JPH05231296A - Control device for water to be taken in - Google Patents

Control device for water to be taken in

Info

Publication number
JPH05231296A
JPH05231296A JP4036317A JP3631792A JPH05231296A JP H05231296 A JPH05231296 A JP H05231296A JP 4036317 A JP4036317 A JP 4036317A JP 3631792 A JP3631792 A JP 3631792A JP H05231296 A JPH05231296 A JP H05231296A
Authority
JP
Japan
Prior art keywords
output
generator
water
load
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4036317A
Other languages
Japanese (ja)
Inventor
Umerou Ueno
梅郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4036317A priority Critical patent/JPH05231296A/en
Publication of JPH05231296A publication Critical patent/JPH05231296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PURPOSE:To prevent the rapid fluctuation of the output of a generator and to prevent deterioration of a load regulating mechanism, such as a guide vane, the load setter regulating circuit and the load setter itself of a governor by starting a plurality of generators so that a water level in a water tank equivalent to a water-intake amount does not enter the margin of a water level in the water tank equivalent to a vibration zone and distributing a load to each generator. CONSTITUTION:An amount of inflow water taken in through an intake is converted into an integrated output command value PT by means of a water-intake amount/ integrated output converting circuit 100. A load distributing circuit 110 predetermined the number of operating generators and distribution of an output value outputted by each running generator according to an integrated command value PT. A starting/ stopping circuit 120 outputs a starting and a stopping command for a generator according to a command for the number of operating generators inputted from the load distributing circuit 110. Signals, caused to follow an output command value for a generator according to which the actual output value of the generator is determined by the load distributing circuit 110, are outputted from No.1, No.2, and No.3 machine load following means circuits 50, 60, and 70.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水路式発電所に設置さ
れる応水制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water response control device installed in a hydroelectric power plant.

【0002】[0002]

【従来の技術】一般に、河川の水を取水口から取り入
れ、導水路を介し比較的小容量の調整池に水を貯え、こ
の貯えられた水を圧力トンネルを通り比較的小容量の水
槽を経由して水車に導かれ発電を行う水路式発電所で
は、発電機が複数ある場合には発電機の運転台数は、調
整池および水槽の水位により決まり、また起動される発
電機の発電機出力は水槽の水位により決まる。
2. Description of the Related Art Generally, water from a river is taken in from a water inlet, water is stored in a regulating pond having a relatively small capacity via a headrace, and the stored water is passed through a pressure tunnel and a water tank having a relatively small capacity. In a hydroelectric power plant that is guided by a turbine to generate electricity, if there are multiple generators, the number of generators operating depends on the water level of the regulating pond and water tank, and the generator output of the activated generator is Determined by the water level in the aquarium.

【0003】また、水車には回転数がある一定領域にな
ると振動を生じる振動帯がある、そのためこの振動帯を
回避するように応水制御装置は発電機の出力を制御して
いる。以下、水路式発電所の設備構成図を図10を参照し
て説明する。
Further, the water turbine has a vibration band in which the rotation speed vibrates in a certain region. Therefore, the water response control device controls the output of the generator so as to avoid this vibration band. The equipment configuration diagram of the hydroelectric power plant will be described below with reference to FIG.

【0004】取水口1から取水される水は、導水路2を
介して調整池3に流入し、一定容量の水を貯える。調整
池3から圧力トンネル4および水槽5を介して流入され
る水により発電機G1 〜G3 が駆動し、この発電機G1
〜G3 を駆動させた水は放水路6を介し河川に放流され
る。
The water taken from the water intake 1 flows into the regulating basin 3 via the water conduit 2 and stores a fixed amount of water. The generators G1 to G3 are driven by the water flowing from the regulating pond 3 through the pressure tunnel 4 and the water tank 5, and the generator G1
The water that drives ~ G3 is discharged to the river through the discharge channel 6.

【0005】ここでいう、調整池3とは、河川から取水
口1から流入する水を日々の負荷変動に応じる目的で時
間的に調整するものである。例えば、深夜の余剰水量を
貯水し、昼間の負荷ピ―ク時に対応する。
The adjusting pond 3 referred to here is for adjusting the water flowing from the river from the intake port 1 in terms of time in order to respond to daily load fluctuations. For example, the surplus water amount at midnight is stored and used during the daytime load peak.

【0006】また、水槽5は、圧力トンネル4の末端に
設置されており、この水槽5の水位の変化から水車に流
入させる水量を検出し、この水量に応じた発電機出力を
行っている。また、発電所における急激な負荷変化によ
り流入水量が急変することで生じる水撃作用で圧力トン
ネル4に被害を及ぼさないように一時的に急変する水量
を吸収、補給するものである。以上のような、水路式発
電所においては、取水口1から流入する水量に応じ複数
の発電機を運転させる応水制御装置が設けられている。
以下、図を参照して固有の振動帯を有する3個の発電機
を有する水路式発電所の従来の応水制御装置を説明す
る。
Further, the water tank 5 is installed at the end of the pressure tunnel 4, detects the amount of water flowing into the water turbine from the change in the water level of the water tank 5, and outputs a generator according to this water amount. In addition, the amount of water that suddenly changes suddenly is absorbed and replenished so as not to damage the pressure tunnel 4 by the water hammer effect that occurs when the amount of inflowing water suddenly changes due to a sudden change in load at the power plant. As described above, the water-channel power plant is provided with a water response control device that operates a plurality of generators according to the amount of water flowing from the intake 1.
Hereinafter, a conventional water response control device for a hydroelectric power plant having three generators having unique vibration bands will be described with reference to the drawings.

【0007】調整池3の水位の下位から上位にかけて第
1発電機(以下、1番機という。)の停止水位S1およ
び起動水位M1、第2発電機(以下、2番機という。)
の停止水位S2および起動水位M2、第3発電機(以
下、3番機という。)の停止水位S3および起動水位M
3を設定している。但し、ここでいう1番機、2番機、
3番機とは、発電機を運転する運転順序を示すもので、
どの発電機が何番機であるかは予め設定されている。
又、水槽5にも下位から上位にかけて起動停止水位S、
起動許可水位Mが設定されている。上記、3台の発電機
の各設定水位および水槽の各設定水位関係を図8に示
す。図6を参照して従来の応水制御装置の構成を説明す
る。現在の調整池3の水位を調整池水位HWL,水槽5
の水位を水槽水位SWLとする。
From the lower water level to the higher water level of the regulating pond 3, the stop water level S1 and the starting water level M1 of the first generator (hereinafter referred to as the first generator), and the second generator (hereinafter referred to as the second generator).
Stop water level S2 and starting water level M2, stop water level S3 and starting water level M of the third generator (hereinafter referred to as "3rd generator")
3 is set. However, the first and second machines here
The 3rd machine shows the operation sequence to operate the generator,
Which generator is which number is preset.
In addition, the water level S of the start / stop water S
The activation permission water level M is set. FIG. 8 shows the relationship between the set water levels of the three generators and the set water levels of the water tank. The configuration of the conventional water response control device will be described with reference to FIG. The current water level of the regulating pond 3 is the regulating pond water level HWL, and the water tank 5
Let the water level of the tank be the water level SWL.

