JP4269449B2 - Pump turbine - Google Patents

Pump turbine Download PDF

Info

Publication number
JP4269449B2
JP4269449B2 JP33556899A JP33556899A JP4269449B2 JP 4269449 B2 JP4269449 B2 JP 4269449B2 JP 33556899 A JP33556899 A JP 33556899A JP 33556899 A JP33556899 A JP 33556899A JP 4269449 B2 JP4269449 B2 JP 4269449B2
Authority
JP
Japan
Prior art keywords
rotational speed
governor
characteristic
load
pump turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33556899A
Other languages
Japanese (ja)
Other versions
JP2001153022A (en
Inventor
尚夫 桑原
慶 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33556899A priority Critical patent/JP4269449B2/en
Publication of JP2001153022A publication Critical patent/JP2001153022A/en
Application granted granted Critical
Publication of JP4269449B2 publication Critical patent/JP4269449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポンプ水車およびその制御方法に関する。
【0002】
【従来の技術】
一般的に、ポンプ水車、特に高揚程ポンプ水車のランナーは、ポンプ運転時に高揚程を得る為に、充分なる遠心ポンプ作用を発揮するべく設計される。
【0003】
しかしながら、この設計が、ポンプ水車の水車運転には悪影響を与える。特に後述のS字特性と呼ばれる特性が現れるが、これを完全に回避するのは難しいと考えられている。ポンプ水車の流量特性は、一般に、案内羽根開度をパラメータにして単位落差当り回転数(N1=N/√H)と単位落差当り流量(Q1=Q1/√H)との関係を示す一群の特性曲線で表す。他方、ポンプ水車のトルク特性は、案内羽根開度をパラメータにして単位落差当り回転数(N1=N/√H)と単位落差当りトルク(T1=T/H)との関係を示す一群の特性曲線で表す。なお、これら2種類の特性曲線を総称して完全特性と呼ぶ。ところで上記流量特性曲線は、水車運転領域において、N1の値の増加に伴ってQ1の値が減少する第1の部分と、N1の値の減少に伴ってQ1の値が減少する第2の部分とを有する。説明の便宜上、本明細書においては、前記第2の部分を、S字特性部分と称する。更に、S字特性部分におけるポンプ水車の特性を、以後、S字特性と称する。S字特性部分における水車運転にあっては、単位落差当りトルク(T1)もまた、単位落差当り回転数(N1)の減少に伴い、減少する。
【0004】
ポンプ水車の水車モードの通常運転は、上記第1の部分において行われる。しかしながら、負荷しゃ断により、単位落差当りの回転数(N1)が急激に大きく増加する場合は、ポンプ水車は、S字特性部分において運転されることになる。S字特性部分における運転が開始されると、ポンプ水車の運転点はS字特性部分を一端から他端へと辿りつつ、まず単位落差当りの流量(Q1)と単位落差当りの回転数(N1)は減少する。その後、今度は振子が振返すようにS字特性部分を逆方向に辿りつつ、Q1とN1は増加する。S字特性部分におけるこの往復運動は、案内羽根開度を閉めない限りいつまでも継続する。この間、単位落差当りのトルク(T1)も、減少と増加をくり返す。
【0005】
水車運転領域においてS字特性を有するポンプ水車の特性を、図4(A)および図4(B)に示す。図4(A)においては、ポンプ水車の特性が、案内羽根開度をパラメーターにとり、単位落差当りの回転数(N1)と単位落差当りの流量(Q1)との関係として示されている。一方、図4(B)においては、ポンプ水車の特性が、同じパラメーターにより、単位落差当りの回転数(N1)と単位落差当りのトルク(T1)との関係として示されている。N1,Q1およびT1は次の式により表現される。
【0006】
上記において、符号N,Q,HおよびTは、それぞれ、ポンプ水車の回転数,流量,有効落差およびトルクを示す。
【0007】
特性曲線1および1′は、所定の比較的大きな案内羽根開度の下で得られる。特性曲線2および2′は、それよりも小さな案内羽根開度の下で得られる。特性曲線3および3′は更にそれよりも小さい案内羽根開度の下で得られる。
【0008】
特性曲線1のa−d−h部分においては、Q1の値は、N1の減少に伴い減少する。上述の様に、この曲線部分a−d−hを、本明細書においては、S字特性部分と称する。同様に、曲線部分b−e−iは、特性曲線2のS字特性部分であり、曲線部分c−f−jは、特性曲線3のS字特性部分である。一見して明らかなように、特性曲線1のS字特性部分a−d−hは、特性曲線2のS字特性部分b−e−iより長く、特性曲線2のS字特性部分b−e−iは、特性曲線3のS字特性部分c−f−jよりも長い。このことは、案内羽根開度が小さくなるとS字特性部分の長さが短くなることを意味する。
【0009】
図4(A)におけると同様に、図4(B)においても、曲線部分a′−d′−h′,b′−e′−i′およびc′−f′−j′は、それぞれ特性曲線1′,2′および3′のS字特性部分である。
【0010】
図4(B)は、図4(A)と密接な関係がある。例えば、図4(A)の曲線3上のQ1=Q1x,N1=N1xを満たす点xは、図4(B)の曲線3′上の点x′に対応している。点x′は、T1=T1x′,N1=N1x′(=N1x)を満たす点である。同様に、図4(A)における点a,b,c,d,e,f,h,iおよびjはそれぞれ図4(B)における点a′,b′,c′,d′,e′,f′,h′,i′およびj′に対応している。
【0011】
曲線nrは、無負荷流量曲線である。曲線1,2,3と曲線nrとの交点α,β,γは、それぞれ、曲線1′,2′,3′と直線T1=0との交点α′,β′,γ′に対応している。
【0012】
次に、特性曲線1と1′を参照しながらポンプ水車の水車運転(発電運転)について説明を行う。上述したように特性曲線1を1′に対応する特性は、案内羽根開度を比較的大きな値にした時に得られる。通常は、ポンプ水車の水車運転は、特性曲線1の上部、すなわち、S字特性部分a−d−hより上部の曲線部分において行われる。しかしながら、もし例えばポンプ水車に加わっている負荷が突然失われた場合は、ポンプ水車の回転数(N)が急激に増加するので、N1の値も急激に増加する。こうして、ポンプ水車は、S字特性部分において運転され始まる。運転点が一旦S字特性部分に入ると、ポンプ水車の回転数(N)の低下によりN1の値が低下すると、Q1の値が低下し、ポンプ水車流量(Q)が減少する。一旦N1の値が減少すると、流量Qが減少し、流量Qの減少は、ポンプ水車の有効落差Hの増加をもたらす。この有効落差Hの増加は、更にN1の減少をもたらし、N1の減少は、更にQ1の減少をもたらす。このようにして、一旦S字特性部分における運転が始まると、Q1とN1は、S字特性部分をQ1減少方向、すなわち点aから点dの方向に辿りつつ、加速度的に、減少する。もちろん、この間に管路摩擦等の減衰作用も働くのでQの減少の進展にも自ずと抑制が作用することは言うまでもない。とにかく、Q1とN1は、正帰還制御回路におけると同様に、加速度的に、減少する傾向がある。
