JPH0642368A - Control method for gas turbine compressor - Google Patents

Control method for gas turbine compressor

Info

Publication number
JPH0642368A
JPH0642368A JP19832192A JP19832192A JPH0642368A JP H0642368 A JPH0642368 A JP H0642368A JP 19832192 A JP19832192 A JP 19832192A JP 19832192 A JP19832192 A JP 19832192A JP H0642368 A JPH0642368 A JP H0642368A
Authority
JP
Japan
Prior art keywords
inlet guide
guide vane
compressor
gas turbine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19832192A
Other languages
Japanese (ja)
Inventor
Toshio Inagaki
登志夫 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19832192A priority Critical patent/JPH0642368A/en
Publication of JPH0642368A publication Critical patent/JPH0642368A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE:To ensure an optimum margin and to improve safety of each device by detecting the angle of the inlet guide vane, the outlet air pressure, and the number of revolutions of an axial flow compressor, and controlling the inlet guide vane and the air bleeding valve of the axial flow compressor. CONSTITUTION:In a generating plant utilizing a gas turbine 6, an inlet guide vane 2 and an air bleeding valve 3 are disposed to a compressor 1, and a combustor 5 is disposed between the compressor 1 and the turbine 6. In this case, the outlet pressure of the compressor 1 and the number of revolutions of the compressor 1, and the angle of the inlet guide vane 2 are detected by detecting means 15, 1, and 16, respectively. Based on detected signals therefrom, the inlet guide vane 2 and the air bleeding valve 3 are controlled by means of a control device 20. Namely, by comparing time system data and a prediction operation point obtained by the respective detected signals with a map set at a design step, control is made by tracing an operation line on which a surge margin is maximized. This constitution improves safety of each device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービン圧縮機の制
御方法、特に負荷遮断等の緊急動作時も含む各運転形態
においてサージマージンを最大にする、安全な制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for a gas turbine compressor, and more particularly to a safe control method for maximizing a surge margin in each operation mode including an emergency operation such as load shedding.

【0002】[0002]

【従来の技術】図4はガスタービン利用発電プラントに
おけるガスタービン周辺の機器配置を示す図である。図
中、(1)は圧縮機,(2)は入口案内翼(IGV)駆
動装置,(3)は空気抽出弁およびその駆動装置,
(4)は回転数検出器,(5)は燃焼器,(6)はガス
タービン,(7)は制御装置をそれぞれ示す。制御装置
(7)には、図示されていないほかの制御装置から起動
・停止、タービントリップ、負荷遮断等に対応するプラ
ント運用状態信号Sと負荷対応信号Lが、また上述の回
転数検出器(4)から回転数検出信号Nsが,それぞれ
送られて来て、図5に示されるように信号発生器
(8),(9)に導入される。信号発生器(8)からは
入口案内翼開度設定信号がリミッタ(10)に送出さ
れ、そのリミッタ(10)から入口案内翼駆動装置
(2)に対し入口案内翼操作信号が送出される。また信
号発生器(9)からは空気抽出弁開閉指示信号がリミッ
タ(11)に送出され、そのリミッタ(11)から空気
抽出弁駆動装置(3)に対し空気抽出弁操作信号が送出
される。
2. Description of the Related Art FIG. 4 is a diagram showing a layout of equipment around a gas turbine in a gas turbine power generation plant. In the figure, (1) is a compressor, (2) is an inlet guide vane (IGV) drive device, (3) is an air extraction valve and its drive device,
(4) is a rotation speed detector, (5) is a combustor, (6) is a gas turbine, and (7) is a controller. In the control device (7), a plant operation state signal S and a load corresponding signal L corresponding to start / stop, turbine trip, load shedding, etc. from another control device (not shown), and the above-described rotation speed detector ( The rotation speed detection signal Ns is sent from 4) and introduced into the signal generators (8) and (9) as shown in FIG. An inlet guide vane opening setting signal is sent from the signal generator (8) to the limiter (10), and an inlet guide vane operation signal is sent from the limiter (10) to the inlet guide vane drive device (2). An air extraction valve opening / closing instruction signal is sent from the signal generator (9) to the limiter (11), and an air extraction valve operation signal is sent from the limiter (11) to the air extraction valve drive device (3).

【0003】次に、上記図5に示した制御装置による従
来の制御方法について、図6により説明する。例とし
て、ガスタービンの起動から昇速・負荷運転・タービン
トリップに至る過程における入口案内翼および空気抽出
弁の操作について述べる。
Next, a conventional control method by the control device shown in FIG. 5 will be described with reference to FIG. As an example, the operation of the inlet guide vanes and the air extraction valve in the process from starting of the gas turbine to acceleration, load operation, and turbine trip will be described.

【0004】空気抽出弁(3)は、ガスタービンを起動
し無負荷定格回転数100%Nに至る途中の予め定めら
れたX%N回転数において、閉信号により閉じる。そし
てタービントリップ発生後、予め定められたY%N回転
数において、開信号により開く。また入口案内翼は、前
述の無負荷定格回転数100%Nに到達後併入し、初負
荷BLを取った時点で初負荷見合いの開度設定信号によ
り予め定められた開度PBLに開かれ、その開度を保
つ。その後負荷が上昇して予め定められた負荷Z%LD
を越えた場合、予め定められた負荷変化に追従した動作
速度で開いていく。負荷運転中は、負荷対応信号Lの変
化に追従して入口案内翼角度を制御する。そしてタービ
ントリップ発生後、予め定められた動作速度で全閉位置
まで閉鎖される。
The air extraction valve (3) is closed by a closing signal at a predetermined X% N rotation speed in the course of starting the gas turbine and reaching the no-load rated rotation speed of 100% N. Then, after a turbine trip occurs, it is opened by an open signal at a predetermined Y% N rotation speed. Further, the inlet guide vanes are inserted after reaching the above-mentioned unloaded rated speed 100% N, and when the initial load BL is taken, the inlet guide vanes are opened to the predetermined opening PBL by the opening setting signal corresponding to the initial load. , Keep its opening. After that, the load increases and the predetermined load Z% LD
When the value exceeds the limit, it opens at an operating speed that follows a predetermined load change. During load operation, the inlet guide vane angle is controlled by following changes in the load-corresponding signal L. After the turbine trip occurs, the turbine is closed to a fully closed position at a predetermined operating speed.

【0005】[0005]

【発明が解決しようとする課題】前記従来の制御方法で
は、それまでの実績・経験値等により設計段階で一意的
に定められた設定値により制御を行なっていたので、機
器の安全をはかるサージマージンの確保が最適とは言え
ない。特に、ガスタービンの燃焼器をボイラに置き換え
た複合発電システム等においては、ガスタービン廻りの
配管体積が大きくなるので、圧縮機の出口空気圧力P2
の解放が遅くなり、タービントリップ・負荷遮断等の緊
急動作時に、サージマージンが確保できない場合があ
る。
In the above-mentioned conventional control method, since the control is carried out by the set value uniquely determined at the designing stage based on the results and experience values so far, surges for ensuring the safety of the equipment are achieved. Securing a margin is not optimal. Particularly, in a combined power generation system or the like in which the combustor of the gas turbine is replaced with a boiler, the volume of piping around the gas turbine becomes large, so the outlet air pressure P 2 of the compressor is increased.
There is a case that the surge margin cannot be secured at the time of emergency operation such as turbine trip and load shedding.

【0006】例えば図7(b)に示すように、入口案内
翼(IGV)を一定速度で閉鎖していった場合のサージ
マージン確保の状態は、図7(a)のコンプレッサマッ
プに示される。今、入口案内翼全開で定格運転状態の時
P点に運転点があるとする。この時、コンプレッサマッ
プのC1 線上のR点がサージ限界圧力比を与える点であ
り、SMRがサージマージンとなる。タービントリップ発
生後、運転点がAのような経路を辿って推移した場合、
入口案内翼閉鎖に伴うサージ限界圧力比はRS線上を辿
って変化していく。なお、S点は空気抽出弁を開く回転
数に対応した点であり、空気抽出弁を開いた後、サージ
限界圧力比はO2 線上のT点からO3 線上へと推移して
いく。AはP2 の解放が比較的早い場合であり、サージ
マージンが確保されている。しかしながら、P2 の解放
が遅くBに示すような経路を辿って運転点が推移した場
合は、K点以降ではサージマージンが確保されず、機器
の安全が保証されない。
For example, as shown in FIG. 7 (b), the state of securing the surge margin when the inlet guide vane (IGV) is closed at a constant speed is shown in the compressor map of FIG. 7 (a). Now, it is assumed that there is an operating point at point P when the inlet guide vanes are fully opened and in the rated operating state. At this time, point R on the C 1 line of the compressor map is the point that gives the surge limit pressure ratio, and S MR is the surge margin. After the turbine trip occurs, if the operating point changes along a route like A,
The surge limit pressure ratio accompanying the closing of the inlet guide vanes changes along the RS line. It should be noted that point S corresponds to the number of rotations at which the air extraction valve is opened, and after the air extraction valve is opened, the surge limit pressure ratio changes from point T on the O 2 line to the O 3 line. In A, the release of P 2 is relatively quick, and the surge margin is secured. However, when the release of P 2 is slow and the operating point changes along the route shown in B, the surge margin cannot be secured after the point K, and the safety of the device cannot be guaranteed.

