JP3834356B2 - Variable speed hydropower plant - Google Patents

Variable speed hydropower plant Download PDF

Info

Publication number
JP3834356B2
JP3834356B2 JP16410496A JP16410496A JP3834356B2 JP 3834356 B2 JP3834356 B2 JP 3834356B2 JP 16410496 A JP16410496 A JP 16410496A JP 16410496 A JP16410496 A JP 16410496A JP 3834356 B2 JP3834356 B2 JP 3834356B2
Authority
JP
Japan
Prior art keywords
water level
surge tank
variable speed
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16410496A
Other languages
Japanese (ja)
Other versions
JPH109117A (en
Inventor
尚夫 桑原
正敏 赤穂
雅一 小林
寿治 西林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP16410496A priority Critical patent/JP3834356B2/en
Publication of JPH109117A publication Critical patent/JPH109117A/en
Application granted granted Critical
Publication of JP3834356B2 publication Critical patent/JP3834356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は運転状態に応じて任意の回転速度で運転しながら周波数は電力系統周波数と同期して運転される可変速発電又は可変速揚水プラントに関し、特に上池側又は下池側水路にサージタンクを有する可変速水力プラントに関する。
【0002】
【従来の技術】
可変速水力プラントはフライホイール効果を利用して従来の水力プラントより格段に速い高速電力制御ができる。このため、電力系統の質の向上のため、可変速プラントには従来より高ゲインの自動周波数制御(AFC)及びガバナフリー制御が期待されている。
【0003】
しかし、従来のサージタンクを有するプラントの場合には次のような問題があった。すなわち、一般に、AFC制御ループの固有振動周期がサージタンクの固有波周期に近く、サージタンク水位が異常加振され振幅が異常拡大し、オーバーフロー等の問題を起こす可能性があった。
【0004】
このことは、別な意味ではこの制約のため可変速プラントのAFC制御ゲインを十分上げることについて、従来は制約があった。
【0005】
そこで従来では、上げ下げ繰り返し状のAFC制御によってサージタンクが共振した場合を想定して、それでも問題が生じないように、サージタンクを高めにしたり又はサージタンク断面積を上下限水位近くで急拡大させたりサージタンク構造を工夫していた。しかし、このようなサージタンク側対策費は極めて高額になっていた。
【0006】
特に上池側または下池側水路にサージタンクを有し、かつ該サージタンク側水路が分岐され他の可変速水力機械と該サージタンク側水路を共有している場合には、上記問題は一層深刻になる。なぜなら複数の可変速水力機械が一斉にAFC制御を行った場合には、上記共振問題が一層深刻になるためである。
【0007】
さらに従来の同期機を使った揚水発電プラントでは夜間の揚水運転で事実上入力制御はできなかった。案内羽根開度を変えてもポンプ入力はほとんど変化せず、実質的に回転速度以外に調整手段がないためである。しかし、可変速機が登場し、揚水モードでも電力系統のAFC制御,ガバナフリー制御へ貢献ができることになった。従って、揚水モードでもサージタンク共振が発生する可能性が出てきた。
【0008】
また、従来の同期機でもサージタンク水位変動異常拡大の可能性はあった。例えば、複数の揚水機が一定の時間差をおいて起動され、その時間差が比較的短く(この間にサージタンク水位変動が十分減衰しない程)かつサージタンクの固有波周期の整数倍であった場合である。この場合は後続起動機がサージタンク水位変動を加速する関係になるからである。この対策としてはサージタンク容量増大の他、該時間差を十分大きくする、サージタンク水位変動を助長しないようなタイミングで起動する等の方法があった。しかし、後の2つの案は電力系統の電力需給対応に制約をかけることに他ならず使い勝手の悪いプラントになってしまう。
【0009】
よって、従来の技術では上述の時間差揚水起動対策のようにサージタンクとの妥協を求めた操作ノウハウはあったが、これを積極的に制御しようという発想はなかった。
【0010】
【発明が解決しようとする課題】
本発明では上述のようなサージタンクを備えた可変速水力プラントにおいて、サージタンクを必要最小限の経済設計にし土木費軽減を計った場合でも安定して制御できることを目的とし、また、サージタンク水位が所定の範囲内にある間は制約なしに存分にAFC制御やガバナフリー制御を行って、可変速機の特長を最大限に発揮させる。
【0011】
可変速水力機械は定速水力機械に比較して運転範囲が広く、より広範囲にAFC 制御が可能で、またより高速の制御が可能であるので、より効果的なAFC制御,ガバナフリー制御が期待でき、これらの機能をサージタンクを有する場合でもこの特長も存分に発揮させる。
【0012】
【課題を解決するための手段】