【0013】
ポンプ水車の運転点がS字特性部分を点aから点hまで辿り終えると、上記の現象は、負帰還制御回路と同様に次第に緩和され、その後、反転し、やがてS字特性部分をQ1増加方向、すなわち点hを少し過ぎた点から点aへ辿ることになる。S字特性部分を逆方向に辿るのも矢張り正帰還制御回路と同様の様式で行われる。
【0014】
負荷遮断後、ポンプ水車の案内羽根を閉鎖せずに放置した場合には、ポンプ水車の運転点は当該案内羽根に相当するS字特性曲線上を、上記のように往復運動する。このようにポンプ水車特性任せの運転は有害で、場合によっては危険である。これは、ポンプ水車流量は増減を繰り返し、水力発電所各水路系に激しい水撃が繰り返し発生するからである。
【0015】
S字特性部分における運転に伴うこのような悪影響は、S字特性部分の長さが短くなれば減少する。例えば、もし案内羽根開度を小さくして、より短いS字特性部分b−e−iを有する特性曲線2に従ってポンプ水車を運転するならば、S字特性に伴う悪影響は軽減される。
【0016】
S字特性部分におけるポンプ水車の運転は、ポンプ水車のトルクTにも悪影響を与える。S字特性部分においてN1の値が減少すると、図4(B)に示すように、T1の値が減少する。ここで再び図4(A)に示される特性曲線1上の点aとhは、図4(B)に示される特性曲線1′上の点a′とh′にそれぞれ対応することに注意しなければならない。
【0017】
有効落差Hが一定であると仮定すれば、T1減少は、ポンプ水車トルクTの減少を意味する。更に、ポンプ水車トルクTの減少が、ポンプ水車回転数Nの減少をもたらすことは明白である。ポンプ水車回転数Nが減少すると、それに対応してN1が減少し、次にT1が更に減少することになる。現実にはこの間に前記したように有効落差Hが増加しているのでこの加速傾向は益々強まる。このようにして、ポンプ水車は、特性曲線1を、Q1減少方向に辿る間、同時に特性曲線1′を点a′から点h′へと辿っていることになる。その辿り方は、正帰還制御回路の場合と同様である。その後、S字特性部分を辿る方向が逆転すると、特性曲線1′は点h′から点a′の方向へと、辿ることになる。上述したようなトルク変動は、回避した方が良い。
【0018】
また、負荷遮断後ポンプ水車の運転点がS字特性を辿り下っている時に案内羽根を速く閉めるのは危険である。N1の低下を助長する作用が働くためである。
更に、従来の技術として、水車運転モードにおいては、案内羽根の所定開度、例えば80%より下では、案内羽根の閉鎖速度の上限制限を、案内羽根80%以上の時の閉鎖速度上限制限より下げて設定している。この結果、負荷遮断時には、運転点がS字特性に入る直前に、案内羽根の閉鎖速度が急速閉鎖から緩慢閉鎖に移行し、閉鎖パターンでみればここで腰折が入る制御を行っていた。
【0020】
しかし、案内羽根閉鎖パターンの腰折だけに依存する従来技術でも問題が存在していた。例えば、S字特性を有する複数台のポンプ水車が図5のように各ポンプ水車の上流側管路102または下流側管路106または両側の管路を共有する場合には、水撃の相互干渉によって上流側水圧が異常上昇したり、下流側水圧が異常低下することがあることが知られている。当該の複数台のポンプ水車が同一仕様の場合を仮定すると、同時負荷遮断された時に発生する上流側水圧の最高値より、相次いで負荷遮断される時間差遮断時に発生する上流側水圧の最高値の方が高くなる問題や、同時負荷遮断された時に発生する下流側水圧の最低値より、相次いで負荷遮断される時間差負荷遮断時に発生する下流側水圧の最低値の方が低くなり、場合によっては水柱分離が発生するという問題があった。しかもこれらの異常水撃現象がS字特性を辿り下る微妙なタイミングに関係しているため最悪になる時間差等の条件を事前に特定しにくいという問題があった。
【0021】
そして高落差ポンプ水車の場合には上下流水路や据付高さ等の土木設計を決める上でS字特性が大きな問題になるとの認識から従来もS字特性対応制御の提案がなされている。例えば、特開昭53−143842号では負荷遮断後ポンプ水車の運転点がS字特性を流量減少方向に辿っている時に一時的に案内羽根を開き、運転点がS字特性を逆に流量増加方向に辿り始めた時か流量が略ゼロになった時点で案内羽根を急閉鎖する案が提案されている。しかし、この案では、負荷遮断後回転速度が一旦上昇した後降下に転じるが、この回転速度降下がガバナーの設定で決まる所定回転速度付近まで一気に進むようにしている。そのために案内羽根開度Y<Yaで案内羽根閉鎖速度制限を緩閉鎖に移行させる腰折を使わず一時開きした後の案内羽根閉鎖を負荷遮断直後の急閉鎖と同一レートで一気に閉めている。更に、一時開きした後の案内羽根再閉鎖開始の時点を流量が減少から増加に転じる時点または流量が略ゼロになる点としているが、ポンプ水車の過渡状態において信頼性の高い流量検出をすることは難しい。また、運転点がS字特性を流量減少方向に辿り終えて流量増加方向に辿り移った後も案内羽根開操作を続けると逆にS字特性を助長する結果になる。上述した問題点を考えると特開昭53−143842号が複数台のポンプ水車が同一管路を共有する場合、特に自分の運転状態だけでなく該他号機からの水撃干渉で流量が複雑に変動する場合には安定した制御は行えない。
【0022】
なお、従来のポンプ水車では、通常の有負荷運転では電力系統に連繋されていて安定性に不安がないため、ガバナーは安定性より応答速度を重点にしてゲインを高めに設定し、他方、負荷遮断後は当該ポンプ水車が単独で無負荷運転を継続する必要があるため安定性を重視し、ゲインを低めに設定するようにしている。しかしながら、この無負荷運転用の設定は過渡的に通過するS字特性を考慮したものではなく、S字特性を抜けた後の言わばN1の値の増加に伴ってQ1の値が減少する前記第1の部分においてはじめて安定性が確保できる程度の設定であった。正帰還作用が働くS字特性内の運転に対しては到底安定性が確保できない設定になっていた。なお、負荷遮断時ガバナーの演算部を応答速度を比較的高めに設定する有負荷運転用ゲインから無負荷運転用ゲインへの切換は回転速度が定格回転速度より充分高い所定値以上になったことまたは遮断器が開いた等の条件で自動的に行われていた。
【0023】
【発明が解決しようとする課題】
本発明は、負荷遮断時だけでなく、負荷遮断を行う他に水量調整手段を速やかに全閉しポンプ水車を停止へ導く操作も含む非常停止の際にも効果的なポンプ水車およびその制御方法を提案することにある。
【0024】
【課題を解決するための手段】
上記目的を達成するために、本発明は、ランナーと、ランナーと接続された発電電動機と、ランナーを通過する水量を調整する水量調整手段と、発電電動機の回転速度を検出する回転速度検出部と、回転速度検出部からの回転速度信号に応じて水量調整手段を制御するガバナーとを備えたポンプ水車において、ガバナーは、負荷遮断の際に前記水量調整手段を閉鎖する閉鎖手段と、回転速度の上昇ピークを経て下降する段階で前記水量調整手段を一時的に開動作させる開動作手段からなるS字特性対応制御手段を含み、さらに、非常停止信号に応じて負荷を遮断する負荷遮断手段と、非常停止信号に応じてS字特性対応制御手段による制御をロックさせて水量調整手段を全閉まで閉め切る急閉鎖指令をガバナーに与える急閉鎖指令印加手段とを備え、急閉鎖指令印加手段は、S字特性対応制御手段における開動作手段による水量調整手段の一時的な開動作をさせた後でガバナーに急閉鎖指令を与えるようにしたものである。
【0025】
また、本発明のポンプ水車において、前記急閉鎖指令印加手段は、回転速度が第1の前記上昇ピークを経て下降し、再上昇が始まる状態において、前記ガバナーに急閉鎖指令を与えることを特徴とするものである。