【0008】起動/停止制御回路10は、全機起動停止時
に調整池水位HWLが起動水位M1以上で、水槽水位L
2が起動許可水位M以上になると1番機の起動指令K1
を出力する。また、調整池水位HWLが1番機停止水位
S1以下、水槽水位SWLが起動停止水位S以下になる
と1番機停止指令T1を出力する。2番機、3番機に関
しても同様に上記条件が成立した発電機に対して起動指
令、停止指令を出力する。
The start / stop control circuit 10 controls the water level HWL of the regulating pond to be equal to or higher than the start water level M1 when the entire machine is stopped and the water level L in the aquarium.
When 2 becomes the activation permission water level M or more, the activation command K1 of the first machine
Is output. Further, when the regulating pond water level HWL becomes the first stop water level S1 or lower and the aquarium water level SWL becomes the start stop water level S or lower, the first stop command T1 is output. Similarly, regarding the second and third machines, a start command and a stop command are output to the generators that satisfy the above conditions.

【0009】1番機水調出力指令値演算回路20、2番機
水調出力指令値演算回路30、3番機水調出力指令値演算
回路40は、水位調定率に従い、水槽水位SWLに対する
負荷出力を演算し出力するものである。上記各回路の演
算方法は同様なので、ここでは1番機水調出力指令値演
算回路20に関して説明する。
The first machine water condition output command value calculation circuit 20, the second machine water condition output command value calculation circuit 30, and the third machine water condition output command value calculation circuit 40 load the tank water level SWL according to the water level regulation rate. The output is calculated and output. Since the calculation method of each of the above circuits is the same, the first device water condition output command value calculation circuit 20 will be described here.

【0010】1番機水調出力指令値演算回路20は、水槽
水位SWLの信号を入力し、予め設定されている水位調
定率に従い、1番機の発電機出力である1番機出力指令
値PO1を出力する。水位調定率に関し図8を参照して
説明する。
The No. 1 water condition output command value calculation circuit 20 inputs the signal of the water tank water level SWL, and according to a preset water level regulation ratio, the No. 1 generator output command value which is the generator output of the No. 1 device. Output PO1. The water level adjustment rate will be described with reference to FIG.

【0011】基準水位Lは、図7で示されている起動停
止水位Sと起動許可水位Mの間に設定されているもので
あり、一般に30〜50cm程度の幅を有する。ここでは、30
cmの場合で説明し、基準水位Lの最下位の水槽水位SW
Lを基準水位L=0、最上位の水槽水位SWLを基準水
位L= 100とする。水位調定率とは、発電機出力に対す
る基準水位の傾きである。水槽水位SWLが、基準水位
L=0の場合には無負荷となり水槽水位SWLが上昇す
るに従い水位調定率に従い発電機出力も増加する。そし
て、発電機出力が1番機の振動帯下限出力値L1と1番
機の振動帯上限出力値H1の範囲内にある場合、振動帯
下限出力値L1に制限される。
The reference water level L is set between the starting / stopping water level S and the starting permission water level M shown in FIG. 7, and generally has a width of about 30 to 50 cm. Here, 30
In the case of cm, the lowest water tank SW of the reference water level L
L is the reference water level L = 0, and the highest water tank water level SWL is the reference water level L = 100. The water level adjustment rate is the slope of the reference water level with respect to the generator output. When the water tank water level SWL is the reference water level L = 0, there is no load, and as the water tank water level SWL rises, the generator output also increases according to the water level adjustment rate. When the generator output is within the range of the vibration band lower limit output value L1 of the first machine and the vibration band upper limit output value H1 of the first machine, it is limited to the vibration band lower limit output value L1.

【0012】そして、水槽水位SWLが上昇して、1番
機の振動帯上限出力値H1に相当する基準水位Lに上昇
すると制限されていた1番機の振動帯下限出力値L1を
解除し、一気に振動帯を回避し再び水位調定率に従い水
槽水位SWLの上昇に応じて発電機出力が増加し、基準
水位L= 100となり発電機出力も全負荷となる。また、
水槽水位SWLが、基準水位L= 100の場合には全負荷
となり水槽水位SWLが下降するに従い水位調定率に従
い発電機出力も減少する。そして、発電機出力が1番機
の振動帯上限出力値H1と1番機の振動帯下限出力値L
1の範囲内にある場合、1番機の振動帯上限出力値H1
に制限される。
When the water level SWL of the water tank rises and rises to the reference water level L corresponding to the vibration band upper limit output value H1 of the No. 1 machine, the vibration band lower limit output value L1 of the No. 1 machine is released, The vibration band is avoided all at once, and the generator output increases again as the tank water level SWL rises in accordance with the water level regulation ratio, and the reference water level L = 100, and the generator output also becomes the full load. Also,
When the water tank water level SWL is the reference water level L = 100, the load becomes full load, and as the water tank water level SWL decreases, the generator output also decreases according to the water level adjustment rate. The generator output is the vibration band upper limit output value H1 of the first machine and the vibration band lower limit output value L of the first machine.
When it is within the range of 1, the vibration band upper limit output value H1 of No. 1 machine
Limited to.

【0013】そして、水槽水位SWLが下降して、1番
機の振動帯下限出力値L1に相当する基準水位Lに下降
すると制限されていた1番機の振動帯上限出力値H1を
解除し、一気に振動帯を回避し再び水位調定率に従い水
槽水位SWLの下降に応じて発電機出力が減少し、基準
水位L=0となり発電機出力も無負荷となる。1番機負
荷追従回路50、2番機負荷追従回路60、3番機負荷追従
回路70、各回路の演算方法は同様なので、ここでは1番
機負荷追従回路50に関して説明する。
Then, when the water level SWL of the water tank is lowered to the reference water level L corresponding to the vibration band lower limit output value L1 of the No. 1 machine, the vibration band upper limit output value H1 of the No. 1 machine, which has been restricted, is released, The vibration band is avoided all at once, and the generator output decreases again as the water tank water level SWL decreases in accordance with the water level regulation rate, and the reference water level L = 0 and the generator output also becomes unloaded. The No. 1 load follow-up circuit 50, the No. 2 load follow-up circuit 60, the No. 3 load follow-up circuit 70, and the calculation method of each circuit are the same, so the No. 1 load follow-up circuit 50 will be described here.