上記目的を達成させるために上池側または下池側水路にサージタンクを有し、外部より与えられる電力指令に応答して出力又は入力を調整しながら、運転状態に応じた適正回転速度で運転される可変速水力プラントにおいて、サージタンク水位を検出する水位検出器を備え、この水位検出器の検出信号に応答してサージタンクの水位変動を抑制制御する信号を出力する制御演算器を備え、外部より与えられる通常運転用の指令(電力指令)と制御演算器の出力信号を完全に選択切換えしまたは実質的に一方が他方に優先するように切換えして入力する入力切換回路を備えたようにしたものである。
【0013】
このように、本発明では可変速機を使って積極的にサージタンク水位変動抑制制御を行う。特にサージタンク水位を監視しながら必要に応じて的確にサージタンク水位変動抑制制御を行う。この場合、通常のAFC等の制御からサージタンク水位抑制制御、又はその逆のモード切換えが必要であるが、完全に一方をOFF し他方をONする切換方法と一方のゲインを大きく、他方のゲインを小さくする方法と、一方の時定数を短く、他方を長くする等の方法で実質的に切換えするやり方もある。
【0014】
サージタンク側の水路を分岐して複数台の水力プラントが設置される場合、特に複数台の可変速水力プラントが設置される場合には、その可変速プラントの内の少なくとも1台にサージタンク水位変動抑制制御機能を具備させる。
【0015】
これにより、サージタンクのサイズは必要最小限に抑えることが可能になる。すなわち、サージタンクは固有周波数加振を前提にした不経済な設計を行わないようにすることが可能になる。
【0016】
そして、サージタンク水位制御を具備しない他号機が発生する水位変動をサージタンク水位変動制御手段を備えた可変速機によって抑制制御する。言い換えれば、サージタンクの安全弁機能の一部分を高速に応答できて広範囲運転ができる可変速機に担わせて、サージタンク自身の経済設計を実現する。
【0017】
サージタンク水位が所定値以上/以下になったり、変動幅が所定値以上になったら、サージタンク水位制御を効かせてサージタンク水位変動抑制を優先させる。これにより、この保護が確保されているので、通常は、AFC等の通常運転機能を優先させ可変速の特長を最大限に発揮させることが可能になる。
【0018】
また、可変速水力機械の応答は定速機のそれに比し高速で、かつ広範囲の出力/入力調整ができるので、定速機より効果的なサージタンク水位制御が可能である。
【0019】
ところで、サージタンク水位変動抑制の具体策として下記のように種々考えられる:
(イ)先ず、サージタンク水位変動の向き,水位自身,水位変動速度等を考慮して該サージタンク水位変動が抑制される方向に当該可変速プラントの案内羽根開度及び回転速度を制御するPID等のpassive 制御回路を設ける。
【0020】
(ロ)サージタンク水位変動の向き,水位自身,水位変動速度等を考慮して該サージタンク水位変動とは逆符号のサージング抑制波が生ずるように当該可変速プラントの案内羽根開度及び回転速度を制御するactive制御回路を設ける。
【0021】
(ハ)上述のようなサージタンク水位変動抑制は通常は除外又は実質的に除外しておいて必要時だけ自動的に作動させるようにする。具体的にはサージタンク水位が所定値以上になったり、変動幅が所定値以上になった場合等が考えられる。
【0022】
【発明の実施の形態】
図3は本発明が対象とするサージタンクを有する可変速水力プラントの例を示す。
【0023】
水力プラント103A,103Bは共に可変速水力機械、特に可変速揚水発電プラントとして以下の実施例を説明するが、基本的に管路を共有している水力プラントのうちの1つが可変速タイプなら本発明の目的を達成できる。定常状態ではこれらのプラントに作用する有効落差(発電モード)または揚程(揚水モード)は上池水位EL1と下池水位EL2の差で決まる。しかし過渡的には水圧鉄管 105の流量と導水路107の流量に差が生ずるためサージタンク106の水位EL3は上下に変動する。
【0024】
例えば、可変速揚水発電プラント103A,103Bが揚水運転中に同一の AFC制御指令によってサージタンク固有周期で入力増減を繰り返した場合、サージタンク水位EL3の変動幅は拡大し、ついにはサージタンク頂上水位ELAを超えてオーバーフローするようになる。しかし、可変速機103Aに水位制御機能を備えることによりオーバーフローは発生しなくなる。この機能は図4に示すサージタンク水位がELAより低いELXに達した時点で水位制御が動作し、可変速機103AはAFC制御優先からサージタンク水位制御優先に切換わり、回転速度が自動的に低下し、揚水流量が減少する。この結果、サージタンク水位変動は図4のように減衰するようになる。
【0025】
図1はサージタンク水位制御機能を有する可変速水力プラントの第一の実施例で以下この具体例につき説明する。
【0026】
サージタンク水位検出器31によって検出された水位検出信号32を入力とする異常水位判定器33は上述した水位ELXを超えた水位に相当する信号を出力する。尚、水位がELXを超えた時点でサージタンク水位変動抑制制御ON指令器35が動作し、制御信号選択回路48が優先すべき制御選択を行う。すなわち、この時点でサージタンク水位制御優先モードに切換わる。サージタンク水位変動抑制制御回路46で異常水位信号34すなわち、水位ELXを超えた水位信号に応答してサージタンク水位制御信号47を出力する。かくして制御信号選択回路48によって合成電力指令29は実質的に通常運転用電力指令49からサージタンク水位制御信号47に切換わる。そして、合成電力指令29は電力指令下限設定器30を経て最終的な可変速揚水発電指令となる。このようにして最終的に可変速機に入力される可変速機電力指令21が決まる。
【0027】
装置1〜装置23は公知の可変速揚水プラントの構成を示し、特開昭63−
212774号(可変速揚水装置の制御装置)等で開示されたものと同等である。
【0028】
この実施例では一次側巻線4,二次側巻線5を有する巻線形誘導機を可変速電動機として用いた場合の装置構成を示す一例である。巻線形誘導機の一次側巻線4が電力系統1に接続されて二次側巻線5が交流励磁装置7に接続され誘導機の入力は、この交流励磁装置7により可変速機電力指令21に応じて増減される。また誘導機の回転状態は速度検出器17により検出され加算器19,20へ入力される。
【0029】
図2は図1の実施例のサージタンク水位変動抑制制御回路46の具体例と、制御信号選択回路48の具体例を示したものである。水位調定率回路43は異常水位信号34とサージタンク水位制御信号42の間に定位性を持たせるための復元回路である。
【0030】
サージタンク水位制御信号42が水位調定率回路43を考慮した異常水位信号34相当の目標値に達するまでは積分演算回路39が積分動作を継続する。比例演算回路38は入力である異常水位信号34に対する出力のサージタンク水位制御信号42の応答遅れを少なくするための回路である。装置24〜装置28で構成される制御信号選択回路は一次遅れ要素になっており積分動作をする電力指令応答速度調整部26は積分要素になっており、しかもそのゲインがサージタンク水位制御ON信号45が来た場合に自動的に小さくなるようになっている。この結果、通常運転用電力指令49に対する応答速度調整済電力指令27の応答時定数が大幅に長くなって応答速度調整済電力指令27は事実上現状維持となる。このようにして合成電力指令は事実上サージタンク水位制御信号42によって左右され、この可変速揚水機はサージタンク制御モードにおかれるようになる。
【0031】
【発明の効果】
サージタンクの固有周期加振を前提にしたサージタンク設計の無駄を排除し、経済的な設計を可能にする。
【0032】
同時に、サージタンク固有周期加振を前提にした無用なAFC制御抑制,制限等を排除し、可変速機特有の高性能AFC、高速ガバナフリー機能を存分に発揮させることが可能になる。
【図面の簡単な説明】
【図1】サージタンク水位制御機能を有する可変速水力プラントの第一例。
【図2】サージタンク水位制御機能を有する可変速水力プラントの第二例。
【図3】サージタンクを有する可変速水力プラントの例。
【図4】サージタンク水位制御の動作説明図。
【符号の説明】
1…電力系統、2,103…ポンプ水車、3…主軸、4…一次側巻線、5…二次側巻線、6…可変速機の一次側、7…交流励磁装置、8…案内羽根開度制御装置、9…復元、10,14,19,20,24,28,36…加算器、11…加算器10の出力、12…実電力検出信号、13,29…合成電力指令、15…加算器14の出力、16…二次巻線の交流励磁、17…速度検出器、18…回転速度指令関数発生器、21…可変速機電力指令、22…適正回転速度指令、23…実際の回転速度、25,37…偏差信号、26…電力指令応答速度調整部、27…応答速度調整済電力指令、30…電力指令下限設定器、31…サージタンク水位検出器、32…同上検出信号、33…異常水位判定器、34…異常水位信号、35…サージタンク水位変動抑制制御ON指令器、38…比例演算回路、39…積分演算回路、40…比例演算回路出力、41…積分演算回路出力、42,47…サージタンク水位制御信号、43…水位調定率回路、44…水位調停率回路出力、45…サージタンク水位制御ON信号、46…サージタンク水位変動抑制制御回路、48…制御信号選択回路、49…通常運転用電力指令、101…下池、102…放水路、104…水圧鉄管分岐管、105…水圧鉄管、106…サージタンク、107…導水路、108…上池、EL1…上池水位、EL2…下池水位、EL3…サージタンク水位、ELA…サージタンク頂上水位。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable speed power generation or variable speed pumping plant that operates at an arbitrary rotational speed according to the operating state and operates in synchronization with the power system frequency, and in particular, a surge tank is installed in the upper pond side or lower pond side waterway. The present invention relates to a variable speed hydraulic power plant having the same.
[0002]
[Prior art]
The variable speed hydraulic power plant can perform the high-speed power control much faster than the conventional hydraulic power plant using the flywheel effect. For this reason, in order to improve the quality of the power system, a variable speed plant is expected to have automatic frequency control (AFC) and governor-free control with higher gain than before.
[0003]
However, the conventional plant having a surge tank has the following problems. That is, in general, the natural vibration period of the AFC control loop is close to the natural wave period of the surge tank, the surge tank water level is abnormally excited and the amplitude is abnormally enlarged, which may cause problems such as overflow.