【0026】
また、本発明のポンプ水車において、前記ガバナーは第1のピークを経て再上昇が始まる回転速度が定格回転速度より高い回転速度となるようにしたことを特徴とするものである。
【0027】
また、本発明のポンプ水車において、前記ガバナーは第1のピークを経て再上昇が始まる回転速度が、定格回転速度+1/3(負荷遮断後の回転速度のピーク値−定格回転速度)より高い回転速度となるようにしたことを特徴とするものである。
【0032】
次に、発電電動機が電力系統に連繋された通常の負荷運転中に使用するガバナーも、非常停止開始直後の過渡状態において使用するガバナーも、同一のガバナーとすることができる。すなわち、通常運転用ガバナーに前記S字特性対応制御機能を付加したガバナーを使い、必要に応じて前記S字特性対応制御機能をON/OFFさせて用いることができる。
【0033】
次に、上述とは逆に、非常停止開始直後の過渡時には、通常運転用ガバナーはOFFし、代わりに、前記S字特性対応制御が可能な専用ガバナーをONする構成も採用することができる。
【0035】
負荷遮断と同時に発電出力はゼロになるが、水車出力はすぐにはゼロにならないため回転が上昇してしまう、すなわち、この出力差による余剰エネルギーを一時的に回転部の慣性効果に溜め込んでしまう。しかし、従来技術によれば、回転速度が下降に転じた後回転速度が定格回転速度付近まで一気に低下している。これは溜め込んだエネルギーをすぐに吐き出すことを意味する。しかし、この回転部の慣性エネルギーの一気の吐き出しが悪い影響を及ぼしていた。この一気の回転部エネルギーの吐き出しの裏では回転部に代わって同エネルギーをポンプ水車上下流の水柱で、受け取ってしまっていた。吐き出されたエネルギーはこの長大な水柱が異常に速く減速され、さらには逆にポンプ流れさえ引き起こすために使用されてしまう。負荷遮断後に落ち着く先の目標流量は無負荷流量であるので、本来ならば負荷遮断前の出力相当流量から無負荷流量へスムースに移行すべきである。しかし、実際には負荷遮断前の出力相当流量から無負荷流量をはるかに通り過ぎて一時的にポンプ領域まで突っ込む。当然ながら、このような異常な水柱の加速は反動を招く。すなわち、今度はポンプ流れから無負荷流量を大きく超えて過大な水車流量を招く。この時は水柱のエネルギーを回転部慣性効果が受け取ってしまい回転速度が再び上昇する。このように、従来技術によれば、過大な余剰エネルギーが回転部慣性効果と水柱の間を行ったり来たりし、この間にポンプ水車流量を過大に振らせてポンプ水車上下流水路に過大な水撃をもたらす。
【0036】
ところで問題の発端である負荷遮断後最初の回転速度の一気低下は回転速度を制御するガバナーが求めたものである。しかし、S字特性を有するポンプ水車にとっては、負荷遮断時にガバナーだけの要求に合わせて制御することは流量制御,水撃制御の観点から見れば誠に合理的でないことになる。このような考えから本発明では少なくとも全負荷遮断時においては、遮断直後、上昇した回転速度が第1のピークを経て下降する段階において、水量調整手段を一時的に開動作させ(これをS字特性対応制御と呼ぶ)、結果的に前記最初の回転速度低下が一気に定格回転付近まで進むことがないようにする。一例として、回転速度低下が[定格回転速度+1/3(負荷遮断後の回転速度のピーク値−定格回転速度)]より高い回転速度で一旦止み再上昇に転じるようにする。このための具体策としては、ガバナーが認識する回転速度の目標値を定常時の目標値に比して、一時的に高くなるように補正する方法や、ガバナーの演算部ゲインを一時的に修正する方法や、ガバナー演算部の出力を直接補正する方法、またはそれらの組み合わせが考えられる。複数のガバナーを用意し、これらを切り換え使用する案も考えられる。前記のような一時的な補正制御の度合を調整することによって、少なくとも負荷遮断後初めの回転速度降下で回転速度が一気に定格回転付近まで進むことがないようにすることが実現できる。
【0037】
そして、理想的には前記S字特性対応制御は、運転点が初めてS字特性領域に突入しS字特性を辿り下る時に作動させるのが効果的である。そのタイミングは負荷遮断後回転速度が上昇し、第1ピークを記録した後で、回転速度降下曲線が上に凸から下に凸に移行する変極点付近までの期間に相当する。もちろん、このタイミングは前後に若干のずれは許容される。
【0038】
なお、S字特性対応制御の効果を測る指標として次の案も考えられる。すなわち、最初の回転速度上昇開始から前記第1のピークに達するまでの所要時間に対し、前記第1のピークから(定格回転速度+速度調定率)相当の回転速度まで低下する所要時間が少なくとも2倍以上になるようにすることである。なお、S字特性対応制御の強さは水量調整手段の一時的な開補正幅の大小、および作動タイミングの適格さで決まる。
【0039】
なお、上述では負荷遮断直後の回転速度変動の1波目だけでS字特性対応制御の設定レベルを議論したが、回転速度変動の2波目以降についても同様である。2波目以降についても、1波目に設定したと同じロジックで作動する(回転速度降下の度にS字特性対応制御が作動し水量調整手段を一時的に開動作させる)ようにすれば、S字特性の影響は波を重ねる毎に急速に減衰させることができる。
なお、遮断負荷が大きくなればなるほど過渡的な回転速度上昇幅が大きくなるので、S字特性の影響を最も強く受けるケースは全負荷遮断時である。このため上述のS字特性対応制御の設定方法は全負荷かそれに近い負荷における遮断を対象にして説明している。当然ながら遮断負荷が小さくなれば、S字特性対応制御の必要性も次第に低下してくることは言うまでもない。
【0040】
他方、発電電動機や変圧器等電気側の保護装置が動作すると非常停止モードになるが、この場合は安全上、即刻の負荷遮断が必要である。すなわち、発電電動機の電力を即刻ゼロにし、少なくとも電気側の被害拡大を即刻止める必要があるからである。しかしながら、ポンプ水車側では、従来技術のように、前記急閉鎖指令を即刻入力し、水量調整手段も即刻急閉鎖するのには困難が供う。なぜならば、非常停止操作直後の十数秒に関しては、ポンプ水車は負荷遮断時と全く同様の状態にあるにも拘わらず、S字特性対応制御がロックされた状態になり、前述のS字特性による異常水撃現象がそのまま出てくるためである。このため、非常停止時は負荷遮断後、しばらくは前記急閉鎖指令をロックし、この間に、ガバナーには通常の負荷遮断時と同様に前記S字特性対応制御を実行させ、少なくとも最初の回転速度降下曲線に効果が現れるのを待ってから、または、そう予想できる時点になってから前記急閉鎖指令を入力し、それ以降は水量調整手段(案内羽根)をできるだけ速やかに閉鎖する。もちろん、これ以降は案内羽根開度に応じて閉鎖速度を切換する従来技術による閉鎖パターンを使うことも可能であり、また、上述したS字対応制御を採用することもできる。
【0041】
なお、最初の回転速度降下曲線にS字特性対応制御の効果が現れることは、具体的には、最初の回転速度降下の途中で再上昇が始まることを意味し、最初の回転速度上昇開始から前記第1のピークに達するまでの所要時間に対し、前記第1のピークから(定格回転速度+速度調定率)相当の回転速度まで低下する所要時間が2倍以上になることを意味する。このため、回転速度が前記第1のピークに達する時間の約2倍以上経過した時点で前記急閉鎖指令を入力することが効果的である。なお、非常停止の場合は、水量調整手段を全閉まで閉め切って、ポンプ水車を完全に停止させる。通常の負荷遮断の場合には水量調整手段を最終的に無負荷開度に落ち着かせここで継続運転するのでここが大きな相違点である。
【0043】
【発明の実施の形態】
以下、本発明の一実施例を図面を用いて説明する。
【0044】
図3は本発明のポンプ水車のガバナーのブロック線図である。このブロック図において、水車100の回転速度Nを検出する速度検出部1からは速度検出信号Xnが出力する。速度調整部2は回転速度の基準値を設定する。速度調整部2からは設定値X0が出力する。加算部3には速度調定率設定部からの復元信号Xσが加わる。そして、加算部3からは出力信号Xεが出力する。補正制御回路200からは、補正制御信号X200が出力する。信号X20Aは出力信号Xεを補正制御信号X200で補正した信号ですぐ下流のPID演算回路の入力信号となる。PID演算回路では発電電動機が大電力系統に接続される通常の発電運転時の比例演算要素(P要素)4a、負荷遮断後の無負荷運転時に使用する比例演算要素(P要素)4bを有する。なお、前者の比例演算要素のゲインKpa>後者の比例演算要素のゲインKpbとなっている。また、通常の発電運転時の積分演算要素(I要素)5a、負荷遮断後の無負荷運転時に使用する積分演算要素(I要素)5bも有している。そして前者の積分ゲインKia>後者の積分ゲインKibとなっている。なお、接点19a,19bは図示してない発電電動機の遮断器の開閉を直接または間接的に検出する接点で遮断器が開いた時、同時にスイング動作して下側接点を開き上側接点を閉じるようになっている。接点19a,19bが各2個ある理由は比例演算要素,積分演算要素共に同時に切換するためである。また、演算部には微分演算要素(D要素)6を有し、出力信号Zdを出力する。また、比例演算要素からは出力信号Zpが、積分演算要素からは出力信号Ziが出力している。
【0045】
加算部7からは比例演算要素の出力信号Zp,積分演算要素の出力信号Zi,微分演算要素の出力信号Zdを総合した案内羽根開度指令Zを出力し、実際の案内羽根開度Yは加算部8に負帰還されている。リミッター9,油圧サーボモーター10は一種の油圧増幅器になっており、伝達関数ではリミッター付一次遅れ要素を構成し、案内羽根開度指令Zを増幅して水量制御手段である案内羽根を直接操作するに充分なストロークと操作力をもつ案内羽根開度Yに変換するものである。また、信号Yε1は案内羽根開度指令Zと実際の案内羽根開度Yの偏差を示す。急閉鎖指令Yxxxは非常停止の際に印加され、印加の時点は後述のように少なくとも最初の回転速度降下に対するS字特性対応制御の効果が現れる時点である。加算器21では案内羽根開度指令Zと急閉鎖指令Yxxxを加算し、偏差信号の修正信号Yε2を出力するものである。なお、急閉鎖指令Yxxxの大きさは案内羽根開度指令Zの最大値より少なくともθL以上大きくしておく。リミッター9のθRは案内羽根の開速度をθR.Cyに、θLは閉速度をθl.Cyに制限するためのものである。すなわち、信号Yε3は偏差信号の修正信号Yε2を上記開閉速度制限を考慮して制限した信号となる。なお、加算部11に出力調整部13から所望の案内羽根開度設定信号Yaが与えられる。もし実際の案内羽根開度Yが信号Yaに達していない場合には、すなわち、Y<Yaの場合にはその差がゼロになるまでガバナーのPID演算部に開信号σ(Ya−Y)が送り続けられるので、やがてはY=Yaとなりその段階で落ち着く。速度調定率設定部12は上記の係数σを設定する部分である。換言する係数とσは速度検出信号Xnの変化に対する案内羽根開度Yの変化の割合を決めるゲインで、一般には電力系統の中での当該プラントの役割、すなわち、負荷分担の割合を考慮して一度決めたら変更されないものである。また、水路系を含む水車14を有する。水車軸に直結された発電機に与えられる当該発電所の負荷電力L、電力系統側から与えられる負荷電力RLより、総合された発電機負荷Pgが求められる。従って、電力系統からの負荷特性17bが示され、水車100の自己制御性は17aで示され、具体的には回転速度上昇に伴い増加する機械損や効率低下等を総合した特性部である。従って、信号RTは回転速度変化に伴う自己制御性による水車出力のロスを示す。かくして水車からみれば信号Pgだけでなく信号RTも一種の負荷のようにみなすことができる。すなわち、水車の出力Ptを消費する総合負荷LΣ=Pg+RTとみなすことができる。かくして(Pt−LΣ)が回転部慣性効果16の入力となり、回転部慣性効果16の出力が回転速度Nとなる。なお、負荷遮断後はPgはLに等しくなる。
【0046】
ここで、速度調整部2,出力調整部13,速度調定率設定部12の作用を図6(a),図6(b)により説明する。なお、ここで無負荷時の案内羽根開度は0.2(pu)と仮定する。図6(a)の右下がりの実線はこのプラントが電力系統に接続される直前の状態を示す。すなわち、回転数Nの定格値(同期速度)ラインとこの実線の交点が案内羽根開度を示すが、丁度無負荷開度0.2 になっている。なお、水車を起動する前はこの実線はこれより低い位置に設定される。例えば図6(a)の点線の位置に設定される。このように図6(a)の実線より下側でこの実線を上下に平行移動させるのが、速度調整部2である。この実線を上下に平行移動した時無負荷開度0.2 線上の交点が上下に動くことから速度調整部の名が付いている。他方、このプラントが電力系統に接続された後の動きについて図6(b)により説明する。この場合は、実線と定格速度との交点はY=1.0 になっている。すなわち、100%負荷運転中を示す。図6(a)の並列時の実線位置は図6(b)では点線の位置になる。このように実線を平行移動させて案内羽根開度を調整するのが出力調整部13である。出力調整部13は、実線を水平方向に平行移動させるものであるが、無限大電力系統に連繋された状態では、回転速度は事実上1.0 に固定されるので、実線の水平方向移動に伴うN=1.0線上の交点は左右に動くことから、この名が付けられている。図6(b)の実線の設定では、定常時はN=1.0,Y=1.0で運転されるが、今、仮に電力系統の周波数が3%上昇しN=1.03になったとすると、Yは0.2になる。電力系統周波数の上昇幅が1.5%であれば、Y=0.6に閉め込まれる。このように周波数変化幅と案内羽根閉め込み幅の間に比例関係を与えているのが、速度調定率設定部12である。速度調定率設定部12のゲインを大きくすれば、図6(b)の実線の右下がり勾配はよりきつくなり、周波数変化に対する案内羽根開度応答幅のゲインが下がってくる。従って、図6(b)の実線の設定で定格回転速度で(N=1.0で)全負荷(100%負荷)運転中に負荷遮断が起きれば、ガバナーは回転速度Nを最終的には定格値より速度調定率分だけ高い1.03 に落ち着かせるように作動する。
【0047】
図7(a)はポンプ水車の案内羽根閉鎖速度制限を示す典型的な例図である。ポンプ水車の場合には、従来より案内羽根開度Y>Yaの範囲では勾配がθ1aより大きくならないよう、Y<Yaの範囲では勾配がθ1aよりさらに小さいθ1bより大きくならないよう速度制限を与える。すなわち、図3のリミッタのθLをY>Yaの範囲では比較的大きいtan(θ1a)/Cyに、Y<Yaの範囲では比較的小さいtan(θ1b)/Cyに設定する。他方、案内羽根の開動作については、閉動作のようにS字特性の影響を受けないので、例えば図7(b)のように案内羽根開度に関係なく|θ1a|>|θ2|>|θ1b|となるような一定値θ2に設定する。
【0048】
図3の本発明のガバナーにある補正制御回路200は、例えば次のように設計する。非常停止指令を受けたら、負荷が即刻遮断されるので、回転速度は直ちに上昇を始める。そこで第一の設計ポイントとして、この最初の回転速度上昇に比較的速く追従して補正制御回路200の出力X200を上昇させることである。なお、この場合補正制御回路200の追従ゲインを高くし過ぎると、(X200+X0)がXnに対して大きくなり過ぎて最速レートで走行する筈の案内羽根の閉鎖速度が低下することになるので、この影響が出ない程度のゲインに留めるべきである。第二の回路設計ポイントは、回転速度が下降に転じたら、上昇してきた出力X200を今度は低下させることになるが、この時は回転速度上昇時と違って緩慢に低下させることである。換言するとこの段階では出力X200を高めに維持して回転速度の低下勾配を引き戻しなだらかにする作用をさせる。そして、全負荷遮断時で言えば、回転速度が定格回転速度付近まで一気に低下するのを防止し、回転速度が[定格回転速度+1/3(負荷遮断後の回転速度のピーク値−定格回転速度)]より高い回転速度で反転して再上昇に転じるようにする。このように、負荷遮断後の最初の回転速度下降時にS字特性の影響を的確に抑制すれば、その後、第2の回転速度上昇後の下降、第3の回転速度上昇後の下降時に同様のS字特性対応制御を行わなくても済む可能性もある。もちろんこれらの第2,第3ステージでも第1ステージと同様のロジックでS字特性対応制御を作動させてS字特性対応制御の効果をより確かなものとする方が望ましい。すなわち、第2,第3ステージでも第1ステージと同様に回転速度上昇時には出力X200を比較的速く上げ方向に追従せしめ、下降時には緩慢に低下させる。
【0049】
上述の本発明を使ったポンプ水車の非常停止時の時間応答グラフを図1に示す。なお、同グラフ中のQは流量、Yは案内羽根開度、Hpは水車入口水圧、Nは回転速度、Hdは水車出口水圧を示す。最初の回転速度降下時のS字特性対応制御が効果的に作用し、回転速度の一気の降下は回避され、流量Qの一時的逆転 (一時的ポンプ流れ)も発生せず、水撃の第2の山Hpyも完全に消滅している。
時間経過を追って詳細に見てみると次のようになる。発電電動機側の異常を検出する保護リレー等の動作によって非常停止指令が10秒の時点で与えられる。すると発電電動機と電力系統を繋ぐ遮断器が即座に開かれる。この結果、回転速度Nが上昇を開始する。他方、案内羽根急閉鎖指令Yxxxは直ぐには与えず、案内羽根は引き続きガバナーの制御下におく。かくしてガバナーは回転速度上昇に応答して案内羽根を急速に閉鎖する。なお、案内羽根には閉鎖速度制限があるので、所定の腰折開度までは比較的高速の閉鎖が行われるものの、該腰折開度以下になれば比較的低速の閉鎖に自動移行するようになっている。かくして、案内羽根の腰折開度までの高速閉鎖によってHp水車入口水圧が急上昇し、第1ピークHpxが現れる。案内羽根閉鎖速度の緩閉鎖への移行によって流量の減少速度が急低下するためである。この段階ではまだ回転速度Nは上昇を続けているが、やがてポンプ水車の運転点がS字特性に近づくため上昇速度が次第に低下し、回転速度の第1ピークができる。その後回転速度は低下に転ずるが、ポンプ水車の運転点はほぼこの時点からS字特性を流量減少方向に辿ることになるので、ほぼこの時点から補正制御信号X200によって案内羽根の開動作が始まるように、補正制御回路200を調整しておく。例えばこの時点までに(回転速度上昇中に)ガバナーが認識する回転速度の目標値を定常時の目標値に比して、一時的ながら充分高くなるように補正しておけばよい。かくして、閉鎖途中にあった案内羽根が開動作に転じる。なお、この補正制御が効く状態になれば、例えば、回転速度の低下勾配が急になり過ぎると、ガバナーの微分演算回路出力が増し、案内羽根開き制御を強めるので、回転速度低下勾配をより緩やかにする修正制御が働く。回転速度低下速度が充分ゆるやかになるが上昇に転じたら、ガバナーの微分演算回路は案内羽根開き制御作用を弱めまたは閉鎖制御作用に転じるので、案内羽根は徐々に閉鎖に戻るよう案内される。かくして、図2N1−Q1平面での運転点軌跡のように、回転速度が第1ピーク後の最初の低下中にはポンプ水車の運転点軌跡のdQ1/dN1が正にはならずに負に変わる。結果的に、図1のように水車入口水圧Hpの第2ピークHpyは完全に消滅する。その後は上記の回転速度の目標の補正値を徐々に下げていき最終的にゼロにする。
【0050】
そして、S字特性対応制御の主たる効果が確認できる時点例えばtxになってから、案内羽根急閉鎖指令Yxxxが印加されていることを示している。指令Yxxxが印加されると案内羽根は無条件にθL.Cy/秒の速度で急閉鎖される。なお、図1において案内羽根が全閉直前で腰折しているが、これは案内羽根サーボモーターの全閉端のクッション機構によるものである。もちろん、急閉鎖指令Yxxxが印加された後は、これより上流側で入力されるS字特性対応制御は効力を失うが、それ以前に充分効果が発揮されているので問題にはならない。図2は図1のポンプ水車の非常停止時のN1−Q1平面での運転点軌跡を示す。S字特性対応制御によって、最初の回転速度降下中にもS字特性領域にありながら動的には(Q1/N1)<0となり、従来技術とは明確な違いが確認できる。上記は、ガバナーの目標回転速度を補正する方式のS字特性対応制御を使用した例であるが、その代わりにガバナーの演算部ゲインを一時的に修正する方法や、ガバナー演算部の出力を直接補正する方法、またはそれらの組み合わせによっても、同様の作用,効果を出すことができる。すなわち、最終的に同様の案内羽根の一次開動作や回転速度の降下勾配の低減が達成できれば、手段を選ばなくてもよい。
【0051】
【発明の効果】
本発明の効果は上記から明らかである。すなわち、ポンプ水車の負荷遮断時にも非常停止時にも、過大な流量変動を伴うことなくスムースに無負荷流量に収斂していく。このため水車の上流側水圧上昇幅を、特に第2ピークHpyを低くし、場合によってはほとんど消去することが可能である。従って、第1ピークHpxはいかなる条件でも第2ピークHpyより低くしないようにとの従来主流になっている調整方法を踏襲しても、第1ピークHpxを大幅に下げることが可能になる。このため水車上流側管路及びポンプ水車自体の設計水圧を大幅に下げることが可能である。水車の下流側管路についてもS字特性に起因する水圧低下幅を大幅に縮小可能であり、特に上流管路を複数のポンプ水車が共有する場合における設計水圧を大幅に下げることが可能である。
【0052】
また、下流管路を複数のポンプ水車が共有する場合の号機間相互干渉による異常スパイクを解消することが可能になる。このため同じ下池水位の下でポンプ水車の据付高さを高くすることが可能になり、特に地下発電所の場合土木掘削ボリュームを少なくすることが可能である。
【0053】
また、S字特性による異常な流量変動幅を大幅に圧縮できるため、ポンプ水車が受ける過渡的な水スラスト変動を大幅に低減できる可能性がある。従って、スラスト軸受の設計合理化が可能になる。ポンプ水車の上流側または下流側管路を共有する複数台のポンプ水車においては、従来、異常水撃干渉の対策として各号機に運転制限を与えている場合もあったが、これが必要なくなり、各号機はお互いに自由に運転できるようになる。さらには、負荷遮断時や非常停止時の余計な流量変動を抑制できるので振動,騒音等が軽減されポンプ水車自身の運転状態が改善され寿命の延長が可能になる。以上の効果は全てが揚水発電所コスト低減に貢献することは言うまでもない。しかも、本発明はガバナーに簡単な補正制御回路を付加するだけで達成できる。特に演算部のプログラムを外部から入力可能なマイクロプロセッサー型ガバナーの場合には単に演算プログラムだけの修正で済む可能性がある。
【図面の簡単な説明】
【図1】本発明の一実施例の非常停止時の応答グラフを示す。
【図2】本発明の一実施例の非常停止時の他の応答グラフ。
【図3】本発明の一実施例のポンプ水車のブロック線図。
【図4】ポンプ水車の特性グラフ。
【図5】複数のポンプ水車が管路を共有する発電所の例図。
【図6】ガバナーの定常状態の説明図。
【図7】ガバナーの案内羽根走行速度制限の説明図。
【符号の説明】
2…速度調整部、100…水車、200…補正制御回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump turbine and a control method thereof.
[0002]
[Prior art]
In general, runners of pump turbines, particularly high head pump turbines, are designed to exhibit sufficient centrifugal pumping action to obtain a high head during pump operation.
[0003]
However, this design has an adverse effect on the operation of the pump turbine. In particular, a characteristic referred to as an S-characteristic described later appears, but it is considered difficult to completely avoid this characteristic. In general, the flow characteristics of a pump turbine are the number of rotations per unit head (N1 = N / √H) and the flow rate per unit head (Q1 = Q1 / √H), which is represented by a group of characteristic curves. On the other hand, the torque characteristics of the pump turbine are a group of characteristics showing the relationship between the rotational speed per unit head (N1 = N / √H) and the torque per unit head (T1 = T / H) with the guide vane opening as a parameter. Represented by a curve. These two types of characteristic curves are collectively referred to as complete characteristics. By the way, in the water turbine operation region, the flow characteristic curve includes a first part in which the value of Q1 decreases as the value of N1 increases, and a second part in which the value of Q1 decreases as the value of N1 decreases. And have. For convenience of explanation, in the present specification, the second portion is referred to as an S-characteristic portion. Further, the characteristics of the pump turbine in the S-characteristic portion will be referred to as “S-characteristic” hereinafter. In the water turbine operation in the S-characteristic portion, the torque per unit head (T1) also decreases as the rotational speed per unit head (N1) decreases.
[0004]
The normal operation in the turbine mode of the pump turbine is performed in the first portion. However, when the rotational speed (N1) per unit head increases rapidly due to the load cutoff, the pump turbine is operated in the S-shaped characteristic portion. When the operation in the S-characteristic portion is started, the operating point of the pump turbine follows the S-characteristic portion from one end to the other end, and firstly the flow rate per unit head (Q1) and the number of revolutions per unit head (N1). ) Will decrease. Thereafter, Q1 and N1 increase while tracing the S-characteristic portion in the reverse direction so that the pendulum turns back. This reciprocation in the S-characteristic portion continues indefinitely unless the guide vane opening is closed. During this time, the torque per unit head (T1) also repeatedly decreases and increases.
[0005]
FIG. 4 (A) and FIG. 4 (B) show the characteristics of a pump turbine having S-characteristics in the turbine operation region. In FIG. 4A, the characteristics of the pump turbine are shown as the relationship between the rotational speed per unit head (N1) and the flow rate per unit head (Q1), taking the guide vane opening as a parameter. On the other hand, in FIG. 4B, the characteristics of the pump turbine are shown as the relationship between the rotational speed per unit head (N1) and the torque per unit head (T1) by the same parameter. N1, Q1 and T1 are expressed by the following equations.
[0006]
In the above, the symbols N, Q, H and T indicate the rotational speed, flow rate, effective head and torque of the pump turbine, respectively.
[0007]
Characteristic curves 1 and 1 'are obtained under a predetermined relatively large guide vane opening. Characteristic curves 2 and 2 'are obtained under a smaller guide vane opening. Characteristic curves 3 and 3 'are obtained even under smaller guide vane openings.
[0008]
In the a-d-h portion of the characteristic curve 1, the value of Q1 decreases as N1 decreases. As described above, this curve portion adh is referred to as an S-characteristic portion in this specification. Similarly, the curve part bei is the S-characteristic part of the characteristic curve 2, and the curve part cfj is the S-characteristic part of the characteristic curve 3. As can be seen at a glance, the S-shaped characteristic part a-dh of the characteristic curve 1 is longer than the S-shaped characteristic part be-i of the characteristic curve 2, and the S-shaped characteristic part be-e of the characteristic curve 2 -I is longer than the S-shaped characteristic portion cfj of the characteristic curve 3. This means that the length of the S-characteristic portion decreases as the guide vane opening decreases.
[0009]
As in FIG. 4A, also in FIG. 4B, the curve portions a′-d′-h ′, b′-e′-i ′, and c′-f′-j ′ are characteristic. It is the S-shaped characteristic part of the curves 1 ', 2' and 3 '.
[0010]
FIG. 4B is closely related to FIG. For example, the point x on the curve 3 in FIG. 4A that satisfies Q1 = Q1x and N1 = N1x corresponds to the point x ′ on the curve 3 ′ in FIG. 4B. The point x ′ is a point satisfying T1 = T1x ′ and N1 = N1x ′ (= N1x). Similarly, points a, b, c, d, e, f, h, i, and j in FIG. 4 (A) are points a ′, b ′, c ′, d ′, e ′ in FIG. 4 (B), respectively. , F ′, h ′, i ′ and j ′.
[0011]
A curve nr is an unloaded flow rate curve. The intersections α, β, γ between the curves 1, 2, 3 and the curve nr correspond to the intersections α ′, β ′, γ ′ between the curves 1 ′, 2 ′, 3 ′ and the line T1 = 0, respectively. Yes.
[0012]
Next, the turbine operation (power generation operation) of the pump turbine will be described with reference to the characteristic curves 1 and 1 ′. As described above, the characteristic corresponding to the characteristic curve 1 corresponding to 1 'is obtained when the guide vane opening is set to a relatively large value. Normally, the turbine operation of the pump turbine is performed on the upper part of the characteristic curve 1, that is, on the curved part above the S-shaped characteristic part adh. However, if, for example, the load applied to the pump turbine is suddenly lost, the rotation speed (N) of the pump turbine increases rapidly, so the value of N1 also increases rapidly. Thus, the pump turbine is started to operate in the S-characteristic portion. Once the operating point enters the S-characteristic portion, when the value of N1 decreases due to a decrease in the rotational speed (N) of the pump turbine, the value of Q1 decreases and the pump turbine flow rate (Q) decreases. Once the value of N1 decreases, the flow rate Q decreases, and the decrease in the flow rate Q results in an increase in the effective head H of the pump turbine. This increase in the effective head H further reduces N1, and the decrease in N1 further decreases Q1. Thus, once the operation in the S-characteristic portion starts, Q1 and N1 decrease at an acceleration while tracing the S-characteristic portion in the Q1 decreasing direction, that is, from the point a to the point d. Of course, since a damping action such as pipe friction also works during this period, it goes without saying that the suppression also acts on the progress of the Q reduction. Anyway, Q1 and N1 tend to decrease at an acceleration as in the positive feedback control circuit.
[0013]
When the operating point of the pump turbine finishes following the S-characteristic part from the point a to the point h, the above phenomenon is gradually alleviated in the same manner as the negative feedback control circuit, and then reversed, and eventually the S-characteristic part is increased by Q1. The direction, that is, the point a slightly past the point h is traced to the point a. Tracing the S-characteristic portion in the reverse direction is performed in the same manner as the arrow-feeding positive feedback control circuit.
[0014]
When the guide vanes of the pump turbine are left without closing after the load is interrupted, the operating point of the pump turbine reciprocates as described above on the S-shaped characteristic curve corresponding to the guide vanes. In this way, the operation of the pump turbine characteristics is harmful and in some cases dangerous. This is because the pump turbine flow rate is repeatedly increased and decreased, and severe water hammers are repeatedly generated in each hydropower system channel system.
[0015]
Such an adverse effect associated with the operation in the S-characteristic part is that the length of the S-characteristic part is If it gets shorter Decrease. For example, if the guide vane opening is reduced and the pump turbine is operated according to the characteristic curve 2 having a shorter S-shaped characteristic part b-ei, the adverse effects associated with the S-shaped characteristic are reduced.
[0016]
The operation of the pump turbine in the S-characteristic part also adversely affects the torque T of the pump turbine. When the value of N1 decreases in the S-characteristic portion, the value of T1 decreases as shown in FIG. Here, the points a and h on the characteristic curve 1 shown in FIG. 4A again correspond to the point a ′ on the characteristic curve 1 ′ shown in FIG. h ' Note that each corresponds to.
[0017]
Assuming that the effective head H is constant, a decrease in T1 means a decrease in the pump turbine torque T. Furthermore, it is clear that a decrease in pump turbine torque T results in a decrease in pump turbine speed N. When the pump turbine rotation speed N decreases, N1 decreases correspondingly, and then T1 further decreases. In reality, since the effective head H has increased during this period as described above, this acceleration tendency becomes stronger. In this way, the pump turbine follows the characteristic curve 1 ′ from the point a ′ to the point h ′ at the same time while following the characteristic curve 1 in the Q1 decreasing direction. The way of tracing is the same as in the case of the positive feedback control circuit. Thereafter, when the direction of tracing the S-shaped characteristic portion is reversed, the characteristic curve 1 ′ follows from the point h ′ to the point a ′. It is better to avoid the torque fluctuation as described above.
[0018]
It is also dangerous to close the guide vanes quickly when the operating point of the pump-turbine is following the S-characteristic after the load is interrupted. This is because the effect of promoting the decrease in N1 works.
Further, as a conventional technique, in the water turbine operation mode, the upper limit of the closing speed of the guide blade is lower than the upper limit of the closing speed when the guide blade is 80% or more at a predetermined opening of the guide blade, for example, below 80%. Set to lower. As a result, when the load is interrupted, immediately before the operating point enters the S-characteristic, the closing speed of the guide vane shifts from a rapid closing to a slow closing.
[0020]
However, there is a problem even in the prior art that relies solely on the waist folding of the guide blade closing pattern. For example, when a plurality of pump turbines having S-shaped characteristics share the upstream pipeline 102 or the downstream pipeline 106 or the pipelines on both sides of each pump turbine as shown in FIG. It is known that the upstream water pressure may abnormally increase or the downstream water pressure may abnormally decrease. Assuming that the multiple pump turbines have the same specifications, the maximum value of the upstream water pressure generated at the time of the time difference interruption when the load is interrupted one after another is higher than the maximum value of the upstream water pressure generated when the load is simultaneously interrupted. In some cases, the minimum value of the downstream water pressure that occurs at the time of load-interruptible load interruption becomes lower than the lowest value of the downstream water pressure that occurs when the simultaneous load interruption occurs. There was a problem that water column separation occurred. Moreover, since these abnormal water hammer phenomena are related to subtle timings that follow the S-characteristics, there is a problem that it is difficult to specify in advance the conditions such as the worst time difference.
[0021]
In the case of a high-head pump turbine, the S-characteristic response control has been proposed in view of the recognition that the S-characteristics will be a major problem in determining civil engineering designs such as upstream and downstream water channels and installation heights. For example, in Japanese Patent Application Laid-Open No. 53-143842, after the load is interrupted, when the operating point of the pump turbine is following the S-characteristic in the direction of decreasing the flow rate, the guide vanes are temporarily opened, and the operating point increases the flow rate in reverse to the S-characteristic. Proposals have been proposed in which the guide vanes are suddenly closed when starting to follow in the direction or when the flow rate becomes substantially zero. However, in this proposal, after the load is interrupted, the rotation speed once increases and then decreases, but this rotation speed decrease is advanced to a predetermined rotation speed determined by the governor setting. For this purpose, the guide vane closure after the guide vane opening degree Y <Ya is temporarily closed without using a hip fold which shifts the guide vane closing speed limit to the gentle closure at the same rate as the sudden closure immediately after the load is cut off. Furthermore, the guide vane re-closing start point after the temporary opening is set as the point when the flow rate starts to increase from the decrease or the point where the flow rate becomes almost zero, but the flow rate is highly reliable in the transient state of the pump turbine. Is difficult. In addition, if the guide vane opening operation is continued after the operating point has traced the S-characteristic in the flow rate decreasing direction and then moved in the flow rate increasing direction, the S-characteristic is promoted conversely. Considering the above-mentioned problems, Japanese Patent Laid-Open No. 53-143842 discloses that when a plurality of pump turbines share the same pipe line, the flow rate is complicated not only by its own operating state but also by water hammer interference from other units. If it fluctuates, stable control cannot be performed.
[0022]
In conventional pump turbines, the load is set to a higher gain with a priority on response speed than stability, because the load is connected to the power system in normal load operation and there is no concern about stability. After the shut-off, the pump turbine needs to continue the no-load operation independently, so stability is emphasized and the gain is set low. However, this setting for no-load operation does not take into account the S-characteristic that passes transiently, and the value of Q1 decreases as the value of N1 increases after exiting the S-characteristic. The setting was such that stability could be ensured for the first time in part 1. For the operation within the S-characteristic in which the positive feedback action works, it was set so that the stability could not be secured at all. Note that when the load cut-off governor's calculation section is set to a relatively high response speed, the switching from the load operation gain to the no-load operation gain has made the rotation speed more than a predetermined value sufficiently higher than the rated rotation speed. Or it was done automatically under the condition that the circuit breaker was opened.
[0023]
[Problems to be solved by the invention]
The present invention is effective not only at the time of load interruption, but also at the time of emergency stop including the operation of quickly closing the water amount adjusting means and guiding the pump turbine to stop in addition to performing load interruption, and a control method therefor Is to propose.
[0024]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides: According to the runner, the generator motor connected to the runner, the water amount adjusting means for adjusting the amount of water passing through the runner, the rotation speed detection unit for detecting the rotation speed of the generator motor, and the rotation speed signal from the rotation speed detection unit In the pump turbine provided with a governor for controlling the water amount adjusting means, the governor includes a closing means for closing the water amount adjusting means when the load is interrupted, and the water amount adjusting means at a stage where the water amount adjusting means descends after an increase in the rotational speed. Includes an S-characteristic corresponding control means comprising an opening operation means for temporarily opening the load, and further includes a load interrupting means for interrupting the load according to the emergency stop signal, and an S-characteristic corresponding control means according to the emergency stop signal. And a quick closing command applying means for giving a quick closing command to the governor to lock the water amount adjusting means until it is fully closed. Providing rapid closing command to the governor after by temporary opening operation of the water amount adjusting means according to the opening operation means in response control means It is what I did.
[0025]
In the pump turbine according to the present invention, The sudden closing command applying means is In a state where the rotational speed is lowered after the first rising peak and starts to rise again ,in front It is characterized by giving a quick closing order to the governor.
[0026]
Further, in the pump turbine according to the present invention, the governor has a rotation speed at which the rotation speed at which the re-rise starts after the first peak is higher than the rated rotation speed. To be It is characterized by this.
[0027]
Further, in the pump turbine of the present invention, the governor rotates at a rotational speed at which re-rise starts after the first peak is higher than the rated rotational speed + 1/3 (the peak rotational speed value after the load is cut off-the rated rotational speed). speed To be It is characterized by this.
