JPS6138356B2 - - Google Patents

Info

Publication number
JPS6138356B2
JPS6138356B2 JP54151557A JP15155779A JPS6138356B2 JP S6138356 B2 JPS6138356 B2 JP S6138356B2 JP 54151557 A JP54151557 A JP 54151557A JP 15155779 A JP15155779 A JP 15155779A JP S6138356 B2 JPS6138356 B2 JP S6138356B2
Authority
JP
Japan
Prior art keywords
pump
relay
water
water level
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54151557A
Other languages
Japanese (ja)
Other versions
JPS5675973A (en
Inventor
Tomotake Nagafuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15155779A priority Critical patent/JPS5675973A/en
Publication of JPS5675973A publication Critical patent/JPS5675973A/en
Publication of JPS6138356B2 publication Critical patent/JPS6138356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】 本発明はタンデム式揚水発電所の運転制御方法
の改良に係り、特に並列条件で揚水運転から調相
運転へ移行する過程において、調相モードを適確
に検出して主機を保護するようにした運転制御方
法に関する。
[Detailed Description of the Invention] The present invention relates to an improvement in the operation control method of a tandem pumped storage power plant, and in particular, in the process of transitioning from pumping operation to phase adjustment operation under parallel conditions, the present invention accurately detects the phase adjustment mode. This invention relates to an operation control method that protects the main engine.

一般に、ポンプ水車を揚水運転から調相運転に
移行させる場合には、第1図に示すようにケーシ
ング1のガイドベーン2を全閉し、水面押下げ用
の給気管3を通して強制給気を行なうことにより
ランナ4まわりの水をランナの下方に押下げ、そ
の押し下げ水面位を、吸出し管5に設けた水位検
出器6によつて検出し、これが所定のレベル以下
にあることを確認した後、調相運転モードに切換
える方式が採られている。
Generally, when shifting a pump-turbine from water pumping operation to phase adjustment operation, the guide vane 2 of the casing 1 is fully closed as shown in Fig. 1, and forced air is supplied through the air supply pipe 3 for pushing down the water surface. By this, the water around the runner 4 is pushed down below the runner, and the pushed down water level is detected by the water level detector 6 installed in the suction pipe 5, and after confirming that it is below a predetermined level, A method of switching to phase adjustment operation mode is adopted.

これに対し、第2図に示すように水車7とポン
プ8を一軸上に直結したタンデム式揚水機器の場
合には、系統の電力動揺を極力小さく押える目的
で、先ずポンプ8の入力を水車の出力でまかな
い、系統への入力を零とした後、ポンプ水面の押
下げに入り、それによる入力の減少を水車7側の
ガイドベーン9の開度で調整しながら調相運転モ
ードへ移行する方式が採られている。
On the other hand, as shown in Figure 2, in the case of tandem water pumping equipment in which the water turbine 7 and the pump 8 are directly connected on one shaft, the input of the pump 8 is first changed to the water turbine in order to minimize power fluctuations in the system. After reducing the input to the system to zero, the pump water level is pushed down, and the resulting decrease in input is adjusted by the opening of the guide vane 9 on the water turbine 7 side, and the system shifts to phase adjustment mode. It is taken.

この場合、従来は、ポンプ8の吸出し管10の
水位が設定水位以下にあることのみを条件として
調相運転モードに移行するようにしていたため、
次のような不都合があつた。すなわち、吸出し管
の水位が設定水位以下になつてもポンプがまだ入
力を発生している場合には水車側のガイドベーン
も未だ開いている。従つて、この状態で停止指令
が入ると、シーケンス上、調相運転はガイドベー
ン全閉が前提条件となつているため、ガイドベー
ンが開いたまま停止されることになるが、実際に
はガイドベーンからの流水のため停止不可能とな
る。
In this case, conventionally, the transition to the phase adjustment mode was made only on the condition that the water level of the suction pipe 10 of the pump 8 was below the set water level.
The following inconvenience occurred. That is, if the pump is still generating input even if the water level in the suction pipe falls below the set water level, the guide vane on the water turbine side is still open. Therefore, if a stop command is issued in this state, the sequence requires that the guide vane be fully closed for phase adjustment operation, so the guide vane will be stopped with it open, but in reality, the guide vane will remain open. It becomes impossible to shut down due to water flowing from the vanes.

また、水車側が調相運転状態にあり、ポンプ単
独で揚水運転から調相運転に移行する場合には、
水車側のガイドベーンは全閉されているので、問
題はないが、従来のポンプの吸出し管水位の検出
のみで調相運転モードによると、次のような不都
合を生ずる。すなわち、タンデム式揚水機器のポ
ンプはガイドベーンによる水量調整が必要ないの
で、第2図に示すように流水しや断用の吐出弁1
1のみを設けるのが一般的であるが、この場合、
ポンプの吸出し管10の水面が設定水位以下とな
つても、ランナ12の外周側とケーシング13は
充水中でありかなりのポンプ入力を発生してい
る。このポンプ入力はケーシングに設けたバイパ
ス弁14を開くことによつて、水が吸出し管側に
順次排出されるにつれ、次第に低減するが、も
し、この過程で停止指令が入ると、調相運転モー
ドからの停止となるため直ちに主しや断器が作動
し、ポンプ入力しや断の状態となるので系統に大
きな電力動揺を及ぼすことになる。
In addition, when the water turbine side is in phase adjustment operation and the pump moves from pumping operation to phase adjustment operation by itself,
Since the guide vanes on the water turbine side are completely closed, there is no problem, but if the conventional pump operates in a phase-adjusted mode of operation by only detecting the suction pipe water level, the following problems occur. In other words, since the tandem water pump does not require a guide vane to adjust the water volume, the discharge valve 1 is used for water flow and disconnection as shown in Figure 2.
It is common to provide only 1, but in this case,
Even if the water level of the pump suction pipe 10 is below the set water level, the outer peripheral side of the runner 12 and the casing 13 are still filled with water, and a considerable pump input is generated. By opening the bypass valve 14 provided in the casing, this pump input is gradually reduced as the water is sequentially discharged to the suction pipe side, but if a stop command is entered during this process, the phase adjustment operation mode is activated. Since the main power supply is shut down, the main power supply disconnector is activated immediately, and the pump input is cut off, causing a large power fluctuation in the power grid.

本発明は従来方式における上述の不都合を除去
すべくなされたものであつて、調相運転モードへ
の切換時におけるモード検出を、ポンプ吸出し管
の水位検出のほか、発電電動機の入力検出および
ガイドベーンの開度検出の結果に基いて総合的に
判別し、揚水運転から調相運転への移行を安全か
つ確実に実施できるようにした運転制御方法を提
供することを目的とするものである。
The present invention has been made in order to eliminate the above-mentioned disadvantages of the conventional system, and the mode detection at the time of switching to the phase-mixing operation mode is performed by detecting the water level in the pump suction pipe, as well as by detecting the input of the generator motor and by detecting the guide vane. The object of the present invention is to provide an operation control method that makes a comprehensive judgment based on the result of opening degree detection, and enables safe and reliable transition from pumping operation to phase adjustment operation.

以下、第2図ないし第4図を参照しつつ、本発
明の詳細を説明する。
The details of the present invention will be explained below with reference to FIGS. 2 to 4.

並列状態において揚水運転より調相運転に移行
する場合、水車7は調相運転状態にあり、ポンプ
8単独で移行する場合には、水車7はそのままの
状態に保たれる。また、ポンプ入力を水車が荷つ
て系統への入力を零とする場合には、ガイドベー
ン9が開かれてポンプ入力に見合う水車出力を発
生する。
When shifting from pumping operation to phase-mixing operation in the parallel state, the water turbine 7 is in the phase-mixing operation state, and when shifting to the pump 8 alone, the water turbine 7 is maintained in the same state. Further, when the water turbine loads the pump input and the input to the system becomes zero, the guide vane 9 is opened and the water turbine output corresponding to the pump input is generated.

次に、ポンプ8の吐出弁11が全開されてポン
プ締切条件となり、直ちに給気弁15を開くこと
によつてポンプ水面の押下げが実施される。その
結果、ポンプ吸収し管10に設けた水位検出器1
6によつて水面が設定水位以下になつたことが検
出されると給気弁15は閉じられる。この状態
が、いわゆる水面押下げ運転条件であり、ポンプ
8の吸出し管10の水面の上下動は給気弁15の
開閉によつて自動制御される。
Next, the discharge valve 11 of the pump 8 is fully opened to meet the pump cut-off condition, and the air supply valve 15 is immediately opened to lower the pump water level. As a result, the water level detector 1 installed in the pump absorbs water
6, when it is detected that the water level has fallen below the set water level, the air supply valve 15 is closed. This state is the so-called water surface pressing operation condition, and the vertical movement of the water surface of the suction pipe 10 of the pump 8 is automatically controlled by opening and closing the air supply valve 15.

しかる後、ポンプケーシング13のバイパス弁
14が開かれてポンプインペラ12およびケーシ
ング13の水は吸出し管10側に排出され、ポン
プ入力は漱減する。
Thereafter, the bypass valve 14 of the pump casing 13 is opened, the water in the pump impeller 12 and the casing 13 is discharged to the suction pipe 10 side, and the pump input is reduced.

上記において、水車側のガイドベーン9の全閉
の確認はその操作軸に連結したガイドベーン開閉
検出器(図示せず)によつて行なわれ、また、発
電電動機の入力が設定値以下になつたことの確認
は第3図の電力検出用継電器20によつて行なわ
れる。なお、第3図中、21は主しや断器、22
は主変圧器、23は発電電動機、7はこれに直結
した水車、8は水車にタンデム接続したポンプで
あり、前記検出用継電器20は発電電動機23の
軸入力Pが設定値Poより小さくなると作動し
て、その継電器接点20aを閉路する。
In the above, confirmation that the guide vane 9 on the water turbine side is fully closed is performed by a guide vane open/close detector (not shown) connected to its operating shaft, and also when the input of the generator motor falls below a set value. This is confirmed by the power detection relay 20 shown in FIG. In addition, in Figure 3, 21 is the main shaft disconnector, 22
is the main transformer, 23 is the generator motor, 7 is a water turbine directly connected to this, and 8 is a pump connected in tandem to the water turbine. The detection relay 20 is activated when the shaft input P of the generator motor 23 becomes smaller than the set value Po. Then, the relay contact 20a is closed.

この継電器接点20aは第4図に示すように、
水位検出用継電器の接点16aと、水車のガイド
ベーン開閉検出器の接点24aと、これらの接点
20a,16b,24bの全てが閉路したときに
作動する補助継電器25と共に直列に電源線m,
n間に接続されている。補助継電器25の接点2
5aは、揚水運転より調相運転への移行指令を検
出する補助継電器の接点26aと共に調相運転検
出用継電器27の電源回路の直列に接続されてい
る。
As shown in FIG. 4, this relay contact 20a is
A power line m, connected in series with the contact 16a of the water level detection relay, the contact 24a of the guide vane opening/closing detector of the water turbine, and the auxiliary relay 25 that operates when all of these contacts 20a, 16b, and 24b are closed.
connected between n. Contact 2 of auxiliary relay 25
5a is connected in series with a contact 26a of an auxiliary relay that detects a transition command from pumping operation to phase adjustment operation in the power supply circuit of phase adjustment operation detection relay 27.

従つて、調相運転検出用継電器27は発電電動
機の軸入力が設定値以下になり、ポンプ吸出し管
の水位が設定水位以下になり、かつ、水車のガイ
ドベーンが全閉であることを確認した場合に限
り、調相運転への移行指令に基いて作動し、その
継電器接点(図示せず)の動作により調相運転モ
ードへの移行を行なうことになる。
Therefore, the phase-adjustment operation detection relay 27 confirmed that the shaft input of the generator motor was below the set value, the water level of the pump suction pipe was below the set water level, and the guide vane of the water turbine was fully closed. In this case, the relay will operate based on a command to transition to phase-mixing operation, and the transition to phase-mixing operation mode will be performed by operating the relay contacts (not shown).

上述したように、本発明は発電電動機の軸入
力、ポンプの吸出し管水位および水車ガイドベー
ンの開度が規定値以下であることを条件として調
相運転モードへの移行を行なうものであるから、
主機は保護され、調相運転より停止への移行を支
障なく実施できる。また、揚水運転より水車運転
への移行に際してはポンプ吸出し管の水位検出に
より水面押下げの完了と同時に短期間で水車運転
モードに移行できる等、各種のモードチエンジを
合理的に実施できる。
As described above, in the present invention, the transition to the phase adjustment mode is performed on condition that the shaft input of the generator motor, the water level of the pump suction pipe, and the opening degree of the water turbine guide vane are below specified values.
The main engine is protected and the transition from phase-adjusted operation to stoppage can be carried out without any problems. In addition, when changing from pumping operation to water turbine operation, various mode changes can be carried out rationally, such as by detecting the water level in the pump suction pipe and switching to the water turbine operation mode in a short period of time as soon as the water surface is completely lowered.

更に、本発明の方法によれば、水車起動による
揚水より調相モードへの移行時には、ポンプ入力
に見合う水車出力が発生した時点で発電電動機の
軸入力は零となるので、軸入力が設定値以下とい
う条件は自動的に満たされる。また、ポンプ単独
で揚水から調相モードへ移行する場合には、水車
のガイドベーンは全閉状態になつているので、ガ
イドベーン全閉の条件も自動的に満たされる。従
つて水車起動の有無にかかわらず、同一方式にお
いて確実な制御を行なうことができる。
Furthermore, according to the method of the present invention, when the pumping mode is changed by starting the water turbine, the shaft input of the generator motor becomes zero at the moment when the water turbine output corresponding to the pump input is generated, so that the shaft input becomes the set value. The following conditions are automatically met. Further, when the pump moves from water pumping to phase adjustment mode by itself, the guide vanes of the water turbine are in a fully closed state, so the condition for fully closing the guide vanes is also automatically satisfied. Therefore, reliable control can be performed using the same method regardless of whether or not the water turbine is started.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の調相運転状態を示すポンプ水車
の断面図、第2図はタンデム式揚水機器の調相運
転への移行を説明するための断面図、第3図はタ
ンデム式揚水発電所の電気主回路を例示する結線
図、第4図は本発明において使用される制御回路
の実施例を示す回路図である。 7……水車、8……ポンプ、9……水車ガイド
ベーン、10……ポンプ吸出し管、11……ポン
プ吐出弁、12……ポンプインペラー、13……
ポンプケーシング、14……ケーシングバイパス
弁、15……給気管、16……水位検出器、16
a……水位検出用継電器の接点、20……電力検
出用継電器、20a……電力検出用継電器接点、
24a……ガイドベーン開閉検出器の接点、25
……補助継電器、25a……補助継電器接点、2
6a……補助継電器接点、27……調相運転検出
用継電器。
Figure 1 is a cross-sectional view of a pump-turbine showing conventional phase-mixing operation, Figure 2 is a cross-sectional view to explain the transition to phase-mixing operation of tandem pumping equipment, and Figure 3 is a tandem-type pumped storage power plant. FIG. 4 is a circuit diagram showing an embodiment of the control circuit used in the present invention. 7... Water turbine, 8... Pump, 9... Water turbine guide vane, 10... Pump suction pipe, 11... Pump discharge valve, 12... Pump impeller, 13...
Pump casing, 14... Casing bypass valve, 15... Air supply pipe, 16... Water level detector, 16
a... Water level detection relay contact, 20... Power detection relay, 20a... Power detection relay contact,
24a...Contact point of guide vane opening/closing detector, 25
...Auxiliary relay, 25a...Auxiliary relay contact, 2
6a...Auxiliary relay contact, 27...Relay for phase adjustment operation detection.

Claims (1)

【特許請求の範囲】 1 水車とポンプを一軸上に直結したタンデム式
揚水発電所において、発電電動機が系統と並列運
転している状態で、揚水運転から調相運転への運
転モード変更を行なう場合、ポンプ吸出し管の水
位が設定水位以下であること、発電電動機の軸入
力が設定値以下であること、および水車ガイドベ
ーンが全閉であることを条件として調相運転モー
ドの検出を行なうことを特徴とするタンデム式揚
水発電所の運転制御方法。 2 発電電動機の軸入力が設定値よりも小さくな
ると作動する電力検出用継電器の接点と、ポンプ
吸出し管の水位検出用継電器の接点と、水車のガ
イドベーン開閉検出器の接点とを補助継電器と直
列に接続し、この補助継電器の接点を、揚水運転
より調相運転への移行指令を受けると閉路する接
点と共に調相運転検出用継電器の電源回路に直列
に接続し、この調相運転検出用継電器により調相
運転モードを検出するようにした特許請求の範囲
第1項記載のタンデム式揚水発電所の運転制御方
法。
[Claims] 1. In a tandem pumped storage power plant in which a water turbine and a pump are directly connected on one shaft, the operation mode is changed from pumping operation to phase adjustment operation while the generator motor is operating in parallel with the grid. , the phase-mixing operation mode is detected on the condition that the water level of the pump suction pipe is below the set water level, the shaft input of the generator motor is below the set value, and the water turbine guide vane is fully closed. A method for controlling the operation of a tandem pumped storage power plant. 2 Connect the contacts of the power detection relay that activates when the shaft input of the generator motor becomes smaller than the set value, the contacts of the water level detection relay of the pump suction pipe, and the contacts of the guide vane opening/closing detector of the water turbine in series with the auxiliary relay. The contacts of this auxiliary relay are connected in series to the power supply circuit of the relay for detecting phase-mixing operation, and the contacts of this auxiliary relay are connected in series to the power circuit of the relay for detecting phase-mixing operation. An operation control method for a tandem pumped storage power plant according to claim 1, wherein the phase adjustment operation mode is detected by:
JP15155779A 1979-11-22 1979-11-22 Method of controlling operation of tandem type pumped power plant Granted JPS5675973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15155779A JPS5675973A (en) 1979-11-22 1979-11-22 Method of controlling operation of tandem type pumped power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15155779A JPS5675973A (en) 1979-11-22 1979-11-22 Method of controlling operation of tandem type pumped power plant

Publications (2)

Publication Number Publication Date
JPS5675973A JPS5675973A (en) 1981-06-23
JPS6138356B2 true JPS6138356B2 (en) 1986-08-28

Family

ID=15521121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15155779A Granted JPS5675973A (en) 1979-11-22 1979-11-22 Method of controlling operation of tandem type pumped power plant

Country Status (1)

Country Link
JP (1) JPS5675973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005973A1 (en) 2019-07-10 2021-01-14 日立造船株式会社 Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005973A1 (en) 2019-07-10 2021-01-14 日立造船株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPS5675973A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
US3658436A (en) Water turbine operation method and system
US4430574A (en) Method for switching operation of water wheel or pump water wheel
JPS6138356B2 (en)
US4267459A (en) Method of operating a hydraulic turbine or a pump-turbine
US4292533A (en) Motoring control for hydraulic pump-turbine
JPS6230303B2 (en)
JPS6323389B2 (en)
JPH04159457A (en) Method for contolling reversible pumpturbine
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPS6011605A (en) Steam turbine control
JPS621109B2 (en)
JPS6323387B2 (en)
JP4269449B2 (en) Pump turbine
JPH0979508A (en) Feed water controller for steam generating plant
JPS6153559B2 (en)
JPH0419364A (en) Adjusted-phase operation controller for hydraulic power machine
JPS6128790A (en) Water supply device
JPS6155630B2 (en)
JPH09250443A (en) Overspeed controller of water wheel generator
JPS6120685B2 (en)
JPH0410597B2 (en)
JPS6317303A (en) Boiler feedwater flow controller
JPS5825590A (en) Generating control method in hydraulic power plant
JPH07180506A (en) Steam turbine controller