JPS63212773A - Transient operation control method for branch aqueduct pumped storage power station - Google Patents

Transient operation control method for branch aqueduct pumped storage power station

Info

Publication number
JPS63212773A
JPS63212773A JP62044777A JP4477787A JPS63212773A JP S63212773 A JPS63212773 A JP S63212773A JP 62044777 A JP62044777 A JP 62044777A JP 4477787 A JP4477787 A JP 4477787A JP S63212773 A JPS63212773 A JP S63212773A
Authority
JP
Japan
Prior art keywords
aircraft
pump
accident
machine
healthy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044777A
Other languages
Japanese (ja)
Inventor
Akashi Oguma
証 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62044777A priority Critical patent/JPS63212773A/en
Publication of JPS63212773A publication Critical patent/JPS63212773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To prevent the electric power fluctuation in an electric power system by detecting the rotating speed or voltage of a failed machine, controlling to close guide vanes, and dissociating the failed machine from the electric power system. CONSTITUTION:When an emergency stop protective device 13 is operated, if the detected value of the rotating speed or voltage of a failed machine is outside an allowable range, the failed machine is dissociated 76. At the same time, a command is sent to a function generator 65 on the sound machine side, the sound machine is also dissociated 77, and guide vanes 70, 71 are closed and inlet valves 72, 73 are closed to stop the failed machine and the sound machine. Accordingly, the electric power fluctuation on an electric power system is reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水車発電運転とポンプ揚水運転が同時に行なわ
れている分岐水路揚水発電所において、水車発電運転機
またはポンプ揚水運転機のいずれか一方に事故が発生し
た場合、電力系統へ及ぼす動揺や水路系統への影響を抑
制しながら事故機を電力系統からスムーズに解列させる
分岐水路揚水発電所の過渡時運軸制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention is directed to a branch channel pumped storage power plant where water turbine power generation operation and pump pumping operation are performed simultaneously. A transient axis control method for a branch waterway pumped storage power plant that smoothly disconnects the accidental aircraft from the power system while suppressing disturbances to the power system and effects on the waterway system when an accident occurs on one of the aircraft. Regarding.

(従来の技術) 近年、水力発電所は一般的に、電力供給用としてだけで
なく、低負荷時の余剰電力回収用の機能を備えた揚水発
電所として建設されている。
(Prior Art) In recent years, hydroelectric power plants have generally been constructed as pumped storage power plants that have a function not only for supplying electricity but also for recovering surplus power during low loads.

この揚水発電所は第5図に例示する様に、上池1に上端
を接続した水圧管路2の下端から複数本(この例では2
本)の分岐管路3a、3bを分岐させ、これらの分岐管
路の下端にポンプ水車、ポンプまたは水車(以下、ポン
プ水車という。)4a、4bを接続し、これらのポンプ
水車の吐出管側に連結した分岐管路5a、5bの下流側
を共通の放水路6を介して下池7に連結した分岐水路揚
水発電所として建設されることが多い。
As illustrated in FIG. 5, this pumped storage power plant consists of a plurality of (in this example, two
The branch pipes 3a and 3b of the main pipe are branched, and the lower ends of these branch pipes are connected to pump-turbines, pumps, or water turbines (hereinafter referred to as pump-turbines) 4a and 4b, and the discharge pipe sides of these pump-turbines are connected to the lower ends of these branch pipes. It is often constructed as a branch water pumped storage power plant in which the downstream side of the branch pipes 5a and 5b connected to the lower pond 7 is connected to the lower pond 7 via a common spillway 6.

第5図中、8a、8bはポンプ水車4a、 4bに直結
された発電電動機、発電機または電動機(以下、発電電
動機という。)を示し、それらの電力端子はローカルラ
イン9a、9bを介して電力系統10に連結されている
。発mi動機8a。
In Fig. 5, 8a and 8b indicate generator motors, generators, or electric motors (hereinafter referred to as generator motors) that are directly connected to the pump water turbines 4a and 4b, and their power terminals receive power via local lines 9a and 9b. It is connected to system 10. Motive for migraine 8a.

8bには夫々、回転速度検出装置11、電圧検出装置1
2および非常停止用保護装置13が取付けられており、
ローカルライン9 a *  9 bには電力系統10
からの入力および電力系統への出力を検出する出力検出
装置14a、14bが取付けられている。
8b has a rotational speed detection device 11 and a voltage detection device 1, respectively.
2 and an emergency stop protection device 13 are installed,
Local line 9a * 9b has power grid 10
Output detection devices 14a and 14b are attached to detect the input from and the output to the power system.

上記ポンプ水車4a、4b (以下ポンプ水車4a、4
bに共通な場合はサフィックスa、bを外し、共通符号
4として表示する。他の符号についても同様とする。)
にはガイドベーンが設置されており、その制御は第6図
に例示する装置により行なわれる。
The above pump-turbine 4a, 4b (hereinafter referred to as pump-turbine 4a, 4
If it is common to b, the suffixes a and b are removed and the common code 4 is displayed. The same applies to other symbols. )
A guide vane is installed in the guide vane, and its control is performed by a device illustrated in FIG.

すなわち、ポンプ水車40ランチ(図示せず)の周囲に
回転可能に配列支承したガイドベーン20の開度をガイ
ドベーン開度検出器21によって検出し、また、発電電
動機8の回転速度を回転速度検出装置11で検出する。
That is, the guide vane opening detector 21 detects the opening of the guide vanes 20 rotatably arranged and supported around the pump water turbine 40 launch (not shown), and the rotational speed of the generator motor 8 is detected by the rotational speed detection. It is detected by the device 11.

この回転速度検出、装置の出力と出力設定装置22の出
力とをガバナ演算部23に導いて適切なガイドベーン開
度の演算を行い、その出力とガイドベーン開度検出器2
1の出力を比較部24に入力して両者の偏差を求め、こ
の偏差信号を増幅器25で増幅した後、サーボモータ(
図示せず)に伝え、それに連動するガイドベーン20の
水口開度を制御する。
The output of this rotation speed detection device and the output of the output setting device 22 are guided to the governor calculation section 23 to calculate an appropriate guide vane opening degree, and the output and the guide vane opening degree detector 2
1 is input to the comparator 24 to find the deviation between the two, and this deviation signal is amplified by the amplifier 25, and then the servo motor (
(not shown) and controls the opening degree of the water port of the guide vane 20 in conjunction with it.

」二連のように構成した分岐水路揚水発電所においては
、電力系統10の周波数が低下した場合には、これを回
復させるためにガバナ演算部23からのガイドベーン開
度指令値を開方向に増大させ、ポンプ水車4の出力を増
大させる。また、電力系統10の周波数が増加した場合
には、上記と反対にガイドベーン開度指令値を閉方向に
増大させ、ポンプ水車4の出力を減少させる。
In a branch channel pumped storage power plant configured as a double series, when the frequency of the power system 10 decreases, the guide vane opening command value from the governor calculation unit 23 is changed in the opening direction in order to recover the frequency. The output of the pump water turbine 4 is increased. Moreover, when the frequency of the power system 10 increases, the guide vane opening degree command value is increased in the closing direction, contrary to the above, and the output of the pump water turbine 4 is decreased.

ところで、ポンプ水車の水車発電運転においては、ガイ
ドベーン開度を変化させることにより容品に出力調整を
行えるが、ポンプ水車のポンプ揚水運転では、ガイドベ
ーン開度を変化させても、ポンプ水車の本来的特性のた
め入力はほとんど変化せず、電力系統の要求する入力に
適切に応することができない。
By the way, in the power generating operation of a pump-turbine, the output can be adjusted by changing the guide vane opening, but in the pump-pumping operation of a pump-turbine, even if the guide vane opening is changed, the Due to its inherent characteristics, the input hardly changes and cannot appropriately respond to the input required by the power system.

そこで、複数のポンプ水車を設置した揚水発電所では、
1台または複数台のポンプ水車をポンプ揚水運転させ、
それらの入力電力と電力系統の要求電力との差を残りの
ポンプ水車を水車発電運転することによって相殺させ、
揚水発電所全体の入力値を電力系統要求入力値に合致さ
せる方法が提案されている(特開昭61−129478
号)。
Therefore, in pumped storage power plants with multiple pump turbines,
One or more pump turbines are operated for pumping water,
The difference between the input power and the power required by the power system is offset by operating the remaining pump turbines to generate power.
A method has been proposed to match the input value of the entire pumped storage power plant with the power system required input value (Japanese Patent Laid-Open No. 129478/1983).
issue).

上述のように、複数台のポンプ水車を備えた分岐水路揚
水発電所においてポンプ揚水運転と水車発電運転とを並
行して行なうことは公知であるが、その停止方法につい
てまで配慮した制御方法は今のところ見当たらない。
As mentioned above, it is known that pump pumping operation and water turbine power generation operation are performed in parallel in a branch channel pumped storage power plant equipped with multiple pump turbines, but there is currently no control method that takes into account how to stop them. I can't find it there.

例えば、第7図に示すように、ポンプ揚水運転30中に
、電力系統の周波数低下、発電電動機の不足電圧、ある
いは圧油タンクの油圧低下部により非常停止1−または
急停止用の保護装置が動作31すると、合わせ部32が
アンド条件を満足し、並列用遮断器開33、調速装置間
34、入口弁閉35が実行され、界磁遮断器開36、ガ
イドベーン全閉37に至ると、合わせ部38を通り、さ
らにポンプ水車の回転速度が規定値以下39であれば合
わせ部40のアンド条件を満足し、ブレーキ動作41に
より主機は停止し、その後、主機の停止が確認42され
るとブレーキ解除43が行なわれる制御方法が知られて
いる。
For example, as shown in FIG. 7, during pump pumping operation 30, an emergency stop 1- or a sudden stop protection device is triggered due to a drop in the frequency of the power system, an undervoltage in the generator motor, or a low oil pressure in the pressure oil tank. When the operation 31 is performed, the matching unit 32 satisfies the AND condition, the parallel circuit breaker is opened 33, the speed governor is opened 34, and the inlet valve is closed 35, and the field circuit breaker is opened 36 and the guide vane is fully closed 37. , passes through the joint part 38, and if the rotational speed of the pump turbine is equal to or lower than the specified value 39, the AND condition of the joint part 40 is satisfied, the main engine is stopped by the brake operation 41, and then the stop of the main engine is confirmed 42. A control method in which brake release 43 is performed is known.

また、第8図に示すように、ポンプ揚水運転または水車
発電運転中のポンプ水車のガイドベーン間に異物の噛み
込み等により弱点ピン(図示せず)が切断された場合、
弱点ピン切損検出リレー(a)がONとなり、所定のタ
イムラグ後、弱点ピン切損時停止リレー(b)がONと
なり、ガイドベーン(d)がそれまでの適正開度から閉
じ始め、ガイドベーン(d)および入口弁(e)が共に
規定開度になった段階で遮断器(c)をOFFとして主
機を電力系統から解列して後、主機を停止させる方法も
知られている。
In addition, as shown in Fig. 8, if a weak point pin (not shown) is cut off due to foreign matter getting caught between the guide vanes of the pump-turbine during pump pumping operation or hydroturbine power generation operation,
The weak point pin breakage detection relay (a) turns on, and after a predetermined time lag, the weak point pin breakage stop relay (b) turns on, and the guide vane (d) begins to close from its previous proper opening, causing the guide vane to close. It is also known to turn off the circuit breaker (c) when both the inlet valve (d) and the inlet valve (e) reach a specified opening degree, disconnect the main engine from the power system, and then stop the main engine.

これらの第7図や第8図に示す制御方法においては、ポ
ンプ揚水運転中のポンプ水車の電力系統からの解列や停
止タイミングについては適切な配慮がなされているが、
同時運転中の水車発電運転機はポンプ揚水運転機の運転
状態とは無関係に停止制御されることになる。
In the control methods shown in Figures 7 and 8, appropriate consideration is given to the disconnection and stop timing of the pump-turbine from the power system during pump pumping operation.
The water turbine generator operating machine that is in simultaneous operation will be controlled to stop regardless of the operating state of the pump pumping operating machine.

(発明が解決しようとする問題点) 揚水発電所は、前述のように電力系統の需給状態に応じ
て水車発電運転あるいはポンプ揚水運転を行なうことに
より電力系統の電力需給バランスを保つことを目的とし
て建設されるものであるから、電力系統が要求する出力
や入力に応じて運転することが要求される。
(Problems to be Solved by the Invention) As mentioned above, pumped storage power plants are designed to maintain the power supply and demand balance in the power system by performing water turbine generation operation or pump pumping operation according to the power system supply and demand conditions. Since it is constructed, it is required to operate according to the output and input required by the power grid.

しかしながら、1本の水圧管路に連なる分岐管路に複数
台のポンプ水車を連結した分岐水路揚水発電所において
、一部のポンプ水車をポンプ揚水運転させ、残りの全部
または一部のポンプ水車を水車発電運転させている場合
において、ポンプ揚水運転または水車発電運転中の一方
のポンプ水車に事故が発生して非常停止用または急停止
用の保護装置が作動した場合、従来の制御方法では水車
発電運転機またはポンプ揚水運転機のガイドベーンおよ
び入口弁を急速に閉操作して主機を停止するようにして
いたため、電力系統との間の入出力電力差を制御するこ
とができず、また各主機は独自に急速に閉制御に移るた
め、振動や水圧変動が水力機械に及ぼす強度上の悪影響
も懸念され、特に水力的加振周波数が水圧管路や分岐管
路の固有振動数に一致すると共振現象が生じ、管路等が
破損に曝されるおそれがあった。
However, in a branch channel pumped-storage power plant where multiple pump-turbines are connected to a branch pipe connected to one penstock, some of the pump-turbines are operated for pumping, and all or part of the remaining pump-turbines are operated. When a water turbine is in power generation operation, if an accident occurs in one of the pump turbines during pump pumping operation or water turbine power generation operation and the emergency stop or sudden stop protection device is activated, the conventional control method Because the main engine was stopped by quickly closing the guide vanes and inlet valves of the operating machine or the pump pumping machine, it was not possible to control the difference in input and output power between the power grid and each main engine. Since the system rapidly shifts to closed control on its own, there is concern that vibration and water pressure fluctuations may have an adverse effect on the strength of the hydraulic machine, and especially if the hydraulic excitation frequency matches the natural frequency of the penstock or branch pipe, resonance may occur. There was a risk that this phenomenon would occur and the pipelines etc. would be exposed to damage.

(発明の目的) 本発明は背景技術における上述のごとき欠点を除去すべ
くなされたもので、−条の水圧管路から分岐する複数の
分岐管路にそれぞれポンプ水車が接続された分岐水路揚
水発電所において、前記ポンプ水車の一部をポンプ揚水
運転し、他のポンプ水車を水車発電運転している場合に
何等かの原因で前記ポンプ水車を停止させる必要が生じ
た際、電力系統への電力動揺を防止し、かつポンプ水車
の停止時の過渡的な回転上昇を抑止し、水圧管路の水圧
変動を最小限に抑えながら各ポンプ水車を迅速かつ確実
に停止させる分岐水路揚水発電所の過渡時運転制御方法
を提供することを目的とする。
(Object of the Invention) The present invention has been made to eliminate the above-mentioned drawbacks in the background art. In a place where some of the pump-turbines are operated for pumping water and other pump-turbines are operated for power generation, if it becomes necessary to stop the pump-turbines for some reason, the power to the power system is interrupted. Transient for branch channel pumped-storage power plants that prevents oscillations, suppresses transient rotational increases when pump-turbines are stopped, and quickly and reliably stops each pump-turbine while minimizing water pressure fluctuations in the penstock pipeline. The purpose of the present invention is to provide a method for controlling operation.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上述の目的を達成するため、本発明の分岐水路揚水発電
所の過渡時運転制御方法は水路が上池に連なる一条の水
圧管路と、それから分岐する複数条の分岐管路からなり
、各分岐管路にポンプ水車または水車およびポンプを連
結した分岐水路揚水発電所において、一部のポンプ水車
またはポンプによるポンプ揚水運転と、残りの全部また
は一部のポンプ水車または水車による水車発電運転が同
時に平行して行なわれている定常運転時に、前記ポンプ
揚水運転機および水車発電運転機のいずれか一方の側に
事故が発生した場合、事故機の回転速度および電圧を検
出し、それらの一方または双方が許容値以内のときは制
御信号を事故機に伝え、そのガイドベーンまたは入口弁
の閉制御を行なうと共に、前記制御信号を健全機にも伝
え、前記ポンプ揚水運転機が電力系統から受電する電力
と前記水車発電運転機が電力系統に給電する電力との入
出力相対差が急変しないよう前記健全機のガイドベーン
または入口弁の閉制御を並行して行い、前記事故機およ
び健全機のガイドベーンまたは入口弁が所定の小開度ま
たは全開に達した後、前記事故機と健全機を電力系統か
ら解列し、停止させることを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the transient operation control method of a branch channel pumped storage power plant according to the present invention provides a method for controlling transient operation of a branch channel pumped storage power plant. In a branch channel pumped-storage power plant consisting of several branch pipes, with a pump-turbine or a water turbine and a pump connected to each branch pipe, some of the pump-turbines or pumps perform pumping operation, and all or part of the remaining pumps operate. If an accident occurs on either side of the pump pump operation machine or the water turbine generator operation machine during steady operation when the water turbine or the water turbine power generation operation is being carried out simultaneously in parallel, the rotational speed and voltage of the accident machine is detected, and if one or both of them are within the allowable values, a control signal is transmitted to the accident aircraft to close the guide vane or inlet valve, and the control signal is also transmitted to the healthy aircraft to stop the pump pumping. Controlling the closing of the guide vanes or inlet valves of the sound machine in parallel so that the relative input/output difference between the power that the driving machine receives from the power system and the power that the water turbine generator driving machine supplies to the power system does not suddenly change; After the guide vanes or inlet valves of the accident aircraft and the sound aircraft reach a predetermined small opening or full opening, the accident aircraft and the sound aircraft are disconnected from the power system and stopped.

(作 用) 上述のように構成した本発明装置においては、回転速度
または電圧の状態値が関数発生装置に入力され、予め設
定・記憶された設定値(許容値)との比較が行なわれ、
入力値が許容値以下であり、かつ非常停止用保護装置か
らの信号が関数発生装置に入力されていることを条件に
事故機の入口弁およびガイドベーンを閉制御する信号が
出力される。それと同時に事故機の関数発生装置からの
信号は健全機の関数発生装置に人力され、一方で入出力
相対差と許容値との比較が行なわれ、入出力相対差が許
容値内となるような制御信号が出力され、ガイドベーン
と入口弁は事故機と並行して閉動作を開始する。事故機
および健全機の停止操作中は電力系統への入出力相対差
が急変しないよう、健全機は除々に停止制御され、また
事故機はガイドベーンまたは入口弁が規定の小開度また
は全開となった時点で電力系統から解列され、停止に至
る。
(Function) In the device of the present invention configured as described above, the state value of the rotational speed or voltage is input to the function generator and compared with a set value (tolerable value) set and stored in advance.
On condition that the input value is below the allowable value and the signal from the emergency stop protection device is input to the function generator, a signal is output to close the inlet valve and guide vane of the accident aircraft. At the same time, the signal from the function generator of the accident aircraft is manually input to the function generator of the healthy aircraft, and the relative input/output difference is compared with the tolerance value, and the input/output relative difference is within the tolerance value. A control signal is output, and the guide vane and inlet valve begin to close in parallel with the accident aircraft. During the shutdown operation of the accident aircraft and the healthy aircraft, the healthy aircraft will be controlled to shut down gradually to prevent sudden changes in the relative difference between input and output to the power system, and the accident aircraft will have its guide vanes or inlet valves open to the specified small or full opening. When this happens, it will be disconnected from the power grid and shut down.

(実施例) 次に、前記第5図におけると同様の構成の分岐水路揚水
発電所に本発明を適用する例につき説明する。
(Example) Next, an example in which the present invention is applied to a branch water pumped storage power plant having the same configuration as that shown in FIG. 5 will be described.

第1図において、回転速度検出装置11の出力は信号変
換装置50を通して信号変換された後、回転速度設定装
置51からの設定値と共に合わせ部52に導かれ、その
偏差値は事故機側の関数発生装置53に入力される。電
圧検出装置12の出力も信号変換装置54を経た後、電
圧設定装置55からの設定値と共に合わせ部56に導か
れ、その偏差値は関数発生装置53に入力される。
In FIG. 1, the output of the rotational speed detection device 11 is converted into a signal through the signal conversion device 50, and then guided to the matching section 52 together with the setting value from the rotational speed setting device 51, and the deviation value is a function of the accident aircraft side. The signal is input to the generator 53. The output of the voltage detecting device 12 also passes through the signal converting device 54 and is led to the matching section 56 together with the set value from the voltage setting device 55, and the deviation value is inputted to the function generating device 53.

非常停止用保護装置13からの信号も信号変換装置57
を経て関数発生装置53に入力される。
The signal from the emergency stop protection device 13 is also transferred to the signal conversion device 57.
The signal is input to the function generator 53 via the .

関数発生装置53は信号変換装置50.54の信号が予
め設定した許容値以内の場合には、非常停止用保護装置
13からの信号の存在を条件として入口弁およびガイド
ベーン制御装置58に向けて出力を生ずる。
If the signal from the signal converter 50.54 is within a preset tolerance value, the function generator 53 directs the signal to the inlet valve and guide vane controller 58, subject to the presence of a signal from the emergency stop protection device 13. produces an output.

一方、出力検出装置14と人力検出装置15の出力もそ
れぞれ信号変換装置60.61を経て信号変換された後
、合わせ部62で入出力相対差を演算される。この入出
力相対差は合わせ部63において入出力相対差設定装置
f64からの設定値と比較され、それらの偏差値は健全
機側の関数発生装置65に入力される。関数発生装置6
5は関数発生装置53と合わせ部63からの入力が存在
することを条件に入口弁およびガイドベーン制御装置6
6に向けて出力を生ずる。
On the other hand, the outputs of the output detection device 14 and the human power detection device 15 are also converted into signals through signal conversion devices 60 and 61, respectively, and then a relative difference between input and output is calculated in a combination unit 62. This input/output relative difference is compared with the setting value from the input/output relative difference setting device f64 in the matching section 63, and the deviation value thereof is input to the function generating device 65 on the healthy machine side. Function generator 6
5 is an inlet valve and guide vane control device 6 on the condition that there is an input from the function generator 53 and the coupling part 63.
It produces an output towards 6.

入口弁およびガイドベーン制御装置58.66はPID
演算器、変換器、ガバナーおよびサーボモータ等(いず
れも図示せず)からなり、関数発生装置53または65
からの信号が入力すると、ガイドベーン閉70,71、
入口弁閉72.73を指示し、ガイドベーンあるいは入
口弁が所定の小開度または全開74.75に至ると事故
機と健。
Inlet valve and guide vane controls 58,66 are PID
It consists of an arithmetic unit, a converter, a governor, a servo motor, etc. (all not shown), and a function generator 53 or 65
When a signal is input from the guide vanes 70, 71,
When the inlet valve is instructed to close (72.73) and the guide vane or inlet valve reaches the predetermined small opening or full opening (74.75), the accident aircraft is destroyed.

全機を電力系統から解列76.77した後、停止78.
79させる。
After all aircraft were disconnected from the power grid 76.77, they were stopped 78.
Make it 79.

上述のように構成した分岐水路揚水発電所において、主
変圧器の内部故障、圧油タンクの油圧低下、軸受の温度
上昇あるいはガイドベーン切損等で非常停止用保護装置
13が作動した場合には、それを示す信号が信号変換装
置57を経て関数発生装置53に入力される。
In the branch water pumped storage power plant configured as described above, if the emergency stop protection device 13 is activated due to an internal failure of the main transformer, a drop in oil pressure in the pressure oil tank, a rise in temperature of the bearing, or breakage of the guide vane, etc. , a signal indicating this is input to the function generator 53 via the signal converter 57.

関数発生装置53は非常停止用保護装置13からの信号
入力を条件に、事故機の回転速度または電圧の検出値が
予め設定した許容値以内であるか否かを比較演算し、検
出値が許容値以内であれば当該事故機を電力系統から解
列せずに、関数発生装置53からの出力信号により入口
弁およびガイドベーン制御装置58が作動し、ガイドベ
ーン閉70およびムロ弁閉72操作を開始する。
The function generator 53 compares and calculates whether or not the detected value of the rotational speed or voltage of the accident aircraft is within a preset allowable value based on the signal input from the emergency stop protection device 13, and determines whether the detected value is within the allowable value. If it is within the value, the inlet valve and guide vane control device 58 are activated by the output signal from the function generator 53, and the guide vane closing 70 and Muro valve closing 72 operations are performed without disconnecting the accident aircraft from the power system. Start.

一方、関数発生装置53の出力信号は健全機の関数発生
装置65にも入力され、この入力を条件として関数発生
装置65は健全機と事故機の入出力相対差が急変しない
ような出力信号が入口弁およびガイドベーン制御装置6
6に向けて出力される。この入口弁およびガイドベーン
制御装置66により入口弁とガイドベーンの開度制御、
閉鎖速度制御71.73が事故機側の閉操作70.72
と=IIli行して行なわれる。
On the other hand, the output signal of the function generator 53 is also input to the function generator 65 of the healthy machine, and on condition of this input, the function generator 65 generates an output signal such that the relative input/output difference between the healthy machine and the accident machine does not change suddenly. Inlet valve and guide vane control device 6
6. The inlet valve and guide vane control device 66 controls the opening of the inlet valve and guide vane.
Closing speed control 71.73 is the closing operation on the accident aircraft side 70.72
and = IIli lines.

事故機のガイドベーンまたは入口弁が規定の小開度また
は全開になると事故機を電力系統から解列76して停止
78に至らしめる。この解列時点では、事故機の入出力
絶対値そのものが充分に小さくなっているので電力系統
への影響は非常に小さい。
When the guide vane or inlet valve of the accident aircraft reaches a specified small opening or full opening, the accident aircraft is disconnected 76 from the power system and brought to a halt 78. At the time of this disconnection, the absolute input and output values of the accident aircraft have become sufficiently small, so the impact on the power system is extremely small.

また、入出力相対差が急変しないように健全機を制御す
るということはポンプ揚水運転機の揚水はと、水車発電
運転機の水車流量の差が小さいことであり、第2図に示
すように、水車発電運転機の水圧」−昇波81とポンプ
揚水運転機の水圧低下波82との差も小さい。
In addition, controlling a healthy machine so that the relative input-output difference does not change suddenly means that the difference between the water pumped by the pump pump operation machine and the water turbine flow rate of the water turbine generator operation machine is small, as shown in Figure 2. , the difference between the water pressure rising wave 81 of the water turbine generator operating machine and the water pressure decreasing wave 82 of the pump pumping operating machine is also small.

通常、分岐水路揚水発電所における分岐管路3a、3b
の路長はほぼ同一であるので、これらの水圧上昇波81
と水圧低下波82がほぼ同位相で重なり合って合成され
、水圧管路2内を伝播する圧力波83の水圧変動は小さ
い。その結果、水圧変動に起因する水力的加振周波数と
水圧管路2あるいは分岐管路3a、3bの固を振動数の
一致すなわち共振現象の発生を回避することにより主機
を安定した条件のもとで停止させることができる。
Usually, branch pipes 3a and 3b in a branch water pumped storage power plant
Since the path lengths of are almost the same, these water pressure rising waves 81
and the water pressure drop wave 82 are superimposed and synthesized in substantially the same phase, and the water pressure fluctuation of the pressure wave 83 propagating in the penstock pipe 2 is small. As a result, the main engine is kept under stable conditions by matching the hydraulic excitation frequency caused by water pressure fluctuations and the vibration frequency of the hydraulic pipe 2 or the branch pipes 3a and 3b, that is, by avoiding the occurrence of resonance phenomena. It can be stopped with .

なお、発電電動機ga、 8bの電力系統の解列時点で
はポンプ揚水運転機および水車発電運転機のガイドベー
ンと入口弁の開度は規定の小開度もしくは全開状態であ
り、揚水量と水車流量は共に少ないので解列してもポン
プ揚水運転機および水車発電運転機の回転上昇は小さく
抑えられ、また水車発電運転機の水の無効放流も最小限
に抑えることができる。
Note that at the time of disconnection of the power system for the generator motors ga and 8b, the opening degrees of the guide vanes and inlet valves of the pump pump operation machine and the water turbine generator operation machine are at the specified small opening or fully open state, and the amount of water pumped and the flow rate of the water turbine are are both small, so even if the pumps are disconnected from the series, the increase in rotation of the pump pumping operation machine and the water turbine generator operation machine can be suppressed to a small extent, and the ineffective discharge of water from the water turbine generator operation machine can also be suppressed to a minimum.

なお、第1図において、非常停止用保護装置13が作動
して事故機に停止指令が出ると、関数発生装置53は事
故機の回転速度と電圧が許容値以内であるか否かを判断
するが、上記回転速度電圧のいずれか一方または双方が
許容値を越えている場合には、第3図(特許請求の範囲
第2項に対応)に示すように事故機を直ちに解列76さ
せると共に健全機側の関数発生装置65にも指令を送り
、健全機も直ちに解列77させ、然る後、入口弁および
ガイドベーン制御装置58.66により事故機および健
全機をガイドベーン閉70,71、入口弁閉72.73
として停止させる。
In FIG. 1, when the emergency stop protection device 13 is activated and a stop command is issued to the accident aircraft, the function generator 53 determines whether the rotational speed and voltage of the accident aircraft are within allowable values. However, if either or both of the rotational speed voltages exceeds the permissible value, the accident aircraft is immediately decoupled 76 as shown in FIG. 3 (corresponding to claim 2). A command is also sent to the function generator 65 on the healthy machine side, and the healthy machine is also immediately decoupled 77. After that, the guide vanes of the accident machine and the healthy machine are closed 70, 71 by the inlet valve and guide vane control devices 58, 66. , inlet valve closed 72.73
to stop as

このように、事故機が電力系統へ与える影響が許容値を
越えている場合には、事故機と共に健全機も電力系統か
ら同時に解列させることにより、電力系統に与える影響
を抑制することができる。
In this way, if the impact of the accidental aircraft on the power grid exceeds the allowable value, the impact on the power system can be suppressed by disconnecting the healthy aircraft as well as the accidental aircraft from the power grid at the same time. .

第4図は本発明方法の他の実施例(特許請求の範囲第3
項に対応)を示すもので、非常停止用保護装置13が作
動して事故機の停止指令が出ると、関数発生装置53は
事故機の回転速度または電圧が許容値以下であるか否か
を判定し、それらの一方または双方が許容値を越えてい
る場合には、関数発生装置53から関数発生装置65に
指令を送って健全機を直ちに解列77させ、然る後、入
口弁およびガイドベーン制御装置58.66により事故
機と健全機を並行して停止操作し、事故機のガイドベー
ンあるいは入口弁が小開度または全開74となった後、
事故機を解列76し、停止78させる。
FIG. 4 shows another embodiment of the method of the present invention (claim 3).
When the emergency stop protection device 13 is activated and a command to stop the accident aircraft is issued, the function generator 53 determines whether the rotation speed or voltage of the accident aircraft is below the allowable value. If one or both of them exceed the allowable value, a command is sent from the function generator 53 to the function generator 65 to immediately disconnect the healthy machine 77, and after that, the inlet valve and guide After the accident aircraft and the healthy aircraft are stopped in parallel by the vane control devices 58 and 66, and the guide vanes or inlet valves of the accident aircraft become slightly open or fully open 74,
The accident aircraft is disarranged 76 and stopped 78.

この実施例では事故機の回転速度か電圧が許容値を越え
た場合、回転速度および電圧が電力系統のそれにほぼ等
しい健全機をまず電力系統から解列し、事故機は無負荷
開度程度まで閉めた後、電力系統から解列するようにし
たので、電力系統の電力動揺を小さく抑えることができ
る。
In this example, if the rotational speed or voltage of the accidental machine exceeds the allowable value, the healthy machine whose rotational speed and voltage are almost equal to those of the power grid is first disconnected from the power grid, and the faulty machine is closed to the no-load opening level. After closing, it is disconnected from the power grid, so power fluctuations in the power grid can be kept to a minimum.

[発明の効果〕 上述の如く、本発明の分岐水路揚水発電所の過渡時運転
制御方法においては、定常運転時に、ポンプ揚水運転機
および水車発電運転機のいずれか一方の側に事故が発生
した場合、事故機の回転速度および電圧を検出し、それ
らの一方または双方が許容値以内のときは制御信号を事
故機に伝え、そのガイドベーンまたは入口弁の閉制御を
行なうと共に前記制御信号を健全機にも伝え、ポンプ揚
水運転機が電力系統から受電する電力と水車発電運転機
が電力系統に給電する電力との入出力相対差が急変しな
いよう健全機のガイドベーンまたは入口弁の閉制御を並
行して行い、前記事故機および健全機のガイドベーンま
たは入口弁が所定の小開度または全閉に達した後、事故
機と健全機を電力系統から解列し、停止させることを特
徴とするものであるから、事故時に電力系統におよぼす
電力動揺は少なく、また停止操作に伴う水圧変動も少な
いので管路等への悪影響も防止でき、安定した停止操作
を実施することができる。
[Effects of the Invention] As described above, in the transient operation control method for a branch channel pumped storage power plant of the present invention, if an accident occurs on either side of the pump pumping operation machine or the water turbine generator operation machine during steady operation, In this case, the rotational speed and voltage of the accident aircraft are detected, and if one or both of them are within the allowable values, a control signal is transmitted to the accident aircraft, and the guide vane or inlet valve is controlled to close, and the control signal is The system also controls the closing of the guide vanes or inlet valves of healthy machines to prevent sudden changes in the relative input/output difference between the power that the pump pump operating machine receives from the power grid and the power that the water turbine generator machine supplies to the power grid. In parallel, after the guide vanes or inlet valves of the accident aircraft and the sound aircraft reach a predetermined small opening or full closure, the accident aircraft and the sound aircraft are disconnected from the power system and stopped. Therefore, in the event of an accident, there is little power fluctuation in the power system, and water pressure fluctuations associated with shutdown operations are also small, so it is possible to prevent adverse effects on pipes, etc., and to perform stable shutdown operations.

また、事故機の電圧または回転速度が許容値を越える場
合にも、事故機または健全機の電力系統からの解列時期
を選定することにより上記と同様の効果が得られる。
Furthermore, even when the voltage or rotational speed of the accidental aircraft exceeds a permissible value, the same effect as described above can be obtained by selecting the timing for disconnecting the accidental aircraft or healthy aircraft from the power system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す制御ブロック図、第2図
は本発明を適用した分岐水路揚水発電所におけろ水撃現
象の説明図、第3図と第4図は夫々本発明の実施例を示
す制御ブロック図、第5図は分岐水路揚水発電所の概略
構成を示す概略図、第6図はその制御方法を説明するブ
ロック図、第7図と第8図は従来の運転制御方法を例示
するブロック図とシーケンスダイヤグラムである。 1・・・上池、2・・・水圧管路、3 a 、  3 
b 、5 a *5b・・・分岐管路、4a、4b・・
・ポンプ水車、6・・・放水路、7・・・下池、8a、
8b・・・発電電動機、9a、9b・・・ローカルライ
ン、10・・・電力系統、11・・・回転速度検出装置
、12・・・電圧検出装置、13・・・非常停止用保護
装置、14・・・出力検出装置、15・・・入力検出装
置、81・・・水圧上昇波、82・・・水圧低下波、8
3・・・合成波。 出願人代理人  佐  藤  −総 括 2図 も5図
Fig. 1 is a control block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the water hammer phenomenon in a branch channel pumped storage power plant to which the present invention is applied, and Figs. 3 and 4 are respectively in accordance with the present invention. Fig. 5 is a schematic diagram showing the schematic configuration of a branch water pumped storage power plant, Fig. 6 is a block diagram explaining its control method, and Figs. 7 and 8 show conventional operation. 3 is a block diagram and a sequence diagram illustrating a control method. FIG. 1... Upper pond, 2... Penstock, 3 a, 3
b, 5 a *5b...branch pipe, 4a, 4b...
・Pump turbine, 6... Spillway, 7... Lower pond, 8a,
8b... Generator motor, 9a, 9b... Local line, 10... Power system, 11... Rotation speed detection device, 12... Voltage detection device, 13... Emergency stop protection device, 14... Output detection device, 15... Input detection device, 81... Water pressure rising wave, 82... Water pressure decreasing wave, 8
3...Synthetic wave. Applicant's agent Sato - Summary Figures 2 and 5

Claims (1)

【特許請求の範囲】 1、水路が上池に連なる一条の水圧管路と、それから分
岐する複数条の分岐管路とからなり、各分岐管路にポン
プ水車または水車およびポンプを連結した分岐水路揚水
発電所において、一部のポンプ水車またはポンプによる
ポンプ揚水運転と、残りの全部または一部のポンプ水車
または水車による水車発電運転が同時に平行して行なわ
れている定常運転時に、前記ポンプ揚水運転機および水
車発電運転機のいずれか一方の側に事故が発生した場合
、事故機の回転速度および電圧を検出し、それらの一方
または双方が許容値以内のときは制御信号を事故機に伝
え、そのガイドベーンまたは入口弁の閉制御を行なうと
共に、前記制御信号を健全機にも伝え、前記ポンプ揚水
運転機が電力系統から受電する電力と前記水車発電運転
機が電力系統に給電する電力との入出力相対差が急変し
ないよう前記健全機のガイドベーンまたは入口弁の閉制
御を並行して行い、前記事故機および健全機のガイドベ
ーンまたは入口弁が所定の小開度または全閉に達した後
、前記事故機と健全機を電力系統から解列し、停止させ
ることを特徴とする分岐水路揚水発電所の過渡時運転制
御方法。 2、事故機の回転速度および電圧の一方または双方が許
容値を越えたとき制御信号を事故機および健全機に伝え
、それらを電力系統から解列させると共に、前記事故機
と健全機のガイドベーンおよび入口弁を並行して閉制御
して停止させることを特徴とする特許請求の範囲第1項
記載の分岐水路揚水発電所の過渡時運転制御方法。 3、事故機の回転速度および電圧の一方または双方が許
容値を越えたとき、制御信号を健全機に伝えてこれを電
力系統から解列すると共に、前記事故機と健全機のガイ
ドベーンおよび入口弁を閉制御して停止させることを特
徴とする特許請求の範囲第1項記載の分岐水路揚水発電
所の過渡時 運転制御方法。
[Scope of Claims] 1. A branch waterway in which the waterway consists of a single hydraulic pipe connected to the upper pond and a plurality of branch pipes branching from the penstock, and each branch pipe is connected to a pump water wheel or a water wheel and a pump. In a pumped-storage power plant, during steady operation in which pumping operation by some pump-turbines or pumps and water-turbine power generation operation by all or part of the remaining pump-turbines or water turbines are performed in parallel, the pump pumping operation is performed. If an accident occurs on either side of the engine or the turbine generator, the rotational speed and voltage of the accident engine will be detected, and if one or both of these are within allowable values, a control signal will be transmitted to the accident engine, In addition to controlling the closing of the guide vane or inlet valve, the control signal is also transmitted to the healthy machine, and the power that the pump pump operation machine receives from the power system and the power that the water turbine generator operation machine supplies to the power system are controlled. The guide vanes or inlet valves of the healthy aircraft are controlled to close in parallel to prevent sudden changes in the relative input/output difference, and the guide vanes or inlet valves of the accident aircraft and the healthy aircraft reach a predetermined small opening or fully closed position. After that, the accidental machine and the healthy machine are disconnected from the power system and stopped. 2. When one or both of the rotational speed and voltage of the accident aircraft exceed the allowable values, a control signal is transmitted to the accident aircraft and the healthy aircraft to disconnect them from the power system, and the guide vanes of the accident aircraft and the healthy aircraft are 2. A method for controlling the transient operation of a branch waterway pumped storage power plant according to claim 1, characterized in that the inlet valve and the inlet valve are closed and stopped in parallel. 3. When one or both of the rotational speed and voltage of the accident aircraft exceed the allowable values, a control signal is transmitted to the healthy aircraft to disconnect it from the power system, and the guide vanes and inlets of the accident aircraft and the healthy aircraft are A method for controlling the transient operation of a branch waterway pumped storage power plant according to claim 1, characterized in that the operation of a branch waterway pumped storage power plant is stopped by controlling a valve to close.
JP62044777A 1987-02-27 1987-02-27 Transient operation control method for branch aqueduct pumped storage power station Pending JPS63212773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044777A JPS63212773A (en) 1987-02-27 1987-02-27 Transient operation control method for branch aqueduct pumped storage power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044777A JPS63212773A (en) 1987-02-27 1987-02-27 Transient operation control method for branch aqueduct pumped storage power station

Publications (1)

Publication Number Publication Date
JPS63212773A true JPS63212773A (en) 1988-09-05

Family

ID=12700845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044777A Pending JPS63212773A (en) 1987-02-27 1987-02-27 Transient operation control method for branch aqueduct pumped storage power station

Country Status (1)

Country Link
JP (1) JPS63212773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203276A (en) * 1990-11-29 1992-07-23 Toshiba Corp Operation control method for hydraulic power generating facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203276A (en) * 1990-11-29 1992-07-23 Toshiba Corp Operation control method for hydraulic power generating facility

Similar Documents

Publication Publication Date Title
US9599999B2 (en) Method for early detection and anticipatory control of consumer-end load shedding in an electrical grid, and apparatus for carrying out the method
US3931500A (en) System for operating a boiling water reactor steam turbine plant with a combined digital computer and analog control
US20240142064A1 (en) Pipeline energy recovery system
US3848138A (en) Method of effecting fast turbine valving for improvement of power system stability
CA2588879C (en) Steam turbine plant
KR102263021B1 (en) Method for starting a hydroelectric turbine
JPS63212773A (en) Transient operation control method for branch aqueduct pumped storage power station
JPH10306766A (en) Reversible pump-turbine
RU2634161C1 (en) Device for controlling turbo-expander with adaptation to external load
RU2795359C1 (en) Method for controlling inlet guide vane of a gas turbine engine compressor
JP2005061346A (en) Speed governing device for water turbine
JPS63113181A (en) Operation control method at pumped storage power station shutdown
JPH08284794A (en) Inspecting method for waterwheel speed controller
JPS623174A (en) Operation stop of pump in pump waterwheel
JP2735328B2 (en) Control method of water turbine
JPS6375363A (en) Pump stationary operation controlling method for branching conduit pumped storage power plant
JP2796298B2 (en) Variable speed pumping plant
Zulfiqar et al. PERFORMANCE EVALUATION OF DIGITAL GOVERNOR FOR IMPROVING OPERATIONAL EFFICIENCY AND RELIABILITY OF POWER PLANT
JP4722711B2 (en) Drainage equipment
JPH04159457A (en) Method for contolling reversible pumpturbine
SU926330A1 (en) Method of operating steam turbine
Lash et al. Some Hydraulic Features of Puntledge Generating Plant
JPS58217705A (en) Control device of steam turbine
Glattfelder et al. AUTOMATIC CONTROL FOR HYDROELECTRIC POWER PLANTS
JPH045404A (en) Compound electric power generating plant and method and device for preventing overspeed thereof