【0007】[0007]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、ガスタービンプラントを構成する
軸流圧縮機の入口案内翼角度、出口空気圧力および回転
数を検出し、それらの検出値に基づいて上記軸流圧縮機
の入口案内翼と空気抽出弁とを制御することを特徴とす
るガスタービン圧縮機の制御方法を提案するものであ
る。
In order to solve the above-mentioned conventional problems, the present invention detects the inlet guide vane angle, the outlet air pressure, and the rotational speed of an axial flow compressor which constitutes a gas turbine plant. The present invention proposes a method for controlling a gas turbine compressor, characterized by controlling the inlet guide vanes and the air extraction valve of the axial flow compressor based on the detected value.

【0008】[0008]

【作用】本発明方法において、例えば緊急動作時には、
圧縮機の出口空気圧力と回転数および入口案内翼角度を
逐次検出し、得られた時系列データならびに当該データ
を演算処理して得られる予測運転点と、設計段階に作成
されているコンプレッサマップとを比較することによ
り、サージマージンが最大となる入口案内翼動作線上を
辿って、入口案内翼を閉鎖していく。入口案内翼が閉鎖
した後、同様な処理を行ない、サージマージンが最大と
なる回転数で空気抽出弁を開く。したがって、何らかの
原因で圧縮機の出口圧力の解放が遅くなった場合でも、
従来とは異なってサージマージンの確保が最適に達成さ
れる。
In the method of the present invention, for example, during an emergency operation,
Compressor outlet air pressure, rotation speed and inlet guide vane angle are sequentially detected, the obtained time series data and the predicted operating point obtained by arithmetic processing of the data, and the compressor map created at the design stage By comparing the above, the inlet guide vanes are closed by tracing the operating line of the inlet guide vanes that maximizes the surge margin. After the inlet guide vanes are closed, the same process is performed and the air extraction valve is opened at the rotation speed that maximizes the surge margin. Therefore, even if the release of the compressor outlet pressure is delayed for some reason,
Unlike the conventional method, the surge margin is optimally secured.

【0009】[0009]

【実施例】図1は本発明方法を実施する機器配置の一例
を示す図、図2は図1中の制御装置(20)のブロック
図である。これらの図において、前記図4および図5に
より説明した従来のものと同様の部分については、冗長
になるのを避けるため、同一の符号を付け詳しい説明を
省く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an example of equipment arrangement for carrying out the method of the present invention, and FIG. 2 is a block diagram of a control device (20) in FIG. In these figures, the same parts as those of the conventional one described with reference to FIGS. 4 and 5 are given the same reference numerals to avoid redundancy, and detailed description thereof is omitted.

【0010】前記従来のものと比較すると、本実施例に
おいては、圧力伝送器(15),開度伝送器(16),
記憶器(12),演算器(13),信号発生器(1
4),信号選択器(17)が新たに加えられている。そ
して圧力伝送器(15)から圧縮機(1)の出口空気圧
力信号P2 が、回転数検出器(4)から回転数信号NS
が、更に開度伝送器(15)から入口案内翼(IGV)
角度信号Iが、いずれも記憶器(12)に導入される。
記憶器(12)ではそれら検出信号の時系列データを記
憶し、演算器(13)にデータを送出する。
Compared with the conventional one, in this embodiment, the pressure transmitter (15), the opening transmitter (16),
Memory (12), arithmetic unit (13), signal generator (1
4), a signal selector (17) is newly added. Then, the outlet air pressure signal P 2 of the compressor (1) from the pressure transmitter (15) and the rotation speed signal N S from the rotation speed detector (4).
However, from the opening transmitter (15) to the inlet guide vane (IGV)
Both angle signals I are introduced into the memory (12).
The memory (12) stores the time-series data of these detection signals and sends the data to the calculator (13).