【0014】1番機負荷追従回路50は、1番機起動指令
R1が入力されていることを条件に、1番機出力指令値
PO1と1番機実出力値P1とを加算し、出力される偏
差出力が負の場合は1番機負荷減指令D1を、出力され
る偏差出力が正の場合は1番機負荷増指令U1を出力す
る。また、従来の応水制御装置に関し、図9の取水量,
水槽水位,発電機出力の関係を示すグラフを参照して説
明する。ここで理解しやすいように、定格出力=10MW、
振動帯出力=4〜6MWである水車発電機で、取水量Qが
発電機出力の3MW相当に増加したときを説明する。取水
量Qが発電機出力の3MW相当から4MW相当の取水量Qま
では、水槽水位は発電機出力の3MW相当から4MW相当の
水槽水位まで上昇する。そして、発電機から図8の水位
調定率に従い、3MWから4MWの発電機出力を出力する。
The No. 1 machine load follow-up circuit 50 adds the No. 1 machine output command value PO1 and the No. 1 machine actual output value P1 on condition that the No. 1 machine start command R1 is inputted, and the result is outputted. If the deviation output is negative, the No. 1 load reduction command D1 is output, and if the outputted deviation output is positive, the No. 1 load increase command U1 is output. In addition, regarding the conventional water response control device,
An explanation will be given with reference to a graph showing the relationship between the water level in the aquarium and the generator output. For easy understanding, rated output = 10 MW,
A description will be given of a case where a water turbine generator having a vibration band output of 4 to 6 MW has a water intake amount Q increased to 3 MW corresponding to the generator output. When the water intake Q is from the generator output equivalent to 3 MW to 4 MW equivalent, the aquarium water level rises from the generator output equivalent to 3 MW to 4 MW equivalent. Then, the generator outputs a generator output of 3 MW to 4 MW according to the water level regulation rate of FIG.

【0015】そして、取水量Qが発電機出力の4MW相当
の取水量Q以上になると、水槽水位は4MW相当の水槽水
位より上昇するが、発電機出力は図8の水位調定率に従
い振動帯を回避するように4MWで制限される。そして、
水槽水位が発電機出力の6MW相当になると、発電機出力
は図8の水位調定率に従い4MWの発電機出力から6MWの
発電機出力に出力が急激に変化する。
When the intake water amount Q becomes equal to or higher than the intake water amount Q corresponding to 4 MW of the generator output, the water tank water level rises above the water tank water level corresponding to 4 MW, but the generator output follows the vibration band according to the water level adjustment rate in FIG. Limited to 4 MW to avoid. And
When the water level of the aquarium is equivalent to 6 MW of the generator output, the output of the generator changes rapidly from the generator output of 4 MW to the generator output of 6 MW according to the water level regulation rate in Fig. 8.

【0016】しかし、現在の取水量Qが発電機出力の5
MW相当の取水量Qであるため、取水量Qが水車に流入す
る水量より発電機出力の1MW相当分少ないので、水槽水
位は下降し、図8の水位調定率に従い、振動帯を回避す
るように水槽水位は発電機出力の4MW相当の水槽水位ま
で下降する。
However, the current water intake Q is 5 of the generator output.
Since the water intake Q is equivalent to MW, the water intake Q is smaller than the amount of water flowing into the turbine by 1 MW of the generator output, so the water level of the aquarium drops and the vibration band should be avoided according to the water level adjustment rate in Fig. 8. In addition, the tank water level drops to a tank water level equivalent to 4 MW of generator output.

【0017】そして、水槽水位が発電機出力の4MW相当
の水槽水位になると、発電機出力は図8の水位調定率に
従い6MWの発電機出力から4MWの発電機出力に出力が急
激に変化し、現在の取水量が発電機出力の5MW相当の取
水量であるため、取水量が水車に流入する水量より発電
機出力の1MW相当分多いので、水槽水位は上昇する。
When the water level of the water tank reaches a water level corresponding to the generator output of 4 MW, the output of the generator rapidly changes from the generator output of 6 MW to the generator output of 4 MW in accordance with the water level adjustment ratio of FIG. Since the current water intake is 5 MW equivalent to the generator output, the water intake is higher than the water flowing into the turbine by 1 MW equivalent to the generator output, so the tank water level rises.

【0018】以下、水槽水位が、発電機出力の4MW相当
の水槽水位から発電機出力の6MW相当の水槽水位に上
昇、発電機出力の6MW相当の水槽水位から発電機出力の
4MW相当の水槽水位に下降する。
Hereinafter, the water tank water level rises from the water tank water level equivalent to 4 MW of the generator output to the water tank water level equivalent to 6 MW of the generator output, and the water tank water level equivalent to 4 MW of the generator output from the water tank water level equivalent to 6 MW of the generator output. Descend to.

【0019】[0019]

【発明が解決しようとする課題】以上のように、従来の
応水制御装置は構成されているので、水車発電機に振動
帯がある場合には、水槽水位すなわち水車への流入水量
が上記振動帯に相当する場合に、振動帯上限出力値に相
当する水槽水位と振動帯下限出力値に相当する水槽水位
の間で繰り返し水位の変動が生じる。そのため、発電機
の出力の急激な変動が生じ、系統に悪影響を与える。
As described above, since the conventional water response control device is configured, when the turbine generator has a vibration band, the water level of the water tank, that is, the amount of water flowing into the turbine is the above vibration. When it corresponds to a belt, the water level repeatedly changes between the water tank water level corresponding to the vibration band upper limit output value and the water tank water level corresponding to the vibration band lower limit output value. Therefore, the output of the generator suddenly fluctuates, which adversely affects the system.

【0020】また、繰り返し行われる負荷変動により、
ガイドベ―ン,サ―ボモ―タ等の負荷調定機構やガバナ
の負荷設定器増減回路および負荷設定器自体の劣化を進
める原因となる。また、水槽水位の急激な変動は、主機
のトリップを招く恐れがある。
Further, due to repeated load fluctuations,
This may cause deterioration of the load adjusting mechanism such as guide vanes and servo motors, the load adjuster increasing / decreasing circuit of the governor, and the load adjuster itself. Further, a sudden change in the water level of the aquarium may cause a trip of the main engine.

【0021】よって、本発明の目的は、取水量に相当す
る水槽水位が振動帯に相当する水槽水位幅に入らないよ
うに複数の発電機を起動させ、各発電機に負荷を分配す
ることで発電機の出力の急激な変動を防止することで、
ガイドベ―ン,サ―ボモ―タ等の負荷調整機構やガバナ
の負荷設定器増減回路および負荷設定器自体の劣化の防
止をする。
Therefore, an object of the present invention is to start a plurality of generators so that the water tank water level corresponding to the amount of water intake does not fall within the water tank water level width corresponding to the vibration zone, and to distribute the load to each generator. By preventing sudden changes in the output of the generator,
Prevents deterioration of the load adjusting mechanism such as guide vanes and servo motors, the load setter increase / decrease circuit of the governor, and the load setter itself.

【0022】[0022]

【課題を解決するための手段】本発明の応水制御装置
は、取水口から調整池に流入する流入水量に応じ複数あ
る発電機の運転台数を制御する応水制御装置において、
前記流入水量を総合負荷出力値に変換する流量/負荷変
換手段と、前記総合負荷出力値に応じて発電機の運転台
数を選択し、選択された各発電機が出力を行う出力指令
値を算出配分する負荷配分手段と、前記負荷配分手段で
求まる発電機の運転台数から各発電機の起動および停止
指令を出力する起動/停止制御手段と、前記負荷配分手
段で求まる発電機の出力指令値と発電機の実出力値とか
ら、この実出力値が前記負荷配分手段で求まる発電機の
出力指令値に追従させる信号を出力する負荷追従手段
と、を具備する。
A water response control device of the present invention is a water response control device for controlling the number of operating generators in accordance with the amount of inflow water flowing from an intake to a regulating pond.
A flow rate / load conversion means for converting the amount of inflow water into a total load output value and the number of operating generators according to the total load output value are selected, and an output command value for output from each selected generator is calculated. Load distribution means for distributing, start / stop control means for outputting start and stop commands for each generator based on the number of operating generators obtained by the load distribution means, and output command value for the generator obtained by the load distribution means Load follow-up means for outputting a signal for making the actual output value follow the output command value of the generator obtained by the load distribution means, from the actual output value of the generator.

【0023】[0023]

【作用】以上のように本発明は構成されているので、取
水口から取り入れられた流入水量を流量/負荷変換手段
で総合負荷出力値に変換する。そして、負荷配分手段
は、この総合負荷出力値から、発電機の運転台数を決
め、この運転される各発電機が出力を行う出力値の配分
を決める。尚、総合負荷出力値は、運転している各発電
機が割り当てられた出力値の合計値である。そして、起
動/停止制御手段は、負荷配分手段から入力される運転
台数の指令から発電機の起動および停止指令を出力す
る。また、負荷追従手段から発電機の実出力値が負荷配
分手段で求まる発電機の出力指令値に追従させる信号を
出力する。
Since the present invention is configured as described above, the amount of inflow water taken in from the water intake is converted into the total load output value by the flow rate / load conversion means. Then, the load distribution means determines the number of operating generators based on the total load output value, and determines the distribution of output values output by each of the operated generators. The total load output value is the total value of the output values assigned to the operating generators. Then, the start / stop control unit outputs the start and stop commands of the generator from the command of the operating number input from the load distribution unit. Further, the load follow-up means outputs a signal for causing the actual output value of the generator to follow the output command value of the generator obtained by the load distribution means.

【0024】[0024]

【実施例】以下、本発明の一実施例である応水制御装置
を図を参照して説明する。尚ここでは、3台の発電機を
有する場合で説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water response control device according to an embodiment of the present invention will be described below with reference to the drawings. In addition, here, the case of having three generators will be described.

【0025】取水量/総合負荷出力変換回路 100は、図
10に示している取水口1から取水する取水量Qを、図3
に示す取水量/総合負荷出力特性に従い総合出力指令値
PTに変換する。ここで、取水口1から取水する取水量
Qは、取水口1に設けられている弁の開度から算出され
る。
The water intake / total load output conversion circuit 100 is
The amount Q of water intake from the intake 1 shown in 10 is shown in FIG.
It is converted into the total output command value PT according to the water intake amount / total load output characteristic shown in. Here, the amount Q of water taken from the water intake 1 is calculated from the opening degree of the valve provided at the water intake 1.

【0026】負荷配分回路 110は、入力される総合出力
指令値PTに応じて運転させる発電機の台数を選択する
と共に、選択された発電機の発電機出力を算出出力する
ものであり、図2の内部構成図に示されているように1
番機出力指令値演算回路 111,2番機出力指令値演算回
路 112,3番機出力指令値演算回路 113,1台運転指令
回路 114,2台運転指令回路 115,3台運転指令回路 1
16から構成されている。尚、ここでいう1番機、2番
機、3番機とは、発電機を運転する運転順序を示すもの
で、どの発電機であるかは予め設定されている。
The load distribution circuit 110 selects the number of generators to be operated according to the input total output command value PT, and calculates and outputs the generator output of the selected generators. 1 as shown in the internal configuration diagram of
Unit output command value calculation circuit 111, Unit 2 output command value calculation circuit 112, Unit 3 output command value calculation circuit 113, 1 unit operation command circuit 114, 2 units operation command circuit 115, 3 units operation command circuit 1
It consists of 16. The No. 1, No. 2, No. 3, and No. 3 units referred to here indicate the operation sequence in which the generators are operated, and which generator is set in advance.

【0027】以下の表は、負荷配分回路 110に入力され
る総合出力指令値PTに応じて、3台の発電機の内で運
転する発電機および運転する発電機の発電機出力の配分
表を示すものであり、機種毎に予め設定されている。
The following table is a distribution table of generators operating among the three generators and generator output of the generators operating according to the total output command value PT input to the load distribution circuit 110. This is shown and is preset for each model.

【0028】[0028]

【表1】 図4は、この表を分かりやすいように横軸に総合出力指
令値PT,縦軸に運転される各発電機の発電機出力値を
とりグラフ化したものである。
[Table 1] FIG. 4 is a graph in which the horizontal axis indicates the total output command value PT and the vertical axis indicates the generator output value of each generator for easy understanding.

【0029】例えば総合出力指令値PTが3MWの場合
は、1台運転指令回路 114から1台の発電機を運転する
1台運転指令X1のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力を3MWにする
ような1番機出力指令値PO1が出力される。
For example, when the total output command value PT is 3 MW, the 1-unit operation command circuit 114 outputs the ON signal of the 1-unit operation command X1 for operating one generator, and the 1st unit output command value calculation circuit 111 outputs the No. 1 output command value PO1 which makes the No. 1 generator output 3 MW.

