks can be removed.

(2)共振による水面の溢水をなくする。(2) Eliminate overflow on the water surface due to resonance.

(3)サージタンクの老化を防ぐ。(3) Prevent aging of the surge tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水力発電所の概略図、第2図は従来のサージタ
ンク水位の監視方式を示す図、第3図は水力発電システ
ム構成図、第4図は出力負荷と水位振動の関係図、第5
図は指令値の補正方式図。
Figure 1 is a schematic diagram of a hydroelectric power plant, Figure 2 is a diagram showing the conventional surge tank water level monitoring method, Figure 3 is a diagram of the hydroelectric power generation system configuration, Figure 4 is a diagram of the relationship between output load and water level vibration, Fifth
The figure is a diagram of the command value correction method.

Claims (1)

【特許請求の範囲】[Claims] 1、水力発電機と、この発電機の主機、補機の動作状態
、および系統周波数、発電機出力、サージタンク水位等
の情報を入力し、自動または手動にて発電機への出力指
定値を算出後、遠方監視制御装置を介して指令出力を行
う制御用計算機と、この指令値を受けて、発電機に対し
てはフイードバツ制御を行う自動負荷制御装置(ALR
)、および発電使用水量の増減を吸収するためのサージ
タンクから成る水力発電システムにおいて、AFC制御
時、出力負荷の急変により発生するサージタンクの水位
の共振現象を抑えるため、一定時間(システム固有の設
定値)内は負荷の上げ(下げ)制御を保持する補正機能
をもうけたことを特徴とする水力発電制御方式。
1. Enter information such as the operating status of the hydroelectric generator, the main engine and auxiliary equipment of this generator, as well as system frequency, generator output, surge tank water level, etc., and automatically or manually set the specified output value to the generator. After calculation, there is a control computer that outputs a command via a remote monitoring control device, and an automatic load control device (ALR) that receives this command value and performs feedback control for the generator.
), and a surge tank to absorb changes in the amount of water used for power generation. During AFC control, in order to suppress the resonance phenomenon of the water level of the surge tank that occurs due to sudden changes in the output load, a certain period of time (system-specific This is a hydroelectric power generation control method characterized by a correction function that maintains load increase (lower) control within the set value).
JP62110579A 1987-05-08 1987-05-08 Hydraulic power generation control system Pending JPS63277869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110579A JPS63277869A (en) 1987-05-08 1987-05-08 Hydraulic power generation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110579A JPS63277869A (en) 1987-05-08 1987-05-08 Hydraulic power generation control system

Publications (1)

Publication Number Publication Date
JPS63277869A true JPS63277869A (en) 1988-11-15

Family

ID=14539414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110579A Pending JPS63277869A (en) 1987-05-08 1987-05-08 Hydraulic power generation control system

Country Status (1)

Country Link
JP (1) JPS63277869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061113A (en) * 2014-06-12 2014-09-24 广西广宁工业科技有限公司 Unattended intelligent small-size package water turbine power station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061113A (en) * 2014-06-12 2014-09-24 广西广宁工业科技有限公司 Unattended intelligent small-size package water turbine power station

Similar Documents

Publication Publication Date Title
CN104052071B (en) A kind of generating set intelligence primary frequency modulation method
US4337118A (en) Nuclear reactor power monitoring system
JPS63277869A (en) Hydraulic power generation control system
JP2758237B2 (en) Hydroelectric power plant generator
JP4868984B2 (en) Hydroelectric generator operation management system and operation management method thereof
JP2894978B2 (en) Tank level control device for hydroelectric power plant
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPS6160996B2 (en)
JPS6153559B2 (en)
JP2720032B2 (en) Turbine control device
JP2001145690A (en) Ozone treatment system and method for controlling suction of waste ozone
JP2001172945A (en) Automatic dam control device and method, and recording medium having automatic dam control program recorded therein
JPS5916679B2 (en) Reactor water supply control system
JP2517804Y2 (en) Water response control device for turbine generator
CN117189474A (en) Method for controlling a ramp rate of a wind park with a plurality of wind turbines and wind park
JP3834356B2 (en) Variable speed hydropower plant
JPS6338805A (en) Spray water injection controller for boiler
JP3141572B2 (en) How to limit the output of a turbine generator
JPH0749012Y2 (en) Turbine operation controller for hydroelectric power plant
JPH06341607A (en) Water supply control device
JPS62267576A (en) Operation controller
JPS636837B2 (en)
JPH023205B2 (en)
JPH01269093A (en) Feed water controller for nuclear reactor
JPS5972939A (en) Generating command controller for power system