[0004]
In other words, there is a limitation in the prior art on sufficiently increasing the AFC control gain of the variable speed plant due to this limitation.
[0005]
Therefore, in the past, assuming that the surge tank resonates due to repeated AFC control, raising or lowering the surge tank or rapidly expanding the surge tank cross-sectional area near the upper and lower limit water levels so as not to cause problems. Or devised a surge tank structure. However, the surge tank side cost was extremely high.
[0006]
The above problem is more serious particularly when a surge tank is provided in the upper pond side or the lower pond side water channel, and the surge tank side water channel is branched and shares the surge tank side water channel with other variable speed hydraulic machines. become. This is because the resonance problem becomes more serious when a plurality of variable speed hydraulic machines perform AFC control all at once.
[0007]
In addition, in a conventional pumped-storage power plant using a synchronous machine, input control was practically impossible during pumping operation at night. This is because the pump input hardly changes even when the guide vane opening is changed, and there is substantially no adjusting means other than the rotational speed. However, variable speed machines have appeared, and it has become possible to contribute to AFC control and governor-free control of the power system even in the pumping mode. Accordingly, there is a possibility that surge tank resonance occurs even in the pumping mode.
[0008]
In addition, even with conventional synchronous machines, there was a possibility of abnormal expansion of surge tank water level fluctuations. For example, when multiple pumps are started with a certain time difference, the time difference is relatively short (so that the surge tank water level fluctuation does not sufficiently attenuate during this time) and is an integral multiple of the natural frequency of the surge tank. is there. In this case, the subsequent starter is in a relationship of accelerating the surge tank water level fluctuation. As countermeasures, there are methods such as increasing the surge tank capacity, sufficiently increasing the time difference, and starting at a timing that does not promote fluctuations in the surge tank water level. However, the latter two proposals are nothing more than a plant that is not easy to use except that it restricts the power supply and demand of the power system.
[0009]
Therefore, in the prior art, there was an operation know-how that required a compromise with the surge tank like the above-described countermeasure for the time difference pumping, but there was no idea of actively controlling this.
[0010]
[Problems to be solved by the invention]
In the variable speed hydraulic power plant having the surge tank as described above, an object of the present invention is to enable stable control even when the surge tank is designed to have the minimum required economic design and reduce civil engineering costs. As long as is within the specified range, AFC control and governor-free control are fully performed without restriction to maximize the features of the variable speed machine.
[0011]
The variable speed hydraulic machine has a wider operating range than the constant speed hydraulic machine, AFC control is possible over a wider range, and higher speed control is possible, so more effective AFC control and governor-free control are expected. These functions can be fully exhibited even when a surge tank is provided.
[0012]
[Means for Solving the Problems]
In order to achieve the above purpose, the upper pond side or lower pond side waterway has a surge tank, and it is operated at an appropriate rotation speed according to the operating state while adjusting the output or input in response to an electric power command given from the outside. The variable speed hydraulic power plant is equipped with a water level detector that detects the surge tank water level, and a control arithmetic unit that outputs a signal that suppresses and controls fluctuations in the water level of the surge tank in response to the detection signal of the water level detector. It is provided with an input switching circuit for completely selecting and switching a normal operation command (power command) and a control arithmetic unit output signal or switching so that one of them substantially overrides the other. It is a thing.
[0013]
Thus, in the present invention, surge tank water level fluctuation suppression control is actively performed using a variable speed machine. In particular, the surge tank water level fluctuation suppression control is accurately performed as necessary while monitoring the surge tank water level. In this case, it is necessary to switch from normal AFC control to surge tank water level suppression control or vice versa, but the switching method of completely turning off one and turning on the other, and increasing one gain, There is also a method of switching substantially by a method of reducing the time constant and a method of shortening one time constant and lengthening the other.
[0014]
When multiple hydraulic plants are installed by branching the water channel on the surge tank side, especially when multiple variable-speed hydraulic plants are installed, the surge tank water level is at least one of the variable-speed plants. A fluctuation suppression control function is provided.
[0015]
As a result, the size of the surge tank can be minimized. That is, the surge tank can be prevented from performing an uneconomical design based on natural frequency excitation.
[0016]
And the water level fluctuation | variation which the other machine which does not comprise surge tank water level control generate | occur | produces is controlled by the variable speed machine provided with the surge tank water level fluctuation | variation control means. In other words, the economic design of the surge tank itself is realized by allocating a part of the safety valve function of the surge tank to the variable speed machine that can respond at high speed and operate in a wide range.
[0017]
When the surge tank water level is greater than or equal to a predetermined value or the fluctuation range is greater than or equal to a predetermined value, surge tank water level control is applied to give priority to suppression of surge tank water level fluctuation. Thereby, since this protection is ensured, it is usually possible to give priority to the normal operation function such as AFC and to maximize the features of the variable speed.
[0018]
Moreover, since the response of the variable speed hydraulic machine is higher than that of the constant speed machine and a wide range of output / input adjustment can be performed, the surge tank water level control more effective than the constant speed machine is possible.
[0019]
By the way, various measures for suppressing the surge tank water level fluctuation are considered as follows:
(A) First, a PID that controls the guide vane opening degree and rotation speed of the variable speed plant in a direction in which the surge tank water level fluctuation is suppressed in consideration of the direction of the surge tank water level fluctuation, the water level itself, the water level fluctuation speed, etc. A passive control circuit is provided.
[0020]
(B) Considering the direction of surge tank water level fluctuation, water level itself, water level fluctuation speed, etc., the guide vane opening and rotation speed of the variable speed plant so that a surging suppression wave having the opposite sign to that of the surge tank water level fluctuation is generated. An active control circuit for controlling the above is provided.
[0021]
(C) Surge tank water level fluctuation suppression as described above is normally excluded or substantially excluded, and is automatically activated only when necessary. Specifically, the case where the surge tank water level becomes a predetermined value or more, or the fluctuation range becomes a predetermined value or more can be considered.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows an example of a variable speed hydraulic power plant having a surge tank targeted by the present invention.
[0023]
The hydraulic plants 103A and 103B are both variable speed hydraulic machines, particularly variable speed pumped storage power generation plants. The following embodiment will be described as an example. However, if one of the hydraulic power plants sharing the pipeline is basically a variable speed type, this The object of the invention can be achieved. In a steady state, the effective head (power generation mode) or head (pumping mode) acting on these plants is determined by the difference between the upper pond water level EL1 and the lower pond water level EL2. However, transiently, there is a difference between the flow rate of the hydraulic iron pipe 105 and the flow rate of the water conduit 107, so that the water level EL3 of the surge tank 106 fluctuates up and down.
[0024]
For example, if the variable speed pumped storage power plants 103A and 103B repeatedly increase or decrease the input in the natural period of the surge tank by the same AFC control command during the pumping operation, the fluctuation range of the surge tank water level EL3 will increase, and finally the surge tank top water level Overflows beyond ELA. However, overflow is not generated by providing the variable speed machine 103A with the water level control function. In this function, the water level control is activated when the surge tank water level shown in FIG. 4 reaches ELX lower than ELA, and the variable speed machine 103A is switched from the AFC control priority to the surge tank water level control priority, and the rotation speed is automatically set. The pumping flow rate decreases. As a result, the surge tank water level fluctuation is attenuated as shown in FIG.
[0025]
FIG. 1 shows a first embodiment of a variable speed hydraulic power plant having a surge tank water level control function, which will be described below.
[0026]
The abnormal water level determination unit 33 that receives the water level detection signal 32 detected by the surge tank water level detector 31 outputs a signal corresponding to the water level exceeding the water level ELX described above. Note that when the water level exceeds ELX, the surge tank water level fluctuation suppression control ON command unit 35 operates, and the control signal selection circuit 48 performs control selection to be prioritized. That is, at this time, the mode is switched to the surge tank water level control priority mode. The surge tank water level fluctuation suppression control circuit 46 outputs the surge tank water level control signal 47 in response to the abnormal water level signal 34, that is, the water level signal exceeding the water level ELX. Thus, the composite power command 29 is substantially switched from the normal operation power command 49 to the surge tank water level control signal 47 by the control signal selection circuit 48. Then, the combined power command 29 becomes a final variable speed pumped-storage power generation command through the power command lower limit setting device 30. In this way, the variable speed machine power command 21 that is finally input to the variable speed machine is determined.
[0027]
Apparatuses 1 to 23 show the configuration of a known variable speed pumping plant.
This is the same as that disclosed in 212774 (control device for variable speed pumping device).
[0028]
This embodiment is an example showing a device configuration in the case where a winding induction machine having a primary winding 4 and a secondary winding 5 is used as a variable speed electric motor. The primary winding 4 of the winding induction machine is connected to the power system 1, the secondary winding 5 is connected to the AC exciter 7, and the input of the induction machine is input to the variable speed machine power command 21 by the AC exciter 7. Increase or decrease depending on The rotation state of the induction machine is detected by the speed detector 17 and input to the adders 19 and 20.
[0029]
FIG. 2 shows a specific example of the surge tank water level fluctuation suppression control circuit 46 and a specific example of the control signal selection circuit 48 of the embodiment of FIG. The water level adjustment rate circuit 43 is a restoration circuit for providing a localization property between the abnormal water level signal 34 and the surge tank water level control signal 42.
[0030]
The integration operation circuit 39 continues the integration operation until the surge tank water level control signal 42 reaches a target value corresponding to the abnormal water level signal 34 in consideration of the water level adjustment rate circuit 43. The proportional calculation circuit 38 is a circuit for reducing a response delay of the output surge tank water level control signal 42 with respect to the abnormal water level signal 34 that is an input. The control signal selection circuit composed of the devices 24 to 28 is a first-order lag element, and the power command response speed adjusting unit 26 that performs the integration operation is an integration element, and the gain is the surge tank water level control ON signal. When 45 comes, it is automatically reduced. As a result, the response time constant of the response speed adjusted power command 27 with respect to the normal operation power command 49 becomes significantly longer, and the response speed adjusted power command 27 is effectively maintained as it is. In this way, the combined power command is substantially influenced by the surge tank water level control signal 42, and the variable speed pump is put into the surge tank control mode.