【0030】この場合、2番機出力指令値演算回路 11
2,3番機出力指令値演算回路 113,2台運転指令回路
115,3台運転指令回路 116のいずれの回路からも、出
力指令値および運転指令も出力されなく、2番機そして
3番機は運転を停止している。
In this case, the No. 2 output command value calculation circuit 11
2nd and 3rd machine output command value calculation circuit 113, 2 units operation command circuit
The output command value and the operation command are not output from any of the 115 and 3 unit operation command circuits 116, and the operation of the second and third machines is stopped.

【0031】また、総合出力指令値PTが6MWの場合
は、2台運転指令回路 115から2台の発電機を運転する
2台運転指令X2のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力を2〜4MW未
満の1番機出力指令値PO1および2番機出力指令値演
算回路 112から2番機の発電機出力を2〜4MW未満の2
番機出力指令値PO2が出力される。但し、(1番機出
力指令値PO1)+(2番機出力指令値PO2)=6MW
になるように、1番機出力指令値PO1、2番機出力指
令値PO2の値を設定する。
When the total output command value PT is 6 MW, the ON signal of the two-unit operation command X2 for operating the two generators is output from the two-unit operation command circuit 115, and the No. 1 unit output command value is calculated. From the circuit 111, the generator output of No. 1 is 2 to less than 4 MW and the No. 1 output command value PO1 and the output of No. 2 output command value calculation circuit 112 is 2 to less than 2 to 4 MW.
The number output command value PO2 is output. However, (No. 1 output command value PO1) + (No. 2 output command value PO2) = 6MW
The values of the No. 1 output command value PO1 and the No. 2 output command value PO2 are set so that

【0032】この場合、3番機出力指令値演算回路 11
3,1台運転指令回路 114,3台運転指令回路 116のい
ずれの回路からも、出力指令値および運転指令も出力さ
れなく、3番機は運転を停止している。
In this case, the third unit output command value calculation circuit 11
No output command value or operation command is output from any of the 3, 1-device operation command circuit 114 and the 3-device operation command circuit 116, and the operation of the No. 3 machine is stopped.

【0033】また、総合出力指令値PTが9MWの場合
は、2台運転指令回路 115から2台の発電機を運転する
2台運転指令X2のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力を6MWの1番
機出力指令値PO1および2番機出力指令値演算回路 1
12から2番機の発電機出力を3MWの2番機出力指令値P
O2が出力される。
When the total output command value PT is 9 MW, the ON signal of the two-device operation command X2 for operating the two generators is output from the two-device operation command circuit 115, and the first device output command value calculation is performed. From the circuit 111, the generator output of the No. 1 machine is the 6MW 1st machine output command value PO1 and No. 2 machine output command value calculation circuit 1
The generator output of No. 2 to No. 12 is 3MW No. 2 output command value P
O2 is output.

【0034】この場合、3番機出力指令値演算回路 11
3,1台運転指令回路 114,3台運転指令回路 116のい
ずれの回路からも、出力指令値および運転指令も出力さ
れなく、3番機は運転を停止している。
In this case, No. 3 output command value calculation circuit 11
No output command value or operation command is output from any of the 3, 1-device operation command circuit 114 and the 3-device operation command circuit 116, and the operation of the No. 3 machine is stopped.

【0035】また、総合出力指令値PTが11MWの場合
は、2台運転指令回路 115から2台の発電機を運転する
2台運転指令X2のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力を8MWの1番
機出力指令値PO1および2番機出力指令値演算回路 1
12から2番機の発電機出力を3MWの2番機出力指令値P
O2が出力される。
When the total output command value PT is 11 MW, the ON signal of the two-unit operation command X2 for operating the two generators is output from the two-unit operation command circuit 115, and the first unit output command value calculation is performed. From the circuit 111 to the generator output of No. 1 machine, the 8MW No. 1 machine output command value PO1 and No. 2 machine output command value calculation circuit 1
The generator output of No. 2 to No. 12 is 3MW No. 2 output command value P
O2 is output.

【0036】この場合、3番機出力指令値演算回路 11
3,1台運転指令回路 114,3台運転指令回路 116のい
ずれの回路からも、出力指令値および運転指令も出力さ
れなく、3番機は運転を停止している。
In this case, the third unit output command value calculation circuit 11
No output command value or operation command is output from any of the 3, 1-device operation command circuit 114 and the 3-device operation command circuit 116, and the operation of the No. 3 machine is stopped.

【0037】また、総合出力指令値PTが15MWの場合
は、2台運転指令回路 115から2台の発電機を運転する
2台運転指令X2のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力から6〜10MW
未満の1番機出力指令値PO1および2番機出力指令値
演算回路 112から2番機の発電機出力から6〜10MW未満
の2番機出力指令値PO2が出力される。但し、(1番
機出力指令値PO1)+(2番機出力指令値PO2)=
15MWになるように、1番機出力指令値PO1、2番機出
力指令値PO2の値を設定する。
When the total output command value PT is 15 MW, the ON signal of the two-unit operation command X2 for operating the two generators is output from the two-unit operation command circuit 115, and the first unit output command value calculation is performed. 6 to 10 MW from the output of generator No. 1 from circuit 111
No. 1 output command value PO1 and No. 2 output command value calculation circuit 112 output No. 2 output command value PO2 of less than 6-10 MW from the No. 2 generator output. However, (No. 1 output command value PO1) + (No. 2 output command value PO2) =
The No. 1 output command value PO1 and the No. 2 output command value PO2 are set to be 15 MW.

【0038】この場合、3番機出力指令値演算回路 11
3,1台運転指令回路 114,3台運転指令回路 116のい
ずれの回路からも、出力指令値および運転指令も出力さ
れなく、3番機は運転を停止している。
In this case, the third unit output command value calculation circuit 11
No output command value or operation command is output from any of the 3, 1-device operation command circuit 114 and the 3-device operation command circuit 116, and the operation of the No. 3 machine is stopped.

【0039】また、総合出力指令値PTが25MWの場合
は、3台運転指令回路 116から3台の発電機を運転する
3台運転指令X3のON信号が出力され、1番機出力指
令値演算回路 111から1番機の発電機出力から 6.6〜10
MWの1番機出力指令値PO1および2番機出力指令値演
算回路 112から2番機の発電機出力から 6.6〜10MW未満
の2番機出力指令値PO2、そして3番機出力指令値演
算回路 113から3番機の発電機器出力から 6.6〜10MWの
3番機出力指令値PO3が出力される。
When the total output command value PT is 25 MW, the ON signal of the three-unit operation command X3 for operating the three generators is output from the three-unit operation command circuit 116, and the first unit output command value calculation is performed. 6.6 to 10 from the generator output of No. 1 machine from circuit 111
MW No. 1 output command value PO1 and No. 2 output command value calculation circuit 112 to No. 2 generator output command value PO2 from the No. 2 generator output, and No. 3 output command value calculation circuit From the generator output of the third generator from 113, the third output command value PO3 of 6.6 to 10 MW is output.

【0040】但し、(1番機出力指令値PO1)+(2
番機出力指令値PO2)+(3番機出力指令値PO3)
=25MWになるように1番機出力指令値PO1、2番機出
力指令値PO2、3番機出力指令値PO3の値を設定す
る。この場合、1台運転指令回路 114,3台運転指令回
路 116のいずれの回路からも、運転指令は出力されな
い。
However, (No. 1 output command value PO1) + (2
Machine output command value PO2) + (3rd machine output command value PO3)
Set the values of the No. 1 output command value PO1, the No. 2 output command value PO2, and the No. 3 output command value PO3 so that = 25 MW. In this case, no operation command is output from either the one-device operation command circuit 114 or the three-device operation command circuit 116.

【0041】起動/停止制御回路 120は、3台の発電機
が停止中に1台運転指令X1のON信号が入力されると
1番機起動指令K1を、1台運転中に2台運転指令X2
のON信号が入力されると2番機起動指令K2を、2台
運転中に3台運転指令X3のON信号が入力されると3
番機起動指令K3を出力する。
The start / stop control circuit 120 outputs the No. 1 start command K1 when the ON signal of the one-unit operation command X1 is input while the three generators are stopped, and the two-unit operation command is issued during the operation of one unit. X2
No. 2 start command K2 is input when the ON signal of 3 is input, and 3 is input when the ON signal of three unit operation command X3 is input during the operation of two units.
Outputs the machine start command K3.

【0042】また、3台運転中に3台運転指令X2のO
FF信号が入力されると3番機停止指令T3を、2台運
転中に2台運転指令X1のOFF信号が入力されると3
番機停止指令T2を、1台運転中に1台運転指令X1の
OFF信号が入力されると1番機停止指令T1を出力す
る。1番機負荷追従回路50、2番機負荷追従回路60、3
番機負荷追従回路70、各回路の演算方法は同様なので、
ここでは1番機負荷追従回路50に関して説明する。
During operation of the three units, O of the three unit operation command X2
When the FF signal is input, the No. 3 machine stop command T3 is input, and when the OFF signal of the two-device operation command X1 is input during the two-device operation, it is 3
As for the machine stop command T2, when the OFF signal of the machine operation command X1 is input during the operation of one machine, the machine stop command T1 is output. 1st machine load following circuit 50, 2nd machine load following circuit 60, 3
The device load tracking circuit 70, the calculation method of each circuit is the same,
Here, the No. 1 load following circuit 50 will be described.

【0043】1番機負荷追従回路50は、1番機起動指令
R1が入力されていることを条件に、1番機出力指令値
PO1と1番機実出力値P1とを加算し、出力される偏
差出力が負の場合は1番機負荷減指令信号D1を、出力
される偏差出力が正の場合は1番機負荷増指令信号U1
を出力する。又、取水量、水槽水位、発電機出力関係を
示す図5のグラフを参照して本実施例の応水制御装置を
説明する。
The No. 1 machine load follow-up circuit 50 adds the No. 1 machine output command value PO1 and the No. 1 machine actual output value P1 on condition that the No. 1 machine start command R1 has been input, and the result is output. No. 1 load decrease command signal D1 when the deviation output is negative, and No. 1 load increase command signal U1 when the output deviation is positive
Is output. Further, the water response control device of the present embodiment will be described with reference to the graph of FIG. 5 showing the relationship between the water intake amount, the water tank water level, and the generator output.

【0044】ここで理解しやすいように、定格出力=10
MW、振動帯出力=4〜6MWである水車発電機で、取水量
Qが発電機出力の3MW相当から9MW相当に増加したとき
を説明する。取水量Qが発電機出力の3MW相当から4MW
相当の取水量Qまでは、水槽水位は発電機出力の3MW相
当から4MW相当の水槽水位まで上昇する。そして、図8
の水位調定率に従い、1台の発電機から3MWから4MWの
発電機出力を出力する。
For easy understanding, rated output = 10
In the turbine generator with MW and vibration band output = 4 to 6 MW, the case where the water intake Q increases from 3 MW corresponding to the generator output to 9 MW will be described. Water intake Q is 4 MW from 3 MW equivalent to generator output
Up to a considerable water intake Q, the tank water level rises from the generator output equivalent to 3 MW to the equivalent of 4 MW. And FIG.
According to the water level regulation rate of, the generator output of 3MW to 4MW is output from one generator.

【0045】そして、取水量Qが発電機出力の4MW相当
の取水量Q以上になると、1台から2台の発電機の運転
になり、2番機も運転を行い並列すると1番機出力指令
値PO1および2番機出力指令値PO2ともに2MWとな
る。また、取水量Qが発電機出力の4MW相当から5MW相
当に増加するに従い、1番機出力指令値PO1および2
番機出力指令値PO2ともに 2.5MWに増加する。
When the amount Q of intake water becomes equal to or greater than the amount Q of intake water equivalent to 4 MW of the generator output, the operation of one to two generators is started. Both the value PO1 and the output command value PO2 for the second unit are 2 MW. Also, as the water intake Q increases from the generator output of 4 MW to 5 MW, the No. 1 output command values PO1 and 2
Both the unit output command value PO2 increases to 2.5 MW.

【0046】きた、取水量Qが発電機出力の5MW相当か
ら9MW相当に増加する場合、取水量Qが発電機出力の8
MW相当までは1番機出力指令値PO1および2番機出力
指令値PO2ともに 2.5MWから4MWまで増加し、取水量
Qが発電機出力の8MW相当を越えると1番機出力指令値
PO1は6MWに、2番機出力指令値PO2は2MWにな
る。そして、取水量Qが発電機出力の9MW相当に増加す
ると、1番機出力指令値PO1は6MWのままで、2番機
出力指令値PO2は2MWから3MWに増加する。
When the amount Q of water intake has increased from 5 MW corresponding to the output of the generator to 9 MW equivalent, the amount Q of water intake is equal to 8 of the output of the generator.
Up to MW equivalent, both No. 1 output command value PO1 and No. 2 output command value PO2 increased from 2.5 MW to 4 MW, and when water intake Q exceeds 8 MW equivalent to generator output, No. 1 output command value PO1 is 6 MW In addition, the output command value PO2 of the second machine becomes 2 MW. When the water intake Q increases to 9 MW corresponding to the generator output, the No. 1 output command value PO1 remains 6 MW and the No. 2 output command value PO2 increases from 2 MW to 3 MW.

【0047】以上より、本実施例によれば取水量Qが発
電機出力の3MW相当から5MW相当に増加する場合でも、
1番機が振動帯に入る場合には自動的に2番機も起動さ
せ発電機を2台にして取水量Qに見合った発電機出力を
行う。そのため、水槽の水槽水位の変動がなくなるの
で、発電機からの発電機出力が変動して系統に悪影響を
及ぼすことを防止できる。
From the above, according to the present embodiment, even when the water intake Q increases from the generator output of 3 MW to 5 MW,
When the No. 1 machine enters the vibration band, the No. 2 machine is also automatically started, and the number of generators is set to be two to perform the generator output commensurate with the water intake Q. Therefore, since the water level of the water tank does not change, it is possible to prevent the generator output from the generator from changing and adversely affecting the system.

【0048】また、頻繁な発電機出力の増減がなくなる
ので、ガイドベ―ン,サ―ボモ―タ等の負荷調整機構や
ガバナの負荷設定器増減回路および負荷設定器自体の劣
化の防止をする。
Further, since the generator output does not increase and decrease frequently, deterioration of the load adjusting mechanism such as the guide vane and the servo motor, the load setter increasing / decreasing circuit of the governor, and the load setter itself is prevented.

【0049】また、本実施例では総合発電機出力値と各
発電機の発電機出力の関係を負荷配分回路で予め設定し
ているが、各発電機の振動帯上限および振動帯下限を予
め設定しておくことで、自動的に総合発電機出力指令値
PTを1番機出力指令値PO1、2番機出力指令値PO
2、3番機出力指令値PO3に分配することも可能であ
る。また、本実施例では、発電機が3台の場合で説明し
たが、発電機の台数は3台以外でも本実施例と同様に可
能である。
Further, in the present embodiment, the relationship between the total generator output value and the generator output of each generator is preset by the load distribution circuit, but the vibration band upper limit and vibration band lower limit of each generator are preset. By doing so, the total generator output command value PT is automatically set to the first device output command value PO1 and the second device output command value PO.
It is also possible to distribute to the second and third machine output command values PO3. Further, in the present embodiment, the case where the number of generators is three has been described, but the number of generators other than three is also possible in the same manner as in the present embodiment.

【0050】[0050]

【発明の効果】以上のように、本発明によれば振動帯を
有する複数個の発電機の運転に際し、取水量に応じ各発
電機を運転する発電機の発電機出力を各発電機の振動帯
に入らないように決めるので、水槽水位の急激な変動に
よる発電機の出力の急激な変動を防止することができる
ので系統への悪影響、またはガイドベ―ン,サ―ボモ―
タ等の負荷調整機構やガバナの負荷設定器増減回路およ
び負荷設定器自体の劣化の防止することができる。
As described above, according to the present invention, when operating a plurality of generators having a vibration band, the generator output of the generator that operates each generator according to the amount of water intake is changed by the vibration of each generator. Since it is decided not to enter the zone, it is possible to prevent a sudden change in the output of the generator due to a sudden change in the water level of the aquarium, so there is no adverse effect on the system, or a guide vane or servo
It is possible to prevent the deterioration of the load adjusting mechanism such as a switch, the load setting device increasing / decreasing circuit of the governor, and the load setting device itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の応水制御装置の構成図。FIG. 1 is a configuration diagram of a water response control device according to an embodiment.

【図2】本実施例の応水制御装置の負荷配分回路の内部
構成図。
FIG. 2 is an internal configuration diagram of a load distribution circuit of the water response control device according to the present embodiment.

【図3】本実施例の取水量/総合発電機特性図。FIG. 3 is a water intake / total power generator characteristic diagram of the present embodiment.

【図4】本実施例の総合発電機出力/各発電機出力特性
図。
FIG. 4 is a general generator output / each generator output characteristic diagram of the present embodiment.

【図5】本実施例の応水制御装置の動作説明図。FIG. 5 is an operation explanatory diagram of the water response control device according to the present embodiment.

【図6】従来の応水制御装置の構成図。FIG. 6 is a block diagram of a conventional water response control device.

【図7】従来の応水制御装置の起動/停止水位説明図。FIG. 7 is an explanatory diagram of a start / stop water level of a conventional water response control device.

【図8】従来の応水制御装置の水位調定率の説明図。FIG. 8 is an explanatory diagram of a water level adjustment rate of a conventional water response control device.

【図9】従来の応水制御装置の動作説明図。FIG. 9 is an operation explanatory view of the conventional water response control device.

【図10】水路式発電所の全体構成図。FIG. 10 is an overall configuration diagram of a hydrographic power station.

【符号の説明】[Explanation of symbols]

1…取水口、2…導水路、3…調整池、4…圧力トンネ
ル、5…水槽、6…放水路、10, 120…起動/停止制御
回路、20…1番機水調出力指令値演算回路、30…2番機
水調出力指令値演算回路、40…3番機水調出力指令値演
算回路、50…1番機負荷追従回路、60…2番機負荷追従
回路、70…3番機負荷追従回路、 100…取水量/総合負
荷出力変換回路、 110…負荷配分回路、 111…1番機出
力指令値演算回路、 112…2番機出力指令値演算回路、
113…3番機出力指令値演算回路、 114…1台運転指令
回路、 115…2台運転指令回路、 116…3台運転指令回
路、S1,S2,S3…停止水位、K1,K2,K3…
起動水位、S…起動停止水位、M…起動許可水位、L…
基準水位、HWL…調整池水位、SWL…水槽水位、H
1,H2,H3…振動帯上限出力値、L1,L2,L3
…振動帯下限出力値、PO1…1番機出力指令値、PO
2…2番機出力指令値、PO3…3番機出力指令値、T
1…1番機停止指令、T2…2番機停止指令、T3…3
番機停止指令、K1…1番機起動指令、K2…2番機起
動指令、K3…3番機起動指令、X1…1台運転指令、
X2…2台運転指令、X3…3台運転指令、PT…総合
出力指令値、U1…1番機負荷増指令、U2…2番機負
荷増指令、U3…3番機負荷増指令、D1…1番機負荷
減指令、D2…2番機負荷減指令、D3…3番機負荷減
指令、P1…1番機実出力値、P2…2番機実出力値、
P3…3番機実出力値、R1…1番機起動指令、R2…
2番機起動指令、R3…3番機起動指令、Q…取水量。
1 ... Intake port, 2 ... Headrace channel, 3 ... Regulating pond, 4 ... Pressure tunnel, 5 ... Water tank, 6 ... Drainage channel, 10, 120 ... Start / stop control circuit, 20 ... No. 1 machine water condition output command value calculation Circuit, 30 ... No. 2 water condition output command value calculation circuit, 40 ... No. 3 water condition output command value calculation circuit, 50 ... No. 1 load follow circuit, 60 ... No. 2 load follow circuit, 70 ... No. 3 Machine load following circuit, 100 ... Water intake / total load output conversion circuit, 110 ... Load distribution circuit, 111 ... No. 1 output command value calculation circuit, 112 ... No. 2 output command value calculation circuit,
113 ... Unit 3 output command value calculation circuit, 114 ... 1 unit operation command circuit, 115 ... 2 unit operation command circuit, 116 ... 3 unit operation command circuit, S1, S2, S3 ... Stop water level, K1, K2, K3 ...
Starting water level, S ... Starting stop water level, M ... Starting permission water level, L ...
Standard water level, HWL ... adjusting pond water level, SWL ... aquarium water level, H
1, H2, H3 ... Vibration band upper limit output value, L1, L2, L3
... Lower limit output value of vibration band, PO1 ... Output command value of No. 1 machine, PO
2 ... No. 2 output command value, PO3 ... No. 3 output command value, T
1 ... 1st machine stop command, T2 ... 2nd machine stop command, T3 ... 3
No. machine stop command, K1 ... No. 1 machine start command, K2 ... No. 2 machine start command, K3 ... No. 3 machine start command, X1 ... One machine operation command,
X2 ... 2 unit operation command, X3 ... 3 unit operation command, PT ... Total output command value, U1 ... 1st machine load increase command, U2 ... 2nd machine load increase command, U3 ... 3rd machine load increase command, D1 ... 1st machine load reduction command, D2 ... 2nd machine load reduction command, D3 ... 3rd machine load reduction command, P1 ... 1st machine actual output value, P2 ... 2nd machine actual output value,
P3 ... No. 3 actual output value, R1 ... No. 1 start command, R2 ...
No. 2 start command, R3 ... No. 3 start command, Q ... Water intake.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 取水口から調整池に流入する流入量に応
じ複数ある発電機の運転台数を制御し、この流入水量に
見合った発電機出力の制御を行う応水制御装置におい
て、 前記流入水量を総合負荷出力値に変換する流量/負荷変
換手段と、 前記総合負荷出力値に応じて発電機の運転台数の選択
と、選択された各発電機が出力を行う出力指令値を算出
配分する負荷配分手段と、 前記負荷配分手段で求まる発電機の運転台数から各発電
機の起動および停止指令を出力する起動/停止制御手段
と、 前記負荷配分手段で求まる発電機の出力指令値と発電機
の実出力値とから、この実出力値が前記負荷配分手段で
求まる発電機の出力指令値に追従させる信号を出力する
負荷追従手段と、を具備することを特徴とする応水制御
装置。
1. A water response control device for controlling the number of operating plural generators according to the inflow amount flowing into an adjustment pond from an intake port, and controlling the generator output commensurate with the inflow water amount. To a total load output value, a load for calculating and distributing an output command value output by each selected generator, and the number of operating generators according to the total load output value. Distribution means, start / stop control means for outputting start and stop commands of each generator based on the number of operating generators obtained by the load distribution means, output command value of the generator obtained by the load distribution means, and generator And a load follow-up means for outputting a signal for making the actual output value follow the output command value of the generator obtained by the load distribution means, from the actual output value.
JP4036317A 1992-02-24 1992-02-24 Control device for water to be taken in Pending JPH05231296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036317A JPH05231296A (en) 1992-02-24 1992-02-24 Control device for water to be taken in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036317A JPH05231296A (en) 1992-02-24 1992-02-24 Control device for water to be taken in

Publications (1)

Publication Number Publication Date
JPH05231296A true JPH05231296A (en) 1993-09-07

Family

ID=12466464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036317A Pending JPH05231296A (en) 1992-02-24 1992-02-24 Control device for water to be taken in

Country Status (1)

Country Link
JP (1) JPH05231296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633867A (en) * 1992-07-20 1994-02-08 Ebara Corp Prevention of noise and device therefor
JP2005240655A (en) * 2004-02-26 2005-09-08 Toshiba Corp Operation control device for hydraulic power plant and its method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633867A (en) * 1992-07-20 1994-02-08 Ebara Corp Prevention of noise and device therefor
JP2005240655A (en) * 2004-02-26 2005-09-08 Toshiba Corp Operation control device for hydraulic power plant and its method

Similar Documents

Publication Publication Date Title
US4806781A (en) Water-driven machine set with the speed reference value set for optimum efficiency
JPS6032036B2 (en) Power plant control equipment
JPS61149583A (en) Starting method for variable speed reversible pump-turbine or pump
US6336322B1 (en) Method of controlling a pump turbine
JP2758237B2 (en) Hydroelectric power plant generator
JPH05231296A (en) Control device for water to be taken in
JP2894978B2 (en) Tank level control device for hydroelectric power plant
JP3544704B2 (en) Turbine generator control device
JP2001025298A (en) Device and method for corresponding control of water condition
JP2839731B2 (en) Control method of hydroelectric power plant with discharge valve
JP3839862B2 (en) Pumping operation method of variable speed hydraulic machine
JP2766501B2 (en) Water level adjustment device for dam type hydroelectric power plant
JP2589337Y2 (en) Turbine operation control device of regulating pond type hydroelectric power plant
JP2737202B2 (en) Water turbine guide vane control device
JPS6153559B2 (en)
JPH0533756A (en) Input control method during pumping operation of generator motor
JP4398167B2 (en) Power generation equipment using pump reverse turbine
JPH0447174A (en) Water response control device in hydraulic power plant
JPS6287671A (en) Pumped storage generating unit
JPH0749012Y2 (en) Turbine operation controller for hydroelectric power plant
JPH0637872B2 (en) How to start a hydraulic turbine
JP3261632B2 (en) A method for controlling the supply of air to the suction pipe of a water turbine in a falling head power plant.
JPH06169599A (en) Water regulation follow-up driver for hydraulic power plant
JP4722711B2 (en) Drainage equipment
JPS6230303B2 (en)