【0011】演算器(13)にはコンプレッサマップを
記憶する記憶要素が具備されており、記憶器(12)か
ら送られて来たデータを演算して運転点の推移を推定
し、コンプレッサマップと比較の上、逐次入口案内翼開
度設定値および空気抽出弁開閉回転数設定値を演算し、
その結果を入口案内翼開度信号発生器(8)および空気
抽出弁開閉信号発生器(9)に送り出す。信号発生器
(14)には、負荷対応信号Lが導入され、従来と同じ
負荷運転中の入口案内翼制御を行なう入口案内翼開度設
定値を信号選択器(17)に送り出す。信号選択器(1
7)にはまた、上記信号発生器(8)からも入口案内翼
開度設定値信号が導入される。信号選択器(17)は、
2つの信号発生器(8),(14)から送られて来た入
口案内翼開度設定信号の一方をプラント運用状態信号S
に基づいて選択し、リミッタ(10)に送出する。リミ
ッタ(10)から入口案内翼駆動装置(2)に入口案内
翼操作信号が送出される。リミッタ(11)には信号発
生器(9)から空気抽出弁開閉信号が送られて来て、こ
こから空気抽出弁駆動装置(3)に弁操作信号が送り出
される。
The arithmetic unit (13) is equipped with a storage element for storing a compressor map. The data sent from the storage unit (12) is operated to estimate the transition of the operating point, and the compressor map and After comparison, calculate the inlet guide vane opening setting value and the air extraction valve opening / closing rotation speed setting value,
The result is sent to the inlet guide vane opening signal generator (8) and the air extraction valve opening / closing signal generator (9). A load-corresponding signal L is introduced to the signal generator (14), and the inlet guide vane opening set value for performing inlet guide vane control during the same load operation as in the conventional case is sent to the signal selector (17). Signal selector (1
In 7), the inlet guide vane opening degree setting value signal is also introduced from the signal generator (8). The signal selector (17) is
One of the inlet guide vane opening degree setting signals sent from the two signal generators (8) and (14) is used as a plant operation state signal S.
And sends it to the limiter (10). An inlet guide vane operation signal is sent from the limiter (10) to the inlet guide vane drive device (2). An air extraction valve opening / closing signal is sent from the signal generator (9) to the limiter (11), and a valve operation signal is sent from this to the air extraction valve driving device (3).

【0012】本実施例の効果を前記図7と対照して説明
すると、本実施例によれば図3(b)に示すように入口
案内翼(IGV)を制御するので、図3(a)に示すと
おりサージ限界圧力比はRU線上を辿り、サージマージ
ンの確保が可能である。
The effect of this embodiment will be described in comparison with FIG. 7 described above. According to this embodiment, the inlet guide vanes (IGV) are controlled as shown in FIG. 3B, so that FIG. As shown in, the surge limit pressure ratio follows the RU line, and a surge margin can be secured.

【0013】以上述べたように本実施例によれば、従来
達成されていなかった最適なサージマージンの確保が可
能となり、機器の安全性が向上する。
As described above, according to this embodiment, it is possible to secure an optimum surge margin which has not been achieved in the past, and the safety of the equipment is improved.

【0014】[0014]

【発明の効果】前記のとおり本発明においては、圧縮機
の出口空気圧力,回転数および入口案内翼角度を検出
し、その検出値と予め設計階段に求められているコンプ
レッサマップとによって入口案内翼と空気抽出弁を制御
するので、従来達成できなかった最適なサージマージン
の確保が可能となり、ガスタービンプラント機器の安全
性が格段に向上する。
As described above, in the present invention, the outlet air pressure, the rotation speed, and the inlet guide vane angle of the compressor are detected, and the inlet guide vanes are detected based on the detected values and the compressor map obtained in advance in the design stairs. Since the air extraction valve is controlled, it is possible to secure an optimum surge margin that could not be achieved in the past, and the safety of gas turbine plant equipment is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明方法を実施する機器配置の一例を
示す図である。
FIG. 1 is a diagram showing an example of equipment arrangement for carrying out the method of the present invention.

【図2】図2は図1中の制御装置(20)のブロック図
である。
FIG. 2 is a block diagram of a control device (20) in FIG.

【図3】図3は上記例におけるサージマージンの確保状
態を示す図である。
FIG. 3 is a diagram showing a secured state of a surge margin in the above example.

【図4】図4は従来のガスタービンプラントにおけるガ
スタービン周辺の機器配置の一例を示す図である。
FIG. 4 is a diagram showing an example of equipment arrangement around a gas turbine in a conventional gas turbine plant.

【図5】図5は図4中の制御装置(7)のブロック図で
ある。
FIG. 5 is a block diagram of a control device (7) in FIG.

【図6】図6は従来の制御方法による起動からタービン
トリップに至るまでの回転数,負荷,入口案内翼開度,
空気抽出弁開度の動きの一例を示す図である。
[Fig. 6] Fig. 6 is a rotational speed, load, inlet guide vane opening degree from start to turbine trip according to the conventional control method,
It is a figure which shows an example of the movement of the air extraction valve opening degree.

【図7】図7は従来の制御方法におけるコンプレッサマ
ップと運転点および入口案内翼開度の変化によるサージ
限界圧力比の推移を示す図である。
FIG. 7 is a diagram showing a compressor map and a transition of a surge limit pressure ratio due to changes in an operating point and an inlet guide vane opening in a conventional control method.

【符号の説明】[Explanation of symbols]

(1) 圧縮機 (2) 入口案内翼(IGV)駆動装置 (3) 空気抽出弁およびその駆動装置 (4) 回転数検出器 (5) 燃焼器 (6) ガスタービン (7) 制御装置 (8)(9) 信号発生器 (10)(11) リミッタ (12) 記憶器 (13) 演算器 (14) 信号発生器 (15) 圧力伝送器 (16) 開度伝送器 (17) 信号選択器 (20) 制御装置 C1 空気抽出弁閉鎖時の入口案内翼全開
位置におけるサージ限界圧力比線(以下サージ線とい
う) C2 同入口案内翼中間開度位置における
サージ線 C3 同入口案内翼全閉位置におけるサー
ジ線 O1 空気抽出弁開放時の入口案内翼全開
位置におけるサージ線 O2 同入口案内翼中間開度におけるサー
ジ線 O3 同入口案内翼全閉位置におけるサー
ジ線 A 圧縮機出口空気圧力の解放が早い場
合の運転点推移を示す線 B 圧縮機出口空気圧力の解放が遅い場
合の運転点推移を示す線 C 入口案内翼開度の変化を示す線 P 定格運転点 R 定格運転状態におけるサージ限界圧
力比を示す点 SMR 定格運転点におけるサージマージン S C2 線上で空気抽出弁を開く回転数
を示す点 T O2 線上で空気抽出弁が全開となっ
た時の回転数を示す点 K サージマージンが零となった点 U C3 線上で入口案内翼が全閉位置と
なったときの回転数を示す点
(1) Compressor (2) Inlet guide vane (IGV) drive device (3) Air extraction valve and its drive device (4) Rotation speed detector (5) Combustor (6) Gas turbine (7) Control device (8) ) (9) Signal generator (10) (11) Limiter (12) Storage device (13) Computing device (14) Signal generator (15) Pressure transmitter (16) Position transmitter (17) Signal selector ( 20) Control device C 1 Surge limit pressure ratio line (hereinafter referred to as surge line) at the inlet guide vane fully open position when the air extraction valve is closed C 2 Surge line at the intermediate opening position of the same inlet guide vane C 3 Same inlet guide vane fully closed Position Surge line O 1 Surge line at inlet guide vane fully open position when air extraction valve is open O 2 Surge line at same opening of same inlet guide vane O 3 Surge line at same inlet guide vane fully closed position A Compressor outlet air pressure Release soon Line showing the transition of operating point in the case B Line showing the transition of operating point when the release of the compressor outlet air pressure is slow C Line showing the change of inlet guide vane opening P Rated operating point R Surge limit pressure ratio in rated operating state Point S MR Surge margin at rated operating point SC Point indicating the number of rotations that open the air extraction valve on the C 2 line T O 2 Point indicating the number of rotations when the air extraction valve is fully open on the line K K The surge margin is Point where zero is reached A point that indicates the number of rotations when the inlet guide vanes are in the fully closed position on the UC 3 line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンプラントを構成する軸流圧
縮機の入口案内翼角度、出口空気圧力および回転数を検
出し、それらの検出値に基づいて上記軸流圧縮機の入口
案内翼と空気抽出弁とを制御することを特徴とするガス
タービン圧縮機の制御方法。
Claim: What is claimed is: 1. An inlet guide vane angle, an outlet air pressure and a rotational speed of an axial flow compressor constituting a gas turbine plant are detected, and the inlet guide vane of the axial flow compressor and air extraction are detected based on the detected values. A method for controlling a gas turbine compressor, comprising: controlling a valve.
JP19832192A 1992-07-24 1992-07-24 Control method for gas turbine compressor Withdrawn JPH0642368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19832192A JPH0642368A (en) 1992-07-24 1992-07-24 Control method for gas turbine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19832192A JPH0642368A (en) 1992-07-24 1992-07-24 Control method for gas turbine compressor

Publications (1)

Publication Number Publication Date
JPH0642368A true JPH0642368A (en) 1994-02-15

Family

ID=16389176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19832192A Withdrawn JPH0642368A (en) 1992-07-24 1992-07-24 Control method for gas turbine compressor

Country Status (1)

Country Link
JP (1) JPH0642368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310128A (en) * 1999-03-16 2000-11-07 General Electric Co <Ge> Gas turbine generator having additional capacity control device
JP2009150391A (en) * 2007-12-20 2009-07-09 Nuovo Pignone Spa Method for controlling load variations in gas turbine
US9845730B2 (en) 2012-03-08 2017-12-19 Nuovo Pignone Srl Device and method for gas turbine unlocking

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310128A (en) * 1999-03-16 2000-11-07 General Electric Co <Ge> Gas turbine generator having additional capacity control device
JP2009150391A (en) * 2007-12-20 2009-07-09 Nuovo Pignone Spa Method for controlling load variations in gas turbine
US8578717B2 (en) 2007-12-20 2013-11-12 Nuovo Pignone S.P.A. Method for controlling the load variations in a gas turbine
US9845730B2 (en) 2012-03-08 2017-12-19 Nuovo Pignone Srl Device and method for gas turbine unlocking

Similar Documents

Publication Publication Date Title
US3928972A (en) System and method for improved steam turbine operation
US7108477B2 (en) Warning before pump limit or in case of blade failure on a turbomachine
Cortinovis et al. Safe and efficient operation of centrifugal compressors using linearized MPC
US4053746A (en) System and method for operating a steam turbine with digital computer control having integrator limit
US4205380A (en) System and method for operating a steam turbine with digital computer control with accelerating setpoint change
JPH0642368A (en) Control method for gas turbine compressor
JPS607169B2 (en) Turbine control device for driving water pump
JP3463093B2 (en) Important function software processing system
RU2214535C2 (en) Method to control bypass of air in compressor of two-shaft by-pass gas-turbine engine
JP2018173004A (en) Stop method for gas turbine, control device for gas turbine, and gas turbine plant
JP2006316759A (en) Compression device
US4053786A (en) Transducer out of range protection for a steam turbine generator system
KR101144308B1 (en) Reset Method for the Power Load Unbalance function in steam turbines with by-pass system
JP2977406B2 (en) Compressor control device
JP4241207B2 (en) Hydroelectric power plant load control device
WO2018007464A1 (en) Turbine speed and acceleration limiter
JPH08165934A (en) Gas turbine over-speed reducing device
RU2801768C1 (en) Method for protecting a gas turbine engine from compressor surge
Patlovany et al. Predictive surge control and optimization for a centrifugal compressor
JPH0336123B2 (en)
JPH0734809A (en) Temperature control device of extraction steam turbine
JPS59224406A (en) Protective mechanism of nuclear turbine
JP3439025B2 (en) Compressor control device
JP3548644B2 (en) Turbine-driven feedwater pump controller
JPS5846644B2 (en) Steam turbine control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005