[0031]
【The invention's effect】
It eliminates the waste of surge tank design based on the natural period vibration of the surge tank and enables economical design.
[0032]
At the same time, it is possible to eliminate unnecessary AFC control suppression, restriction, etc. on the premise of the natural period excitation of the surge tank, and to fully exhibit the high-performance AFC and high-speed governor-free function unique to the variable speed machine.
[Brief description of the drawings]
FIG. 1 is a first example of a variable speed hydraulic power plant having a surge tank water level control function.
FIG. 2 shows a second example of a variable speed hydraulic power plant having a surge tank water level control function.
FIG. 3 shows an example of a variable speed hydraulic power plant having a surge tank.
FIG. 4 is an operation explanatory diagram of surge tank water level control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2,103 ... Pump turbine, 3 ... Main shaft, 4 ... Primary side winding, 5 ... Secondary side winding, 6 ... Primary side of variable speed machine, 7 ... AC excitation apparatus, 8 ... Guide vane Opening control device, 9 ... Restoration, 10, 14, 19, 20, 24, 28, 36 ... Adder, 11 ... Output of adder 10, 12 ... Actual power detection signal, 13, 29 ... Composite power command, 15 ... output of adder 14, 16 ... AC excitation of secondary winding, 17 ... speed detector, 18 ... rotational speed command function generator, 21 ... variable speed machine power command, 22 ... proper rotational speed command, 23 ... actual , 25, 37 ... deviation signal, 26 ... power command response speed adjustment unit, 27 ... response speed adjusted power command, 30 ... power command lower limit setter, 31 ... surge tank water level detector, 32 ... detection signal as above 33: Abnormal water level detector 34: Abnormal water level signal 35: Surge tank water Fluctuation suppression control ON command device, 38 ... proportional calculation circuit, 39 ... integral calculation circuit, 40 ... proportional calculation circuit output, 41 ... integral calculation circuit output, 42, 47 ... surge tank water level control signal, 43 ... water level regulation rate circuit, 44 ... Water level arbitration rate circuit output, 45 ... Surge tank water level control ON signal, 46 ... Surge tank water level fluctuation suppression control circuit, 48 ... Control signal selection circuit, 49 ... Normal operation power command, 101 ... Shimoike, 102 ... Discharge channel 104 ... Hydraulic iron pipe branch pipe, 105 ... Hydraulic iron pipe, 106 ... Surge tank, 107 ... Water conduit, 108 ... Upper pond, EL1 ... Upper pond water level, EL2 ... Lower pond water level, EL3 ... Surge tank water level, ELA ... Surge tank Top water level.

Claims (2)

上池側または下池側水路にサージタンクを有する可変速水力プラントにおいて、
通常運転用電力指令に応答して出力又は入力を調整しながら、運転状態に応じた適正回転速度でポンプ水車が運転される可変速水力プラントであって、
前記サージタンク水位を検出する水位検出器と、該水位検出器の検出信号に応答して前記サージタンクの水位変動を抑制制御する信号を出力するサージング水位変動抑制制御回路と、前記ポンプ水車が揚水モード運転時、サージング水位変動抑制制御ON指令器の動作に基づき、通常運転用電力指令から該サージング水位変動抑制制御回路の出力信号によりサージタンク水位制御優先モードに切換える制御信号選択回路とを備え、該制御信号選択回路により切換えた信号を可変速機電力指令として可変速機に入力し、前記ポンプ水車の回転速度を調整することを特徴とする可変速水力プラント。
In a variable speed hydropower plant with a surge tank in the upper pond side or lower pond side waterway,
A variable speed hydraulic power plant in which a pump turbine is operated at an appropriate rotation speed according to an operating state while adjusting an output or input in response to a normal operation power command,
A water level detector that detects the surge tank water level, a surging water level fluctuation suppression control circuit that outputs a signal that suppresses and controls fluctuations in the water level of the surge tank in response to a detection signal of the water level detector, and the pump turbine is pumped mode operation, based on the operation of the surging water level fluctuation suppression control oN command unit, and a control signal selection circuit for switching the surge tank water level control priority mode from the normal operation for power command by an output signal of the surging water level fluctuation suppression control circuit, A variable speed hydraulic power plant , wherein a signal switched by the control signal selection circuit is input to a variable speed machine as a variable speed machine power command to adjust the rotational speed of the pump turbine .
上池側または下池側水路にサージタンクを有する可変速揚水プラントにおいて、
通常運転用電力指令に応答して入力を調整しながら、運転状態に応じた適正回転速度でポンプを駆動する可変速電動機が運転される可変速揚水プラントであって、
前記サージタンク水位を検出する水位検出器と、該水位検出器の検出信号に応答して前記サージタンクの水位変動を抑制制御する信号を出力するサージング水位変動抑制制御回路と、サージング水位変動抑制制御ON指令器の動作に基づき、通常運転用電力指令から該サージング水位変動抑制制御回路の出力信号によりサージタンク水位制御優先モードに切換える制御信号選択回路とを備え、該制御信号選択回路により切換えた信号を電力指令として前記可変速電動機に入力し、前記ポンプの回転速度を調整することを特徴とする可変速揚水プラント。
In a variable speed pumping plant with a surge tank in the upper pond side or lower pond side waterway,
A variable-speed pumping plant in which a variable-speed electric motor that drives a pump at an appropriate rotation speed according to an operation state is operated while adjusting an input in response to a power command for normal operation,
A water level detector that detects the surge tank water level, a surging water level fluctuation suppression control circuit that outputs a signal that suppresses the water level fluctuation of the surge tank in response to a detection signal of the water level detector, and a surging water level fluctuation suppression control A control signal selection circuit for switching to the surge tank water level control priority mode from the power command for normal operation based on the output signal of the surging water level fluctuation suppression control circuit based on the operation of the ON command device, and the signal switched by the control signal selection circuit Is input to the variable speed electric motor as an electric power command, and the rotational speed of the pump is adjusted.
JP16410496A 1996-06-25 1996-06-25 Variable speed hydropower plant Expired - Fee Related JP3834356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16410496A JP3834356B2 (en) 1996-06-25 1996-06-25 Variable speed hydropower plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16410496A JP3834356B2 (en) 1996-06-25 1996-06-25 Variable speed hydropower plant

Publications (2)

Publication Number Publication Date
JPH109117A JPH109117A (en) 1998-01-13
JP3834356B2 true JP3834356B2 (en) 2006-10-18

Family

ID=15786841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16410496A Expired - Fee Related JP3834356B2 (en) 1996-06-25 1996-06-25 Variable speed hydropower plant

Country Status (1)

Country Link
JP (1) JP3834356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841386B2 (en) * 2011-09-28 2016-01-13 日立三菱水力株式会社 Variable speed pumped storage power generator

Also Published As

Publication number Publication date
JPH109117A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JPH0351910B2 (en)
JPS6124601B2 (en)
US5561358A (en) Variable speed pumping-up generator
JP5350076B2 (en) Power plant condensate system controller
JP3834356B2 (en) Variable speed hydropower plant
JP2001025298A (en) Device and method for corresponding control of water condition
JPS59150982A (en) Generator protecting device for wind power plant
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP2013078195A (en) Control method for variable-speed synchronous power generator motor
JP2001271736A (en) Pump turbine operation control system
JP2514453B2 (en) AC excitation synchronous machine control device
JPH06233579A (en) Method and apparatus for controlling pumping operation
JP2752075B2 (en) Control devices for hydraulic machines
JPH11223105A (en) Automatic plant control device
JPS62271907A (en) Control device for supply oil temperature
JPH10122118A (en) Speed governing control device for water turbine and reversible pump-turbine
JP2523520B2 (en) Control device for variable speed turbine generator
JPH0768937B2 (en) How to stop pumping operation of variable speed pump turbine
JPH01318596A (en) System for controlling ac-excited synchronous machine
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JP2004044944A (en) Device for controlling recirculation flow rate of feed-water pump
JPH0850190A (en) Reactor core flow rate control system
JPH05231296A (en) Control device for water to be taken in
JPH03284196A (en) Control device for synchronous machine
JPH04358768A (en) Operation control device for variable speed hydraulic machinery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees