JPS62267576A - Operation controller - Google Patents

Operation controller

Info

Publication number
JPS62267576A
JPS62267576A JP61108554A JP10855486A JPS62267576A JP S62267576 A JPS62267576 A JP S62267576A JP 61108554 A JP61108554 A JP 61108554A JP 10855486 A JP10855486 A JP 10855486A JP S62267576 A JPS62267576 A JP S62267576A
Authority
JP
Japan
Prior art keywords
power generation
head
output
flow rate
main engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61108554A
Other languages
Japanese (ja)
Other versions
JPH0759938B2 (en
Inventor
Tetsuya Noguchi
野口 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61108554A priority Critical patent/JPH0759938B2/en
Publication of JPS62267576A publication Critical patent/JPS62267576A/en
Publication of JPH0759938B2 publication Critical patent/JPH0759938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To generate power with high efficiency by calculating the maximum possible generator output command level while employing a water flow to be used for power generation and an effective head during operation of a hydroelectric power station as parameters. CONSTITUTION:An effective head calculating section 4 obtains a static head, i.e. a difference of water level between a water take-in port 1 and a water discharge port 2 then obtains a loss head from a water flow to be used for power generation and calculates an effective head 5. A start/stop command forming and processing section 6 detects an operating range and a stopping rang from the effective head 5, the water flow 3 to be used for power generation and a power generation efficiency characteristic. The operating range is confined such that the effective head 5 is higher than the stop level of main machine determined in due consideration of the characteristic of main machine and the power generation efficiency is higher than eta1. When a start command 8 is received, an automatic sequence processing section 16 starts the main machine automatically, while when the main machine is brought into parallel condition, an output command forming/processing section 11 calculates an output command level 12 based upon the effective head 5 and the water flow 3 to be used for power generation if an operating range condition 10 is satisfied.

Description

【発明の詳細な説明】 〔発明の目的〕 (1M業上の利用分野) 本発明は年間の落差変動が大きい変落差の水力9!電所
における運転制御装置に関するものである4(従来の技
術) 年間の落差変動が大きな変落差の水力発電所では、この
落差の変動に応じて発電効率が変化する。
[Detailed Description of the Invention] [Object of the Invention] (Field of application in 1M industry) The present invention is applicable to hydraulic power plants with variable head that have large annual head fluctuations. 4. Related to Operation Control Device in Electric Power Station (Prior Art) In a hydroelectric power plant with a variable head where annual head fluctuations are large, power generation efficiency changes in accordance with fluctuations in the head.

この発電効率が一定範囲以下の場合に発電運f2を継続
すると振動、キャビテーション等により土機の劣化が進
行する。このため、この一定範囲(以下運転範囲と呼ぶ
)外の運用としては、主機運転中であれば主機を停止し
・、主機停止中であれば起動しない様にする必要がある
If the power generation operation f2 is continued when the power generation efficiency is below a certain range, the earthen structure will deteriorate due to vibration, cavitation, etc. Therefore, for operation outside this certain range (hereinafter referred to as the operating range), it is necessary to stop the main engine if it is in operation, and to prevent it from starting if the main engine is stopped.

又、これら変落差の水力発電所の多くは下流に有り、下
流の水力発電所に対する制約、水位変化の制約等により
発電に使用する流量が制限されたり、制御所からの指令
値が流量で与えられることが多い。
In addition, many of these hydroelectric power plants with variable head are located downstream, and the flow rate used for power generation is limited due to constraints on downstream hydroelectric power plants, constraints on water level changes, etc., and the command value from the control center is not given in terms of flow rate. often.

これらの状況を考慮して従来は第9図に示す様な運転制
御装置が設けられていた。第9図において、静落差運転
範囲検出部31では図示しない上ダム又は河川等に設け
られ発電に使用する水を取込むための取水口における水
位(以下取水口水位と呼ぶ)1と発電に使用した水を放
流するために設けである放水口における水位(以下放水
口水位と呼ぶ)2の差を取って静落差を求め、この静落
差が運転範囲(通常運転下限静落差1,7以上)であれ
ば静落差運転範囲内条件33を出力する。流量運転範囲
検出部32では発電に使用する流量又は指令流量(以下
発電使用流量と呼ぶ)3が運転範囲(通常運転下限使用
流量01以上)であれば流量運転範囲内条件34を出力
する。起動、停止指令作成処理部6では、主機停止中に
静落差運転範囲内条件33と流量運転範囲内条件34が
成立した時に起動指令8を出力し、主機運転中にどちら
か1方でも運転I!li囲内条外内条件しなくなれば停
止指令9を出力する。自動シーケンス処理部16におい
ては、起動指令8.停止指令9に応じて主機の起動、停
止処理を行う。ここで、指令値として発電使用流t3が
与えられるとする。この場合にフィードバック信号とし
て実際の発電に使用している実流軟を用いるとすれば、
制御精度を十分に確保するためしこはフィードバック信
号の精度を高くする必要があり高価な流量計(例えば超
音波式)の設置が必要となる。又1発電所の構造によっ
てはこの流量計の設置が困難なものもある。このため、
指令値である発電使用流量3と静落差より換算した値を
出力指令値12とし、高精度な測定が容易な有効電力を
フィードバック信号として用いることが多い。
In consideration of these situations, an operation control device as shown in FIG. 9 has conventionally been provided. In FIG. 9, the static head operating range detection unit 31 determines the water level (hereinafter referred to as water intake water level) 1 at a water intake provided in an upper dam or river (not shown) to take in water used for power generation, and the water level 1 used for power generation. The static head difference is obtained by taking the difference between the water levels at the water outlet (hereinafter referred to as the water level at the water outlet) 2, which is provided to discharge the water that has been discharged, and this static head difference is within the operating range (normal operation lower limit static head 1.7 or more). If so, the static head operation range condition 33 is output. The flow rate operation range detection unit 32 outputs a flow rate operation range condition 34 if the flow rate used for power generation or the command flow rate (hereinafter referred to as the power generation use flow rate) 3 is within the operation range (normal operation lower limit use flow rate 01 or more). The start/stop command creation processing unit 6 outputs a start command 8 when the static head operation range condition 33 and the flow rate operation range condition 34 are satisfied while the main engine is stopped, and if either one of the conditions is satisfied while the main engine is in operation, ! When the inner and outer conditions within the li range are no longer met, a stop command 9 is output. In the automatic sequence processing section 16, the activation command 8. The main engine is started and stopped in response to the stop command 9. Here, it is assumed that the power generation usage flow t3 is given as the command value. In this case, if we use the actual current used in actual power generation as the feedback signal,
In order to ensure sufficient control accuracy, it is necessary to increase the accuracy of the feedback signal, and it is necessary to install an expensive flow meter (for example, an ultrasonic type). Furthermore, depending on the structure of the power plant, it may be difficult to install this flow meter. For this reason,
The output command value 12 is a value converted from the command value of the power generation usage flow rate 3 and the static head difference, and the active power, which can be easily measured with high precision, is often used as the feedback signal.

第9図には、出力設定器30により出力指令値12が設
定されているが、これは発電使用流量3と静落差により
求めたものである。
In FIG. 9, an output command value 12 is set by the output setting device 30, which is determined from the power generation usage flow rate 3 and the static head difference.

自動負荷7A!II処理部13は、この出力指令値12
と発電出力14を比較(発電機出力が出力指令値12に
追従する様に調速機18へ操作信号17を出力する。
Automatic load 7A! The II processing unit 13 uses this output command value 12
and the power generation output 14 (the operation signal 17 is output to the speed governor 18 so that the generator output follows the output command value 12).

調速@18は主機動作特性19内のガイドベーン開度を
調整する。(発電機出力14を出力指令値12に追従さ
せる。) ところで、水力発電所の出力は一般的に次式で求めるこ
とが出来る。
The speed regulator @18 adjusts the guide vane opening degree in the main engine operating characteristic 19. (The generator output 14 is made to follow the output command value 12.) By the way, the output of a hydroelectric power plant can generally be determined by the following equation.

P= 9.8 (l H・ ’7t’7c     [
kwl   ’7tηg=’IP=7方、     Q
:1.秒間の流量(発電使用流量)H:有効落差、  
η、:水車効率+   Q(:発電機効率η:発電効率 ここで、有効落差は静落差から損失水頭を引いて求める
にの損失水頭は、水路形状2表面の状態、使用流量等に
より異なる値となる。尚、水車効率η、と発電機効率q
tは次式の様な関係がある。
P= 9.8 (l H・'7t'7c [
kwl '7tηg='IP=7-way, Q
:1. Flow rate per second (flow rate used for power generation) H: Effective head,
η,: Turbine efficiency + Q (: Generator efficiency η: Power generation efficiency, where the effective head is calculated by subtracting the head loss from the static head. The head loss is a value that varies depending on the condition of the channel shape 2 surface, the flow rate used, etc.) In addition, the water turbine efficiency η, and the generator efficiency q
t has the following relationship.

P’ =9.8 Q−H−η、、  P=P’  ηに
、P′;水車出力又、r+t=f(Qp )I)+  
’lc”1c(P’ cosO)、  cosO:力率
ここで力率cosθが一定とすると1発電効率ηは次の
様になる。
P' = 9.8 Q-H-η,, P = P' η, P'; water turbine output, r + t = f (Qp ) I) +
'lc'1c(P' cosO), cosO: Power factor Here, if the power factor cosθ is constant, the power generation efficiency η is as follows.

η=ηt*c=f (Q、H)・g(P’)=fCQ、
 H)・g’ (Q、 H,fcQ、 H) )=h(
Q、 H) 尚1”(Q、H)は水車効率特性+ g (P ’ c
os O)は発T8機効率特性、  h(Q、H)は発
電効率特性を示すものとする。 h(Q、H)より分か
る様に発電効率ηは発電実用流MQと有効落差Hにより
決まる。
η=ηt*c=f (Q, H)・g(P')=fCQ,
H)・g' (Q, H, fcQ, H) )=h(
Q, H) Note that 1" (Q, H) is the water turbine efficiency characteristic + g (P' c
os O) is the T8 generator efficiency characteristic, and h (Q, H) is the power generation efficiency characteristic. As can be seen from h(Q, H), the power generation efficiency η is determined by the power generation practical flow MQ and the effective head H.

第4図に一例として有効落差+1. 、 I+、 、 
I+、、における発電効率特性、起動を許可する下限で
ある起動下限発電効率η、、運転継続可能の下限である
運転下限発電効率η1を示す、実際の機器特性からする
と起動条件は発電効率ηがη2以、J−,有効落差Hが
一定値(例えばH,)以」二であれば良く、第4図から
発?!!使用流駄が01以下でも、起動。
Figure 4 shows an example of effective head +1. , I+, ,
The power generation efficiency characteristic at I+, , shows the starting lower limit power generation efficiency η, which is the lower limit that allows startup, and the operating lower limit power generation efficiency η1, which is the lower limit that allows continued operation.From the actual equipment characteristics, the startup condition is that the power generation efficiency η is η2 or more, J-, and the effective head H should be less than a certain value (for example, H,). ! ! Activates even if the used Ruda is 01 or less.

運転が出来る範囲の有ることが分かる。そこで。I can see that there is a range within which I can drive. Therefore.

静落差と発電使用流量との関係で運転範囲を示すと第5
@の5部(右上りの斜線範囲)となる。
The operating range based on the relationship between the static head difference and the flow rate used for power generation is 5th.
This is the 5th part of @ (shaded area on the top right).

(発明が解決しようとする問題点) ところが、従来の運転制御装置においては、静落差が一
定値(第5図ではH1′)以上、発電使用流量が01以
上であることを条件としているため第5図のa部(斜線
交差範囲)が運転範囲と判断されていた。又、出力指令
値も静落差と発″?IS使用流層より求め損失水頭が考
慮されていないため誤差が多くなり常に発電効率を高く
しておくことが出来ない。
(Problem to be Solved by the Invention) However, in the conventional operation control device, the static head is required to be at least a certain value (H1' in Fig. 5) and the flow rate used for power generation is at least 01. Part a in Figure 5 (crossing area with diagonal lines) was determined to be the operating range. In addition, the output command value does not take into account the head loss determined from the static head difference and the flow layer used by the IS, so there are many errors and it is not possible to always maintain high power generation efficiency.

又、第6図に示す様に運転範囲C部(M線範囲)と停止
1−範囲り部(横線範囲)の両方に含まれる部分を設け
て起動後すぐに停止してしまう様な無駄な起動、停止を
防ぐことも困難である。
In addition, as shown in Figure 6, a part included in both the operating range C part (M line range) and the stop 1-range part (horizontal line range) is provided to avoid wasteful situations such as stopping immediately after starting. It is also difficult to prevent starting and stopping.

以上に示した様に、従来の運転制御装置では運転範囲が
実際の運転可能な範囲より狭くなり有効に利用出来ない
、損失水頭が考慮されていないため発電効率が低下する
という無駄な起動停止を行う等の問題があった。
As shown above, with conventional operation control devices, the operating range is narrower than the actual operable range, so it cannot be used effectively, and head loss is not taken into consideration, which reduces power generation efficiency and causes unnecessary startup and stopping. There were problems such as how to do it.

そこで本発明のでは、変落差の水力発電所において可能
なかぎり水を有効に利用するため、有効落差と発電使用
流量より求めた発電効率を基に自動的に主機の起動、停
止指令を作成し、発電効率を高く保つ様に発電機出力の
指令値を算出し、この指令値へ実際の発電機出力を調整
するとともに無駄な起動、停止を防ぐことにより機器の
長寿命化に貢献することが出来る運転制御装置を提供す
ることにある。
Therefore, in the present invention, in order to use water as effectively as possible in a variable head hydroelectric power plant, start and stop commands for the main engine are automatically created based on the power generation efficiency determined from the effective head and the flow rate used for power generation. , calculates a command value for the generator output to maintain high power generation efficiency, adjusts the actual generator output to this command value, and contributes to extending the life of the equipment by preventing unnecessary startups and stops. Our goal is to provide an operation control device that can.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 取水口水位と放水口水位と発電使用流量又は指令流量よ
り有効落差を算出する有効落差算出処理部と1発電使用
流量又は指令流量と前記有効落差によって決まる発電効
率が水車9発電機の効率特性により決定した起動下限発
電効率以上で、がっ。
(Means for solving the problem) An effective head calculation processing unit that calculates the effective head from the intake water level, the water outlet water level, and the flow rate used for power generation or the commanded flow rate; The efficiency is higher than the starting minimum power generation efficiency determined by the efficiency characteristics of the water turbine 9 generator.

主機停止中の時に起動指令の出力、主機運転中に前記発
電効率が水車2発電機の効率特性により決定した運転下
限発電効率未満の時に停止指令の出力、水車0発電機の
効率特性により決定した運転範囲内で主機が運転するこ
とを示す運転範囲条件の出力を行う起動、停止指令作成
処理部と、運転範囲条件と主機状態を示すシーケンス条
件により発電機出力を調整することが可能な時、発電使
用流量又は指令流量と有効落差と水車1発電機の効率特
性を基に作成した発電効率特性より算出した発電可能な
最大の発it機出力を出力指令値として出力する出力指
令作成処理部と、出力指令値に応じて実際の発電機出力
をaaする自動負荷調整処理部とを備える。
The output of the start command when the main engine is stopped, the output of the stop command when the power generation efficiency is less than the operation lower limit power generation efficiency determined by the efficiency characteristics of the turbine 2 generator while the main engine is operating, and the output of the stop command determined by the efficiency characteristics of the turbine 0 generator. When it is possible to adjust the generator output according to the start and stop command generation processing unit that outputs the operating range conditions indicating that the main engine operates within the operating range, and the sequence conditions that indicate the operating range conditions and the main engine status, an output command creation processing unit that outputs, as an output command value, the maximum generator output that can generate power, calculated from power generation efficiency characteristics created based on the power generation usage flow rate or command flow rate, effective head, and efficiency characteristics of the water turbine 1 generator; , and an automatic load adjustment processing section that adjusts the actual generator output to aa according to the output command value.

(作用) 本発明は、取水口水位、放水ロ水位9発電使用流欧、損
失木頭特性より有効落差を算出し、水車。
(Function) The present invention calculates the effective head from the water intake water level, the water discharge water level, the power generation usage flow, and the head loss characteristics, and then calculates the effective head of the water turbine.

発電機の効率特性より求めた発電効率と有効落差。Power generation efficiency and effective head determined from the efficiency characteristics of the generator.

発電使用流量より主機の運転範囲を検出し、主機の状態
に応じて起動指令、停止指令を出方し、運転中はその時
の発電使用流量と有効落差で可能な最大の発電機出力を
行う様にして水を有効に利用し1発電効率を高く保つと
ともに無駄なR@、停止を防止し機器の長寿命化に貢献
する。
The operating range of the main engine is detected from the flow rate used for power generation, and a start command and a stop command are issued depending on the state of the main engine, and during operation, the maximum generator output possible with the flow rate used for power generation and the effective head at that time is performed. This makes effective use of water, maintains high power generation efficiency, and prevents wasteful R@ and stoppages, contributing to longer lifespans of equipment.

(実施例) 第1図において、1は取水口水位、2は放水口水位、3
は発電使用流量、4は有効落差算出部、5は有効落差、
6は起動、停止指令作成処理部、7は主機の状態を示す
シーケンス条件、8は起動指令、9は停止指令、 10
は運転範囲内を示す条件。
(Example) In Figure 1, 1 is the intake water level, 2 is the water outlet water level, and 3
is the flow rate used for power generation, 4 is the effective head calculation section, 5 is the effective head,
6 is a start and stop command creation processing unit, 7 is a sequence condition indicating the state of the main engine, 8 is a start command, 9 is a stop command, 10
is a condition indicating that it is within the operating range.

11は出力指令作成処理部、12は出力指令値、13は
自動負荷調整処理部、14は主機の実際の発電出力、1
5は本発明による運転制御装置、16は主機制御を行う
自動シーケンス処理部、17は負荷調整のための操作信
号、18は調速機、19は水車9発電機等を含めた主機
の栴作特性を示している。
11 is an output command creation processing section, 12 is an output command value, 13 is an automatic load adjustment processing section, 14 is an actual power generation output of the main engine, 1
5 is an operation control device according to the present invention, 16 is an automatic sequence processing unit that controls the main engine, 17 is an operation signal for load adjustment, 18 is a speed governor, and 19 is a main engine control unit including a water turbine 9 generator, etc. It shows the characteristics.

第2図において21.24は減算器、22は損失水頭特
性算出器(特性カーブ又は特性式による)、23は損失
水頭、25は主機の運転範囲を検出する処理部、26は
起動、停止指令作成部である。その他は第1図と同様で
ある。
In Fig. 2, 21 and 24 are subtractors, 22 are head loss characteristic calculators (based on characteristic curves or characteristic formulas), 23 are head loss characteristics, 25 are processing units that detect the operating range of the main engine, and 26 are start and stop commands. This is the creation department. Other details are the same as in FIG.

以下に本発明の運転制御装置の作用について説明する。The operation of the operation control device of the present invention will be explained below.

第1図における。有効落差算出部4は第2図の様な構成
としており、減算器21において取水口水位1と放水口
水位2の差である静落差を求め、発電使用流量3より損
失水頭特性算出器22で損失水頭23を求め、静落差と
損失水頭23の差を減算器24で求めて有効落差5を算
出する。
In FIG. The effective head calculating section 4 has a configuration as shown in FIG. The head loss 23 is determined, and the difference between the static head and the head loss 23 is determined using a subtractor 24 to calculate the effective head 5.

又、第1図における起動、停止指令作成処理部6は第2
図に示す様に運転範囲を検出する処理部25と起動、停
止指令作成部26から構成されている。
In addition, the start and stop command creation processing section 6 in FIG.
As shown in the figure, it is comprised of a processing section 25 that detects the operating range and a start/stop command generation section 26.

運転範囲検出処理部25においては第7図に示す様に運
転範囲Cと停止範囲りを有効落差52発電使用流量3お
よび発電効率特性より検出している。
As shown in FIG. 7, the operating range detection processing section 25 detects the operating range C and the stop range from the effective head 52, the power generation usage flow rate 3, and the power generation efficiency characteristics.

第7図に示す様に運転範囲Cは、有効落差5が主機特性
を考慮して決定された主機の停止レベルH3P以上で発
電効率が11以上となる有効落差と発電使用流量の範囲
である。又、停止範囲りはこの運転範囲C以外の場合で
あるが、シーケンス条件7により主機の状態を確認し、
主機が停止中の場合は、発電効率が起動下限発電効率η
よ米温であるか、有効落差5が起動レベルll5T未満
であるかすれば停止範囲と判断する。
As shown in FIG. 7, the operating range C is the range of the effective head and the flow rate used for power generation in which the effective head 5 is equal to or higher than the main engine stop level H3P determined in consideration of the main engine characteristics and the power generation efficiency is 11 or more. Also, although the stop range is outside this operating range C, check the state of the main engine according to sequence condition 7,
When the main engine is stopped, the power generation efficiency is the starting lower limit power generation efficiency η
It is determined that the stop range is reached if the temperature is high or the effective head 5 is less than the activation level 115T.

これは、主機起動後に短時間で停止となってしまう様な
起動を防止し有効な運用を行うためである。運転範囲検
出処理部25は運転範囲を検出したら運転範囲条件10
を出力する。起動、停止指令作成部26においては、運
転範囲内条件10が成立し。
This is to prevent the main engine from starting up and then stopping in a short period of time, and to ensure effective operation. When the driving range detection processing unit 25 detects the driving range, it sets the driving range condition 10.
Output. In the start/stop command generation unit 26, the within-operating-range condition 10 is satisfied.

シーケンス条件7により主機が停止中であることを確認
した場合は起動指令8を出力し、停止範囲で主機が運転
中の場合は停止指令9を出力する。
If it is confirmed that the main engine is stopped according to sequence condition 7, a start command 8 is output, and if the main engine is operating within the stop range, a stop command 9 is output.

以上の起動、停止指令作成処理部6の処理をまとめると
以下の様になる。
The above processing of the start and stop command generation processing unit 6 can be summarized as follows.

主機停止中に有効落差5が起動レベル881以上であり
1発電効率が起動下限発電効率97以上となる発電使用
流f3の場合は起!II指令8を出力し、主機運転中に
有効落差5が停止レベルHsp以下であるか1発電効率
が運転範囲下限発電効率91未満となる発電使用流量3
の場合は停止指令9を出力する。
If the power generation usage flow f3 is such that the effective head 5 is equal to or higher than the startup level 881 while the main engine is stopped and the power generation efficiency is equal to or higher than the startup lower limit power generation efficiency 97, the power generation is activated! II command 8 is output, and the power generation usage flow rate 3 when the effective head 5 is below the stop level Hsp or 1 power generation efficiency is less than the operating range lower limit power generation efficiency 91 during main engine operation.
In this case, a stop command 9 is output.

自動シーケンス処理部16では起動指令8を受けると主
機を自動的に起動するシーケンスを行い、停止指令9を
受けると自動的に停止上するシーケンスを行う。出力指
令作成処理部11では、主機が起動し並列状態となった
ことをシーケンス条件7により確認し、運転範囲条件1
0が成立していれば有効落差5と発電使用流量3から第
8図の様に出力指令値12を算出する。第8図は例とし
て有効落差がHlの時に指令値として与えられる発電使
用流量3がQ。の場合を示している。この時の出力指令
値12は八となる。尚、この出力指令値12の算出は。
The automatic sequence processing section 16 performs a sequence for automatically starting the main engine when receiving a start command 8, and performs a sequence for automatically stopping the main engine when receiving a stop command 9. The output command creation processing unit 11 confirms that the main engine has started and entered the parallel state based on sequence condition 7, and sets operating range condition 1.
If 0 is established, the output command value 12 is calculated from the effective head 5 and the power generation usage flow rate 3 as shown in FIG. In FIG. 8, as an example, when the effective head is Hl, the power generation usage flow rate 3 given as the command value is Q. The case is shown below. The output command value 12 at this time is eight. The calculation of this output command value 12 is as follows.

発電効率を考慮して求めた変換式又は変換カーブにより
行う。パラメータは発電使用流f3と有効落差Sである
This is done using a conversion formula or conversion curve determined in consideration of power generation efficiency. The parameters are the power generation flow f3 and the effective head S.

自動負荷vA′M処理部13では、出力指令値12と発
電機出力14とを比較し、発電機出力14が出力指令(
1i!I 12に追従する様な操作信J+17を調速機
18へ出力する。調速機18は主機の構成要素であるサ
ーボモータによりガイドベーンを操作して発電に使用す
る実流量を調整し、出力指令値12へ発電機出力14を
追従させる。これらの主機の動作特性をまとめて主機動
作特性19として示す。
The automatic load vA'M processing unit 13 compares the output command value 12 and the generator output 14, and determines whether the generator output 14 is equal to the output command (
1i! An operation signal J+17 that follows I12 is output to the speed governor 18. The speed governor 18 operates a guide vane using a servo motor, which is a component of the main engine, to adjust the actual flow rate used for power generation, and causes the generator output 14 to follow the output command value 12. The operating characteristics of these main engines are collectively shown as main engine operating characteristics 19.

以上の様な処理を行うことにより、従来装置においては
運転を行っていなかった第5図のB”−Aの部分につい
ても運転出来、運転範囲を拡げることが出来る。又、出
力指令値の算出を有効落差と発電使用流量とをパラメー
タとして求めるため誤差が少なく高効率の発電を行うこ
とが出来る。さらに、起動、停止のレベルを別々に設け
ることにより無駄な起動、停止操作を防ぐことも出来る
By performing the above processing, it is possible to operate the part B"-A in Fig. 5, which was not operated in the conventional device, and the operating range can be expanded. Also, the output command value can be calculated. Since the effective head and the flow rate used for power generation are determined as parameters, highly efficient power generation can be performed with few errors.Furthermore, by setting start and stop levels separately, unnecessary start and stop operations can be prevented. .

本発明を適用した運転制御装置を用いることにより、主
機が運転可能な範囲全てを実際の運転範囲とすることが
出来、発電効率を高く保つことが出来るため水を有効に
利用出来るとともに、無駄な起動、停止を防ぐことによ
り機器の長寿命化を図ることも出来る。
By using the operation control device to which the present invention is applied, the entire range in which the main engine can operate can be set as the actual operating range, and power generation efficiency can be kept high, so water can be used effectively and water is not wasted. By preventing startup and shutdown, it is possible to extend the life of the equipment.

起動、停止を行うシーケンス処理部を本発明の運転制御
装置に含める構成どし主機の自動制御を全て行う運転制
御装置として構成することにより従来別々の場所で行っ
ていた点検、保守、試験等が同一個所で可能となり点検
、保守、試験の省力化、省人化が可能となる。尚、これ
らの処理の一部又は全部をソフト処理にて実施しても良
い。
By including a sequence processing unit for starting and stopping in the operation control device of the present invention and configuring it as an operation control device that performs all automatic control of the main engine, inspections, maintenance, tests, etc. that were conventionally performed at separate locations can be performed. This can be done in the same location, making it possible to save labor and manpower for inspection, maintenance, and testing. Note that a part or all of these processes may be performed by software processing.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明を適用しまた運転制御装置を用いるこ
とにより水を有効利用し、発電効率を高く保つとともに
機器の長寿命化を図ることが出来る。
As described above, by applying the present invention and using an operation control device, water can be used effectively, power generation efficiency can be kept high, and the life of the equipment can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いた場合の運転制御装置の構成例、
第2図は本発明の運転制御装置内の構成図、第3図は損
失木頭特性例、第4図は発電効率特性図、第5図は運転
範囲の説明図、第6図は運転、停止範囲の説明図、第7
図は本発明を適用した装置の運転、停止範囲の説明図、
第8図は出力指令値算出の特性図、第9図は従来の運転
制御装置の構成のブロック図である。 1・・・取水口水位     2・・・放水口水位3・
・・発電使用流ji4・・・有効落差算出部5・・・有
効落差      6・・・起動、停(F:、指令作成
処理部7・・・シーケンス条件   8・・・起動指令
9・・・停市指令      10・・・運転範囲条件
11・・・出力指令作成処理部 I2・・・出力指令値
13・・・自動負荷調整処理部 ]4・・・発電出力1
5・・・本発明の運転制御装置16・・・自動シーケン
ス処理部17・・・操作信号       18・・・
調速機19・・・主機動作特性     7.1.、2
4・・・減算器22・・・損失水頭特性算出器  23
・・・損失水頭25・・・運転範囲検出処理部  26
・・・起動、停止指令作成部30・・・出力設定器  
    31・・・静落差運転範囲検出部32・・・流
量運転範囲検出部  33・・・静落差運転範囲内条件
34・・・流量運転範囲内条件  H□′・・・通常運
転下限静落差Q、・・・通常運転下限使用流i  I+
、〜11.・・・有効落差η1・・・運転範囲下限発電
効率 η2・・・起動下限発電効率A・・・従来装置の
運転範囲  B・・・運転可能範囲C・・・運転範囲 
      D・・・停止範囲H3T・・・起動レベル
      1(sp・・・停止レベルQ、・・・発電
使用流量指令値  PI、・・・出力指令値代理人 弁
理士  則 近 憲 佑 同  三俣弘文 発電イ更用ン良量→ 第3図 第5図 第7図 第8図
FIG. 1 shows an example of the configuration of an operation control device using the present invention.
Fig. 2 is a configuration diagram of the operation control device of the present invention, Fig. 3 is an example of loss head characteristics, Fig. 4 is a power generation efficiency characteristic diagram, Fig. 5 is an explanatory diagram of the operating range, and Fig. 6 is operation/stop. Explanatory diagram of range, 7th
The figure is an explanatory diagram of the operating and stopping range of the device to which the present invention is applied;
FIG. 8 is a characteristic diagram of output command value calculation, and FIG. 9 is a block diagram of the configuration of a conventional operation control device. 1...Water intake water level 2...Water outlet water level 3.
...Power generation usage flow ji4...Effective head calculation unit 5...Effective head 6...Start, stop (F:, Command creation processing unit 7...Sequence condition 8...Start command 9... City stop command 10... Operating range condition 11... Output command creation processing section I2... Output command value 13... Automatic load adjustment processing section] 4... Power generation output 1
5... Operation control device 16 of the present invention... Automatic sequence processing unit 17... Operation signal 18...
Governor 19...Main engine operating characteristics 7.1. ,2
4... Subtractor 22... Head loss characteristic calculator 23
...Head loss 25...Operating range detection processing section 26
...Start and stop command creation unit 30...Output setting device
31...Static head operating range detector 32...Flow rate operating range detector 33...Static head operating range condition 34...Flow rate operating range condition H□'...Normal operation lower limit static head Q ,...Normal operation lower limit usage flow i I+
, ~11. ...Effective head η1...Operating range lower limit power generation efficiency η2...Start-up lower limit power generation efficiency A...Operating range of conventional equipment B...Operable range C...Operating range
D...Stop range H3T...Start level 1 (sp...Stop level Q,...Flow rate command value used for power generation PI,...Output command value agent Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata Power Generation Replacement quantity → Fig. 3 Fig. 5 Fig. 7 Fig. 8

Claims (2)

【特許請求の範囲】[Claims] (1)年間の落差変動が大きい変落差の水力発電所にお
ける運転制御装置において、取水口水位と放水口水位と
発電使用流量又は指令流量より有効落差を算出する有効
落差算出処理部と、前記発電使用流量又は指令流量と前
記有効落差によって決まる発電効率が水車、発電機の効
率特性により決定した起動下限発電効率以上で、かつ、
主機停止中の時に起動指令の出力、主機運転中に前記発
電効率が水車、発電機の効率特性により決定した運転下
限発電効率未満の時に停止指令の出力、水車、発電機の
効率特性により決定した運転範囲内で主機が運転するこ
とを示す運転範囲条件の出力を行う起動、停止指令作成
処理部と、前記運転範囲条件と主機状態を示すシーケン
ス条件により発電機出力を調整することが可能な時、前
記発電使用流量又は指令流量と前記有効落差と水車、発
電機の効率特性を基に作成した発電効率特性より算出し
た発電可能な最大の発電機出力を出力指令値として出力
する出力指令作成処理部と、前記出力指令値に応じて実
際の発電機出力を調整する自動負荷調整処理部とを有す
ることを特徴とする運転制御装置。
(1) In an operation control device for a hydroelectric power plant with a variable head that has large annual head fluctuations, an effective head calculation processing unit that calculates an effective head from the intake water level, the tailwater water level, and the flow rate used for power generation or the commanded flow rate; The power generation efficiency determined by the used flow rate or commanded flow rate and the effective head is greater than or equal to the starting lower limit power generation efficiency determined by the efficiency characteristics of the water turbine and generator, and
The output of the start command when the main engine is stopped, the output of the stop command when the power generation efficiency is less than the operating lower limit power generation efficiency determined by the efficiency characteristics of the water turbine and generator while the main engine is operating, and the output of the stop command determined by the efficiency characteristics of the water turbine and generator. When it is possible to adjust the generator output according to the start and stop command generation processing unit that outputs the operating range condition indicating that the main engine operates within the operating range, and the sequence condition indicating the operating range condition and the main engine state. , an output command creation process that outputs, as an output command value, the maximum generator output that can be generated, which is calculated from the power generation efficiency characteristics created based on the power generation use flow rate or command flow rate, the effective head, and the efficiency characteristics of the water turbine and generator. and an automatic load adjustment processing section that adjusts the actual generator output according to the output command value.
(2)前記特許請求の範囲第1項記載の運転制御装置に
主機の起動、停止処理を行なう自動シーケンス処理部を
付加したことを特徴とする運転制御装置。
(2) An operation control device characterized in that the operation control device according to claim 1 is further added with an automatic sequence processing section that performs processing for starting and stopping the main engine.
JP61108554A 1986-05-14 1986-05-14 Operation control device Expired - Fee Related JPH0759938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108554A JPH0759938B2 (en) 1986-05-14 1986-05-14 Operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108554A JPH0759938B2 (en) 1986-05-14 1986-05-14 Operation control device

Publications (2)

Publication Number Publication Date
JPS62267576A true JPS62267576A (en) 1987-11-20
JPH0759938B2 JPH0759938B2 (en) 1995-06-28

Family

ID=14487770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108554A Expired - Fee Related JPH0759938B2 (en) 1986-05-14 1986-05-14 Operation control device

Country Status (1)

Country Link
JP (1) JPH0759938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240655A (en) * 2004-02-26 2005-09-08 Toshiba Corp Operation control device for hydraulic power plant and its method
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240655A (en) * 2004-02-26 2005-09-08 Toshiba Corp Operation control device for hydraulic power plant and its method
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility

Also Published As

Publication number Publication date
JPH0759938B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
Kumar et al. Improvement power system stability using Unified Power Flow Controller based on hybrid Fuzzy Logic-PID tuning In SMIB system
CN104007281A (en) Frequency measurement method, device and system for pumped storage unit
JPS62267576A (en) Operation controller
US20070076838A1 (en) Nuclear reactor feed-water system
US3233413A (en) Control system
CN203161430U (en) Water turbine speed control system for hydroelectric generating set
KR870001551B1 (en) Adaptive gain compressor surge control system
JP2894978B2 (en) Tank level control device for hydroelectric power plant
Attivissimo et al. Model based control and diagnostic system for centrifugal pumps
JPS6246681B2 (en)
JPS5925088A (en) Light load air charging controller
Gong Research on Compressor Oil System Based on Frequency Conversion Governor
CN117108436A (en) Control method of axial flow rotating propeller unit
JPS6393014A (en) Water level controller
JP2537671Y2 (en) Control device for movable wing turbine
JPS6153559B2 (en)
RU2292483C1 (en) Speed checking device for hydraulic turbine speed governor
JP2514962B2 (en) How to operate a hydraulic machine
JPS6230303B2 (en)
CN116593158A (en) Method, device, equipment and storage medium for adjusting bearing operation parameters
JPS63111207A (en) Turbine clogging monitor
JPS6139494B2 (en)
JPS61123768A (en) Method of running tandem type pumped storage power plant
JPS6138356B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees