JPH04159457A - Method for contolling reversible pumpturbine - Google Patents

Method for contolling reversible pumpturbine

Info

Publication number
JPH04159457A
JPH04159457A JP2279118A JP27911890A JPH04159457A JP H04159457 A JPH04159457 A JP H04159457A JP 2279118 A JP2279118 A JP 2279118A JP 27911890 A JP27911890 A JP 27911890A JP H04159457 A JPH04159457 A JP H04159457A
Authority
JP
Japan
Prior art keywords
pump
turbine
guide vane
pumping
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279118A
Other languages
Japanese (ja)
Inventor
Atsushi Yamagami
山上 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2279118A priority Critical patent/JPH04159457A/en
Publication of JPH04159457A publication Critical patent/JPH04159457A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To safely and quickly switch operation from the pumping operation to the generating operation without causing violent pulsation, shaft deflection and hydraulic pulsation in a reversible pumpturbine by controlling an opening of a guide vane in accordance with a detection value of a condition of vibration, shaft deflection, pulsation, etc., of the reversible pumpturbine. CONSTITUTION:When a pumping-generating switch command is generated during pumping operation of a reversible pumpturbine, closing action of a guide vane 6 is performed to parallel off a generator-motor 1 from a power system when an opening of the vane reaches a pumping parallel off opening. While the guide vane opening is held to a small opening, a condition of vibration, shaft deflection, pulsation, etc., of the reversible pumpturbine is detected, to start air supply to the reversible pumpturbine, in the case of this detection value smaller than a specified value, and to open-action control the guide vane opening, when a rotational speed is reversed, and operation is transferred from the generating operation to the full-load operation by the generator-motor via a governor control start. On the other hand, in the case of the detection value larger than the specified value, the guide vane is fully closed, and when the rotational speed in a pumping direction is decreased to a low speed, the guide vane is open-actuated to the opening of starting the pumpturbine.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はポンプ水車の制御方法に係わり、特に揚水運転
から発電運転へ急速にかつ確実に移行させるようにした
フランシス形ポンプ水車の制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a control method for a pump-turbine, and in particular to a Francis-type pump that allows rapid and reliable transition from pumping operation to power generation operation. Concerning a method of controlling a water turbine.

(従来の技術) 揚水発電所において使用されるフランシス形ポンプ水車
は、一般に第5図に示ように構成されていた。
(Prior Art) A Francis type pump-turbine used in a pumped storage power plant has generally been constructed as shown in FIG.

このポンプ水車は、発電電動機1とポンプ水車の主軸2
とが直結され、この主軸2の下端に取付けられたランナ
ー3はランナー室4内に回転自在に収容されている。こ
のランナー室4と、このランナー室4の外周に設けられ
ているスパイラルケ−シング5との間には、多数個のガ
イドベーン6が環状に配列されている。前記スパイラル
ケーシング5と上池(図示せず)とは水圧鉄管7によっ
て連結され、この管路内には、大口弁8が設けられてい
る。更に、ランナー室4の下方には、エルボ形の吸出し
管9が接続されている。
This pump-turbine consists of a generator motor 1 and a main shaft 2 of the pump-turbine.
A runner 3 attached to the lower end of the main shaft 2 is rotatably housed in a runner chamber 4. A large number of guide vanes 6 are arranged in an annular manner between the runner chamber 4 and a spiral casing 5 provided around the outer periphery of the runner chamber 4. The spiral casing 5 and the upper pond (not shown) are connected by a penstock pipe 7, and a large mouth valve 8 is provided in this pipe. Furthermore, an elbow-shaped suction pipe 9 is connected to the lower part of the runner chamber 4.

発電電動機1は、並列用遮断器10及び主変圧器11を
介して電力系統母線12に電気的に接続されている。
The generator motor 1 is electrically connected to a power system bus 12 via a parallel circuit breaker 10 and a main transformer 11 .

このように構成されたフランシス形ポンプ水車を備えた
揚水発電所において、電力需要に応じてポンプ水車を揚
水運転から発電運転に移行させる場合、制御装置(図示
せず)からの制御指令によってガイドベーン6の開度は
徐々に減少し、所定の開度に達した時に発電電動機1は
電力系統母線12より解列され、定格回転速度で運転し
ていたポンプ水車の回転速度は徐々に低下し、発電電動
機1のブレーキ(図示せず)が作用し回転速度が零とな
る。またその間、ガイドベーン6の全閉後、入口弁8の
全閉を行って停止に至る。一般的に、この停止時間は、
約6〜7分間を必要とする。
In a pumped-storage power plant equipped with a Francis-type pump-turbine configured in this way, when the pump-turbine is shifted from pumping operation to power generation operation in response to power demand, the guide vane is activated by a control command from a control device (not shown). The opening degree of 6 gradually decreases, and when the predetermined opening degree is reached, the generator motor 1 is disconnected from the power system bus 12, and the rotation speed of the pump water turbine, which was operating at the rated rotation speed, gradually decreases. A brake (not shown) of the generator motor 1 is applied and the rotational speed becomes zero. Meanwhile, after the guide vane 6 is fully closed, the inlet valve 8 is fully closed, resulting in a stop. Generally, this downtime is
It takes about 6-7 minutes.

揚水運転の完全停止を持ち、発電運転の指令により、大
口弁8を全開させ、かつガイドベーン6を発電運転の起
動開度まで開動作させ、回転速度を上昇させて、発電電
動機1を電力系統母線12に並列用遮断器10にて並入
して発電運転を可能とする。一般的に、この起動時間は
、3〜4分間を必要とする。
The pumping operation is completely stopped, and in response to a generation operation command, the large mouth valve 8 is fully opened, the guide vane 6 is opened to the starting opening of the generation operation, the rotation speed is increased, and the generator motor 1 is connected to the power grid. A parallel circuit breaker 10 is connected to the bus bar 12 to enable power generation operation. Typically, this startup time requires 3-4 minutes.

近年、大容量の火力発電所及び原子力発電所の建設に伴
って、尖頭負荷を受は持つ揚水発電所は、その性格上で
きるだけ短時間に起動、停止並びに各運転モードへの切
換えを行なうことが要求される。また、揚水発電所の建
設においても、大容量化及び高落差化が要求され、次々
に建設され運転されており、その責務は大きく、電力系
統からの指令で電力需給バランスに応じて、緊急に発電
運転を行なう必要性がある場合に対応することが、最近
の電力事情からも要求されている。
In recent years, with the construction of large-capacity thermal power plants and nuclear power plants, pumped storage power plants that receive peak loads must start, stop, and switch to each operation mode as quickly as possible due to their nature. is required. In addition, in the construction of pumped storage power plants, larger capacity and higher head are required, and they are being built and operated one after another, and their responsibility is large, and they are urgently required to respond to power supply and demand balances based on commands from the power system. The recent electric power situation has also required a response when it is necessary to perform power generation operation.

揚水発電所の主な責務として、揚水運転と発電運転とが
あるが、揚水運転中に電力系統より緊急に発電運転を行
なうことの要求に対し、安全で確実に、かつ緊急に揚水
運転より発電運転に移行することが重要視されている。
The main responsibilities of a pumped storage power plant are pumping storage operation and power generation operation, but in response to the request for urgent power generation operation from the power grid during pumping storage operation, it is possible to safely, reliably, and urgently generate power from pumped storage operation. The emphasis is on transitioning to driving.

従来の一般的な揚水発電所の揚水運転より発電運転への
急速な運転切換時におけるポンプ水車の制御方法の概略
手順を第6図及び第7図を参照して説明する。
A schematic procedure of a method for controlling a pump-turbine during a rapid changeover from pumping operation to power generation operation in a conventional general pumped storage power plant will be explained with reference to FIGS. 6 and 7.

急速に揚水運転から発電運転に切換える方法の考え方と
して、発電電動機を電力系統より解列させた後、揚水方
向の回転速度を速やかに反転させ発電方向に移行させる
ため、未だ揚水方向で回転している状態で水圧鉄管から
発電運転方向に流下する水流の作用で速やかに減速させ
、発電運転方向の回転速度に反転させることが考えられ
ている。
The idea behind the method of rapidly switching from pumping operation to power generation operation is that after the generator motor is disconnected from the power grid, the rotation speed in the pumping direction is quickly reversed and the rotation speed is shifted to the generation direction. It is considered that the rotational speed can be quickly slowed down by the action of water flowing down from the penstock in the direction of power generation operation, and then reversed to the rotation speed in the direction of power generation operation.

このため、大口弁は通常開弁じたままの状態で、揚水運
転より発電運転に移行させることが行われている。
For this reason, the large mouth valve is normally kept open when the pumping operation is shifted to the power generation operation.

第6図は、この時のブロック図を、第7図は縦軸にポン
プ水車の入出力、ポンプ水車の流量、ポンプ水車の回転
速度、ガイドベーン開度及び入口弁の動作を各々取り、
横軸は共通する所要時間を取り、各々の動作を示したも
のである。
Figure 6 shows the block diagram at this time, and Figure 7 shows the input and output of the pump-turbine, the flow rate of the pump-turbine, the rotational speed of the pump-turbine, the opening degree of the guide vane, and the operation of the inlet valve on the vertical axis.
The horizontal axis shows the common required time and each operation.

揚水運転中に揚水運転より発電運転への急速切換指令(
揚水−発電切換指令)aが発せられると(時点1.)、
ガイドベーン閉動作が行われ、この開度は予め設定され
たガイドベーン開度(揚水解列開度)に達する(時点t
2)。すると、この時の開度信号すにより、発電電動機
が電力系統より解列され、入出力の入力が零となる(点
A)。
Rapid switching command from pumping operation to power generation operation during pumping operation (
When pumping storage-power generation switching command) a is issued (time 1.),
A guide vane closing operation is performed, and this opening reaches a preset guide vane opening (pumping and disassembling row opening) (at time t
2). Then, due to the opening signal at this time, the generator motor is disconnected from the power grid, and the input/output input becomes zero (point A).

この時、ポンプ水車の流量(揚水量)は、ガイドベーン
開度を徐々に閉動作することにより減少する。
At this time, the flow rate (amount of pumped water) of the pump-turbine is reduced by gradually closing the guide vane opening.

解列後、ガイドベーン開度を揚水解列開度にそのまま保
持する。すると、揚水方向の流量は、揚水方向で回転し
ている状態で水圧鉄管から発電運転方向に流下する水流
で急速に減少し、即ちポンプ水車ポンプブレーキ領域に
入り、点Bで発電方向に逆流を開始する。一方、回転速
度は、この水流の作用により、揚水方向に時点t3で逆
転することになる(点C)。
After decoupling, the guide vane opening is maintained at the pumping decoupling opening. Then, the flow rate in the pumping direction rapidly decreases due to the water flowing down from the penstock in the direction of power generation operation while rotating in the pumping direction, that is, the pump-turbine enters the pump brake region, and at point B, the flow reverses in the direction of power generation. Start. On the other hand, the rotation speed reverses in the pumping direction at time t3 due to the action of this water flow (point C).

その後、流量は、発電方向に流れ、また回転速度は発電
方向に回転を上げていき、これによってガイドベーンは
そのまま水車起動開度となり、調速機制御開始時点t4
まで達すると、調速機による制御が開始され、電力系統
母線に並列(時点t5)され発電運転に移行した後、発
電全負荷運転に入る(時点t6)ようなされていた。
After that, the flow rate flows in the direction of power generation, and the rotation speed increases in the direction of power generation, and as a result, the guide vane remains at the turbine starting opening, and the governor control starts at t4.
When the speed reaches this point, control by the speed governor is started, and after being paralleled to the power system bus (time t5) and transitioning to power generation operation, full power generation operation is started (time t6).

(発明が解決しようとする課題) しかしながら、上記従来のポンプ水車の制御方法では、
解列後、揚水運転方向の回転で運転中にランナーに作用
する流量は発電方向に流れ、回転速度は揚水方向で流量
は発電方向となる、いわゆるポンプブレーキ領域(第8
図参照)を通過することになり、ポンプ水車に不安定な
水流が作用し、激しい脈動、軸振れ、水圧脈動が生じ、
ポンプ水車の損傷が発生する問題があり、安全でかつ確
実に揚水運転から発電運転への移行ができなくなる。
(Problem to be solved by the invention) However, in the conventional pump-turbine control method described above,
After disconnection, the flow rate acting on the runner during operation due to rotation in the pumping operation direction flows in the direction of power generation, the rotational speed is in the direction of pumping, and the flow rate is in the direction of power generation.
(see figure), an unstable water flow acts on the pump turbine, causing severe pulsation, shaft vibration, and water pressure pulsation.
There is a problem of damage to the pump-turbine, making it impossible to safely and reliably shift from pumping operation to power generation operation.

揚水運転から発電運転への急速切換方法として、切換時
間は短縮されるが、ルーチン的な切換方法としては問題
があり、この方式で安全かつ確実に実施した例はないの
が現状である。
As a method for rapid switching from pumping storage operation to power generation operation, the switching time is shortened, but there are problems as a routine switching method, and currently there is no example of this method being implemented safely and reliably.

ところで、フランシス形ポンプ水車では、発電運転(水
車運転)時の回転速度をN1運転落差をH1流量をQ1
ポンプ水車のガイドベーン開度をaとした場合、単位落
差回転速度N/fTと単位落差流量Q/fπの関係は、
第8図に示す特性曲線のようになる。
By the way, in a Francis type pump-turbine, the rotation speed during power generation operation (turbine operation) is N1, the operating head is H1, the flow rate is Q1
When the guide vane opening degree of the pump turbine is a, the relationship between the unit head rotational speed N/fT and the unit head flow rate Q/fπ is as follows.
The characteristic curve becomes as shown in FIG.

図中、ガイドベーン開度は、a 1< a 2 < a
 3〈a4の相対関係にある。
In the figure, the guide vane opening degree is a 1 < a 2 < a
There is a relative relationship of 3<a4.

第8図において、発電運転(水車運転)範囲をW1揚水
運転(ポンプ運転)範囲をPで示す。
In FIG. 8, the power generation operation (water turbine operation) range is indicated by W1, and the pumping operation (pump operation) range is indicated by P.

回転速度が揚水方向でランナーに作用する流量が発電方
向であるポンプブレーキ領域は、第8図にKで示す領域
である。この領域Kを揚水運転より発電運転に移行する
際に通過する訳で、激しい振動、軸振れ、水圧脈動を伴
い、またガイドベーン開度の大きい程不安要素を増すこ
とになる。
The pump brake region where the rotational speed is in the water pumping direction and the flow rate acting on the runner is in the power generation direction is the region shown by K in FIG. This region K is passed through when transitioning from pumping operation to power generation operation, and is accompanied by severe vibrations, shaft vibrations, and water pressure pulsations, and the larger the guide vane opening, the greater the anxiety.

本発明は上述した事情を考慮してなされたもので、揚水
運転より発電運転への切換時に、ポンプ水車に激しい脈
動、軸振れ、水圧脈動を伴わず発電運転に速かに移行し
、揚水運転から発電運転への切換を安全でかつ確実に急
速に切換え得るポンプ水車の制御方法を提供することを
目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and when switching from pumped storage operation to power generation operation, the pump turbine can quickly shift to power generation operation without severe pulsation, shaft vibration, or water pressure pulsation, and can operate pumped storage operation. It is an object of the present invention to provide a control method for a pump-turbine that can safely, reliably, and rapidly switch from power generation operation to power generation operation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明に係るポンプ水車の制
御方法は、揚水運転中に揚水運転から切換指令により発
電運転に移行させる際のポンプ水車の制御方法において
、揚水運転状態で発電電動機を電力系統より解列させた
後、ポンプ水車の振動、軸振れ、脈動等の状態を検出し
、この検出値が予め設定した規定値内の場合は、ガイド
ベーンの開度を小開度に保持させ、ポンプ水車の回転速
度を急速に低下させるとともに、ポンプ水車に空気の注
入を行なってポンプ水車の回転速度が発電運転方向に反
転するのを持ち、この反転後ガイドベーンの開度を制御
して発電運転に移行させ、前記ポンプ水車の脈動、軸振
れ、脈動等の状態の検出値が規定値より大きい場合は、
ガイドベーンを全開へ動作させ、ポンプ水車の回転速度
が低下し揚水運転方向で低速となった時にガイドベーン
を開動作制御して発電運転に移行させるようにしたもの
である。
(Means for Solving the Problems) In order to achieve the above object, a method for controlling a pump-turbine according to the present invention is a method for controlling a pump-turbine when transitioning from pumping operation to power generation operation by a switching command during pumping operation. , After disconnecting the generator motor from the power grid during pumping operation, detect the vibration, shaft runout, pulsation, etc. of the pump turbine, and if the detected values are within preset values, the guide vane The rotational speed of the pump-turbine is kept at a small opening, the rotational speed of the pump-turbine is rapidly reduced, and air is injected into the pump-turbine to reverse the rotational speed of the pump-turbine to the direction of power generation operation. Control the opening degree of the guide vane to shift to power generation operation, and if the detected value of the state of the pump turbine, such as pulsation, shaft vibration, pulsation, etc., is larger than the specified value,
The guide vanes are operated to fully open, and when the rotational speed of the pump-turbine decreases and becomes low in the direction of pumping operation, the guide vanes are controlled to open to shift to power generation operation.

(作用) 上記のように構成した本発明によれば、発電電動機が電
力系統より解列した後、発電運転に移行するまでの間に
通過するポンプブレーキの領域におけるポンプ水車の脈
動、軸振れ、脈動等の状態を予め設定された規定値以下
に抑えつつ、揚水状態から発電状態に急速に切換えるこ
とができる。
(Function) According to the present invention configured as described above, the pulsation and shaft vibration of the pump-turbine in the region of the pump brake that the generator-motor passes through after it is disconnected from the power system and before it shifts to power generation operation, It is possible to rapidly switch from a water pumping state to a power generation state while suppressing conditions such as pulsation to below a preset specified value.

(実施例) 以下、本発明の実施例を第1図乃至第3図を参照して説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

本実施例においては、第1図に示すブロック図によって
、ポンプ水車の揚水運転から発電運転への切換制御を行
なう。第2図は、この時のポンプ水車の入出力、流量、
回転速度、ガイドベーン開度、大口弁の動作及び吸気弁
の各々の状態を共通する時間に対応させて示したもので
ある。
In this embodiment, switching control of the pump-turbine from pumping operation to power generation operation is performed according to the block diagram shown in FIG. Figure 2 shows the input/output, flow rate, and flow rate of the pump-turbine at this time.
The rotational speed, guide vane opening degree, operation of the large mouth valve, and each state of the intake valve are shown in correspondence to common times.

ポンプ水車の揚水運転中に、揚水−発電切換指令aが発
せられると(時点t1)、ガイドベーンは閉動作を行な
い、予め設定されたガイドベーン開度が揚水解列開度に
達する(時点t2)。すると、この時の信号すにより発
電電動機が電力系統より解列され、ポンプ水車の入圧力
の入力が零となる(点A)。
During pumping operation of the pump-turbine, when a pumping-generation switching command a is issued (time t1), the guide vanes perform a closing operation, and the preset guide vane opening reaches the pumping-storage separation opening (time t2). ). Then, the generator motor is disconnected from the power system by the signal at this time, and the input pressure of the pump turbine becomes zero (point A).

ガイドベーン開度は更に閉動作により閉じられ、小開度
(点D)に制御されて保持される。その間、ポンプ水車
の振動、軸振れ、脈動等の状態の検出が行われ、この検
出値が安全かつ確実にポンプ水車に損傷を与えることが
ない状態に設定した規定値より小さいか否かが判定され
る。
The guide vane opening degree is further closed by a closing operation, and is controlled and maintained at a small opening degree (point D). During this time, conditions such as vibration, shaft vibration, and pulsation of the pump-turbine are detected, and it is determined whether the detected values are smaller than the specified values set to safely and reliably prevent damage to the pump-turbine. be done.

この検出値が規定値より小さく安全で確実に発電運転に
移行できる場合、即ちこの判断がYESの場合には、ガ
イドベーン開度を前記小開度の状態に保持する同時に、
ポンプ水車に空気を注入するためポンプ水車への給気を
開始しく時点t2)、ある時間を経た時にこの給気を停
止する。
If this detected value is smaller than the specified value and it is possible to safely and reliably shift to power generation operation, that is, if this judgment is YES, the guide vane opening is maintained at the small opening, and at the same time,
In order to inject air into the pump-turbine, air supply to the pump-turbine is started at time t2), and after a certain period of time, this air supply is stopped.

この状態で激しい振動、軸振れ、脈動等を伴うポンプ水
車のポンプブレーキ領域を通過するのであるが、上記の
ようにこれらの検出値は規定値より小さく、シかもこの
時のガイドベーン開度を小開度に保持するとともに、ポ
ンプ水車に給気することによって、更に軽減することが
できる。
In this state, the pump passes through the pump brake area of the pump-turbine, which is accompanied by severe vibration, shaft vibration, pulsation, etc. However, as mentioned above, these detected values are smaller than the specified values, and it may be necessary to adjust the guide vane opening at this time. It can be further reduced by keeping the opening small and supplying air to the pump turbine.

ガイドベーン開度を小開度に保持したままで、回転速度
が逆転した時(点D)、ガイドベーン開度を水車起動に
開動作制御させ(時点t3)、調速機制御開始(時点1
4)を経て発電電動機により電力系統へ並列され(時点
t5)、発電運転から全負荷運転に移行する(時点16
)。
When the rotation speed is reversed (point D) while keeping the guide vane opening at a small opening, the opening of the guide vane is controlled to start the water turbine (time t3), and governor control is started (time 1).
4), it is paralleled to the power grid by the generator motor (time t5), and transitions from power generation operation to full load operation (time 16).
).

前記判定で、検出値が規定値より大きい場合は、発電運
転への移行を続行するとポンプ水車に重大なる問題が発
生し、ポンプ水車が損傷することになるので、第2図の
2重線Xで示すようにガイドベーン開度を全閉へ動作さ
せる。これにより揚水方向での回転でランナーに作用す
る水流が発電方向である領域でのポンプ水車への影響を
なくし、ポンプ水車を保護するとともに、発電運転への
移行も同時に行なう。
In the above judgment, if the detected value is larger than the specified value, if the transition to power generation operation is continued, a serious problem will occur in the pump-turbine and the pump-turbine will be damaged. Operate the guide vane opening degree to fully close as shown in . This eliminates the influence of the water flow acting on the runner during rotation in the pumping direction on the pump-turbine in the area where the power generation direction is, protecting the pump-turbine and simultaneously allowing a transition to power generation operation.

ガイドベーンを全閉したままで、揚水方向の回転速度が
低速となったことを検出した時、ガイドベーンを開動作
させ、水車起動開度まで開動作させる。その後、発電運
転への移行の制御は、前述と同様であるので省略する。
When it is detected that the rotational speed in the water pumping direction has become low while the guide vanes remain fully closed, the guide vanes are opened to the opening degree for starting the water turbine. Thereafter, the control of transition to power generation operation is the same as described above, and will therefore be omitted.

上記実施例に適用される揚水発電所の主要機器の構成を
第3図に示す。
FIG. 3 shows the configuration of the main equipment of the pumped storage power plant applied to the above embodiment.

この揚水発電所において、第5図に示す従来の揚水発電
所と異なる点は、給気弁13、空気タンク14及び空気
圧縮機15を備えた空気供給系統16を有する。この空
気供給系統16は複数系統を独立させて設けてもよい。
This pumped storage power plant differs from the conventional pumped storage power plant shown in FIG. 5 in that it has an air supply system 16 that includes an air supply valve 13, an air tank 14, and an air compressor 15. A plurality of air supply systems 16 may be provided independently.

しかして、空気圧縮機15より空気タンク14に貯蔵さ
せた圧縮空気を給気弁13にてポンプ水車に吸出し管9
の上部及びポンプ水車上カバー17に注入するようにし
た点である。
The compressed air stored in the air tank 14 from the air compressor 15 is then pumped out to the pump water wheel via the air supply valve 13 to the suction pipe 9.
This is because the water is injected into the upper part of the pump turbine and the upper cover 17 of the pump water wheel.

なお、上記空気のポンプ水車への注入は、上記の一方の
みでも良いことは勿論である。
Note that it goes without saying that the air may be injected into the pump-turbine by only one of the methods described above.

上記実施例によれば、揚水運転より発電運転への移行す
る際に、過大なる振動、軸振れ、脈動等が発生してこれ
らがポンプ水車へ悪影響を及ぼしてしまうことを防止し
、安全に確実に問題なく移行させることができる。
According to the above embodiment, when shifting from pumping operation to power generation operation, it is possible to prevent excessive vibration, shaft vibration, pulsation, etc. from occurring and adversely affecting the pump-turbine, and to do so safely and reliably. can be migrated to without any problem.

また、発電運転への移行も所要時間として、約3〜4分
間で確実に実施でき、その要求に答えることができる。
In addition, the transition to power generation operation can be reliably performed in about 3 to 4 minutes, meeting this demand.

なお、本実施例において使用されるポンプ水車への空気
の注入(給気)のための空気タンク14、空気圧縮機1
5等の装置は、通常揚水発電所には設置されており、そ
れらを利用することも可能である。
In addition, an air tank 14 and an air compressor 1 for injecting air (air supply) into the pump-turbine used in this embodiment.
Devices such as No. 5 are usually installed in pumped storage power plants, and it is also possible to use them.

電力系統上より、緊急時に発電運転の指令で急速に揚水
運転から発電運転への移行の要求に対処するため、揚水
−発電切換指令が発せられた後、ガイドベーン開度を除
々に閉動作により減少させた後、発電電動機を電力系統
より解列させる制御方法に変え、切換時間を短縮する目
的で、揚水−発電切換指令で、揚水運転の入力を全入力
遮断を行ない、発電電動機を解列ようにすることもでき
る。これによれば、ガイドベーンは速やかに閉動作され
、予め設定したした小開度に保持され、回転速度の発電
運転方向に反転され(切り換えられ)、発電運転に移行
されることになる。
In order to cope with the request for a rapid transition from pumping storage to power generation operation in response to a power generation operation command in the event of an emergency, the guide vane opening is gradually closed after a pumping storage-generation switch command is issued. After the reduction, the control method is changed to disconnect the generator-motor from the power grid, and in order to shorten the switching time, all inputs for pumping operation are shut off using the pumping-storage-generation switching command, and the generator-motor is disconnected from the power system. You can also do it like this. According to this, the guide vane is quickly closed, maintained at a preset small opening degree, and the rotational speed is reversed (switched) to the direction of power generation operation, thereby transitioning to power generation operation.

フランシス形ポンプ水車の全入力遮断は、電力系統より
の全入力を瞬時に遮断するものであり、電力系統への外
乱はあるも、緊急時での発電運転への指令となる状況か
らして対応せざる事態である。ポンプ水車自体、全入力
遮断において、振動、軸振れ等の問題も少なく、制御上
も特に問題はない。
Cutting off all input to a Francis type pump-turbine instantly cuts off all input from the power grid, and although it may cause disturbance to the power grid, it is appropriate for situations where power generation operations are ordered in an emergency. This is an unavoidable situation. The pump-turbine itself has few problems such as vibration and shaft vibration when all input is cut off, and there are no particular problems in terms of control.

全入力遮断の場合の実施例を第4図に示す。FIG. 4 shows an embodiment in which all inputs are cut off.

第4図に示す実施例が第1図に示す実施例と異なる点は
、揚水−発電切換指令が発せられた時に、全入力遮断を
行ない、発電電動機を電力系統より解列し、ガイドベー
ンを閉動作し、ガイドベーン開度(小開度)まで動作さ
せるようにした点にある。
The difference between the embodiment shown in Fig. 4 and the embodiment shown in Fig. 1 is that when a pumping storage-generation switching command is issued, all inputs are cut off, the generator motor is disconnected from the power grid, and the guide vane is disconnected. The point is that the guide vane can be operated up to the opening degree (small opening degree).

その後の移行の方法は、前述した通りであるので、説明
を省略する。
The subsequent migration method is the same as described above, so the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のような構成であるので、揚水運転より発
電運転への移行する際に通過するポンプ水車のポンプブ
レーキ領域での過大なる振動、軸振れ、脈動等の発生を
防止して、安全かつ確実に、揚水運転から発電運転に緊
急にかつ安定的に移行させることができる等の効果を奏
する。
Since the present invention has the above-described configuration, it is possible to prevent excessive vibration, shaft vibration, pulsation, etc. from occurring in the pump brake area of the pump-turbine passing through when transitioning from pumping operation to power generation operation, thereby improving safety. Moreover, it is possible to reliably shift from pumping operation to power generation operation urgently and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るポンプ水車の制御方法の一実施例
を示すブロック図、第2図は第1図に対応する各状態の
タイムチャート、第3図はポンプ水車の主要部の概略構
成図、第4図は本発明の他の実施例を示すブロック図、
第5図は従来例のポンプ水車の主要部を示す第3図相当
図、第6図は従来のポンプ水車の制御方法を示す第1図
相当図、第7図は第6図に対応する各状態のタイムチャ
ート、第8図はフランシス形ポンプ水車の特性曲線を示
すグラフである。 1・・・発電電動機、3・・・ランナー、4・・・ラン
ナー室、6・・・ガイドベーン、10・・・並列用遮断
器、12・・・電力系統母線、13・・・給気弁、14
・・・空気タンク、15・・・空気圧縮機、16・・・
空気供給系統。 出願人代理人   波 多 野   久苓l 図 塾4図 −n間
Fig. 1 is a block diagram showing an embodiment of the pump-turbine control method according to the present invention, Fig. 2 is a time chart of each state corresponding to Fig. 1, and Fig. 3 is a schematic configuration of the main parts of the pump-turbine. 4 is a block diagram showing another embodiment of the present invention,
Figure 5 is a diagram equivalent to Figure 3 showing the main parts of a conventional pump-turbine, Figure 6 is a diagram equivalent to Figure 1 showing a conventional pump-turbine control method, and Figure 7 is a diagram corresponding to Figure 6. The state time chart, FIG. 8, is a graph showing the characteristic curve of a Francis type pump-turbine. DESCRIPTION OF SYMBOLS 1... Generator motor, 3... Runner, 4... Runner room, 6... Guide vane, 10... Parallel circuit breaker, 12... Power system bus, 13... Air supply valve, 14
...Air tank, 15...Air compressor, 16...
Air supply system. Applicant's agent Hisarei Hatano Zujuku 4-n

Claims (1)

【特許請求の範囲】[Claims]  揚水運転中に揚水運転から切換指令により発電運転に
移行させる際のポンプ水車の制御方法において、揚水運
転状態で発電電動機を電力系統より解列させた後、ポン
プ水車の振動、軸振れ、脈動等の状態を検出し、この検
出値が予め設定した規定値内の場合は、ガイドベーンの
開度を小開度に保持させ、ポンプ水車の回転速度を急速
に低下させるとともに、ポンプ水車に空気の注入を行な
ってポンプ水車の回転速度が発電運転方向に反転するの
を持ち、この反転後ガイドベーンの開度を制御して発電
運転に移行させ、前記ポンプ水車の脈動、軸振れ、脈動
等の状態の検出値が規定値より大きい場合は、ガイドベ
ーンを全閉へ動作させ、ポンプ水車の回転速度が低下し
揚水運転方向で低速となった時にガイドベーンを開動作
制御して発電運転に移行させることを特徴とするポンプ
水車の制御方法。
In the control method of a pump-turbine when shifting from pumping operation to generating operation by a switching command during pumping operation, vibration, shaft vibration, pulsation, etc. of the pump-turbine after disconnecting the generator motor from the power grid during pumping operation. If the detected value is within the preset value, the guide vane is kept at a small opening, the rotational speed of the pump-turbine is rapidly reduced, and air is supplied to the pump-turbine. After injection, the rotational speed of the pump-turbine is reversed to the direction of power generation operation, and after this reversal, the opening degree of the guide vane is controlled to shift to power generation operation, and the pulsation, shaft vibration, pulsation, etc. of the pump-turbine are controlled. If the detected state value is larger than the specified value, the guide vane is fully closed, and when the rotational speed of the pump-turbine decreases and the speed becomes low in the direction of pumping operation, the guide vane is controlled to open and shifts to power generation operation. A method of controlling a pump-turbine, characterized in that:
JP2279118A 1990-10-19 1990-10-19 Method for contolling reversible pumpturbine Pending JPH04159457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279118A JPH04159457A (en) 1990-10-19 1990-10-19 Method for contolling reversible pumpturbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279118A JPH04159457A (en) 1990-10-19 1990-10-19 Method for contolling reversible pumpturbine

Publications (1)

Publication Number Publication Date
JPH04159457A true JPH04159457A (en) 1992-06-02

Family

ID=17606679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279118A Pending JPH04159457A (en) 1990-10-19 1990-10-19 Method for contolling reversible pumpturbine

Country Status (1)

Country Link
JP (1) JPH04159457A (en)

Similar Documents

Publication Publication Date Title
JP3658415B2 (en) Gas turbine equipment
JPH10306766A (en) Reversible pump-turbine
JPH04159457A (en) Method for contolling reversible pumpturbine
JP5209330B2 (en) Pump device
JP3767918B2 (en) Inlet valve control device for pump turbine
US6250887B1 (en) Reversible pump-turbine system
JPH07158406A (en) Power generating radial turbine stop device
JPS6138356B2 (en)
JPS621109B2 (en)
JP2006029199A (en) Operation control device and operation control method for pump water turbine
JPS6273004A (en) Flow controller for feedwater of nuclear reactor
JPS63212773A (en) Transient operation control method for branch aqueduct pumped storage power station
JPH09203372A (en) Pump turbine guide vane controlling method for branch channel
JP2001193416A (en) Steam turbine device
JPH0642368A (en) Control method for gas turbine compressor
JPS62189385A (en) Control device for number of driving pumps
JPH0326804A (en) Steam turbine controller
JP2755816B2 (en) Operation control method of hydroelectric power plant
JPS6155630B2 (en)
JP2002267784A (en) Water injection flow rate adjusting facility for nuclear reactor water injection system
JPS6172905A (en) Minimum flow controller for pump
JPH09250443A (en) Overspeed controller of water wheel generator
JPS63277870A (en) Pumping starting method for variable speed pump water turbine of pump
JPS58104306A (en) Control system of steam turbine
JPH04370397A (en) Control device for compressor