[0032]
Next, the governor used during the normal load operation in which the generator motor is linked to the power system and the governor used in the transient state immediately after the start of the emergency stop can be the same governor. That is, a governor obtained by adding the S-characteristic corresponding control function to the normal operation governor can be used by turning the S-characteristic corresponding control function ON / OFF as necessary.
[0033]
Next, contrary to the above, it is also possible to adopt a configuration in which the normal operation governor is turned off during the transition immediately after the start of the emergency stop, and the dedicated governor capable of controlling the S-characteristics is turned on instead.
[0035]
At the same time as the load is cut off, the power generation output becomes zero, but the turbine output does not immediately become zero, so the rotation increases.In other words, surplus energy due to this output difference is temporarily stored in the inertia effect of the rotating part. . However, according to the prior art, after the rotation speed has started to decrease, the rotation speed is rapidly reduced to near the rated rotation speed. This means that the stored energy is discharged immediately. However, a sudden discharge of the inertia energy of the rotating part had a bad influence. Behind this expulsion of the rotating part energy, instead of the rotating part, the same energy was received by the water column upstream and downstream of the pump turbine. The expelled energy can be used to cause this long water column to decelerate abnormally fast and even cause pump flow. Since the target flow rate that settles after the load is cut off is the no-load flow rate, it should be smoothly shifted from the output equivalent flow rate before the load cut-off to the no-load flow rate. However, in actuality, it passes through the no-load flow rate far from the output equivalent flow rate before the load is cut off, and temporarily enters the pump region. Naturally, such an abnormal acceleration of the water column causes a reaction. That is, this time, the pump flow greatly exceeds the no-load flow rate, resulting in an excessive water turbine flow rate. At this time, the rotating column inertial effect receives the energy of the water column, and the rotation speed increases again. As described above, according to the prior art, excessive surplus energy moves back and forth between the rotating part inertia effect and the water column, and during this time, the pump turbine flow rate is excessively swung to cause excessive water in the upstream and downstream water channels of the pump turbine. Bring a shot.
[0036]
By the way, the first drop in the rotation speed after the load interruption, which is the starting point of the problem, is obtained by the governor who controls the rotation speed. However, for a pump turbine having S-characteristics, it is not really reasonable from the viewpoint of flow rate control and water hammer control to control according to the request of the governor only when the load is interrupted. In view of this, in the present invention, at least at the time of full load interruption, immediately after the interruption, the water amount adjusting means is temporarily opened at a stage where the increased rotational speed decreases after passing through the first peak (this is S-shaped). As a result, the initial reduction in the rotation speed is prevented from proceeding to the vicinity of the rated rotation at a stretch. As an example, the rotational speed decrease temporarily stops at a rotational speed higher than [rated rotational speed + 1/3 (peak value of rotational speed after load interruption−rated rotational speed)] and starts to rise again. Specific measures for this include a method of correcting the target value of the rotational speed recognized by the governor so that it is temporarily higher than the target value in the steady state, or temporarily correcting the gain of the governor. Or a method of directly correcting the output of the governor computing unit, or a combination thereof. There may be a plan to prepare multiple governors and switch between them. By adjusting the degree of the temporary correction control as described above, it is possible to prevent the rotation speed from proceeding to the vicinity of the rated rotation at least at the first rotation speed drop after the load is interrupted.
[0037]
Ideally, it is effective to operate the S-characteristic corresponding control when the operating point first enters the S-characteristic region and follows the S-characteristic. The timing corresponds to a period from when the rotational speed increases after the load is interrupted and after the first peak is recorded, to the vicinity of the inflection point where the rotational speed drop curve shifts from convex upward to convex downward. Of course, this timing is allowed to be slightly shifted back and forth.
[0038]
In addition, the following plan is also considered as an index for measuring the effect of the S-characteristic corresponding control. That is, with respect to the required time from the start of the first increase in the rotational speed to the arrival of the first peak, the required time to decrease from the first peak to the rotational speed corresponding to (rated rotational speed + speed regulation rate) is at least 2 It is to be more than double. Note that the strength of the S-characteristic control is determined by the temporary opening correction width of the water amount adjusting means and the suitability of the operation timing.
[0039]
In the above description, the setting level of the S-characteristic corresponding control is discussed only with the first wave of the rotational speed fluctuation immediately after the load is interrupted. The same applies to the second and subsequent waves of the rotational speed fluctuation. For the second and subsequent waves, if it operates with the same logic as set for the first wave (S-characteristic corresponding control is activated each time the rotational speed drops and the water amount adjusting means is temporarily opened), The influence of the S-characteristic can be attenuated rapidly each time a wave is superimposed.
In addition, since the transient rotational speed increase width becomes larger as the breaking load becomes larger, the case that is most strongly influenced by the S-characteristic is when the full load is broken. For this reason, the above-described setting method of the S-characteristic control is described for the interruption at the full load or a load close thereto. Needless to say, if the interruption load is reduced, the necessity of the S-characteristic corresponding control gradually decreases.
[0040]
On the other hand, when an electrical protection device such as a generator motor or a transformer operates, an emergency stop mode is entered. In this case, however, immediate load interruption is necessary for safety. That is, it is necessary to immediately reduce the electric power of the generator motor to zero, and at least immediately increase the damage on the electric side. However, on the pump turbine side, as in the prior art, it is difficult to immediately input the sudden closing command and immediately close the water amount adjusting means. This is because, for 10 seconds immediately after the emergency stop operation, although the pump turbine is in the same state as when the load is interrupted, the S-characteristic control is locked. This is because the abnormal water hammer phenomenon comes out as it is. For this reason, the emergency closing command is locked for a while after the load is cut off at the time of emergency stop, and during this time, the governor executes the S-characteristic control corresponding to the normal load cut-off, and at least the first rotation speed After waiting for the effect to appear on the descent curve or when it can be predicted, the sudden closing command is input, and thereafter, the water amount adjusting means (guide vane) is closed as quickly as possible. Of course, after this, it is possible to use a closing pattern according to the prior art in which the closing speed is switched in accordance with the opening degree of the guide vane, and the above-described S-shaped correspondence control can also be adopted.
[0041]
Note that the effect of the S-characteristic corresponding control appearing in the first rotational speed drop curve means that the re-rise starts in the middle of the first rotational speed drop, and from the start of the first rotational speed rise. This means that the time required to decrease from the first peak to the rotational speed corresponding to (rated rotational speed + speed adjustment rate) is more than doubled with respect to the time required to reach the first peak. For this reason, it is effective to input the sudden closing command when about twice or more of the time when the rotational speed reaches the first peak has elapsed. In the case of an emergency stop, the water amount adjusting means is fully closed until the pump turbine is completely stopped. In the case of normal load interruption, the water amount adjusting means finally settles to a no-load opening degree and continues operation here, which is a big difference.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0044]
FIG. 3 is a block diagram of the governor of the pump turbine according to the present invention. In this block diagram, a speed detection signal Xn is output from the speed detector 1 that detects the rotational speed N of the water turbine 100. The speed adjustment unit 2 sets a reference value for the rotational speed. The speed adjustment unit 2 outputs a set value X0. The restoring signal Xσ from the speed regulation rate setting unit is added to the adding unit 3. The adder 3 outputs an output signal Xε. A correction control signal X200 is output from the correction control circuit 200. The signal X20A is a signal obtained by correcting the output signal Xε with the correction control signal X200, and becomes an input signal of the PID arithmetic circuit immediately downstream. The PID calculation circuit includes a proportional calculation element (P element) 4a during normal power generation operation in which the generator motor is connected to the large power system, and a proportional calculation element (P element) 4b used during no-load operation after load shedding. Note that the gain Kpa of the former proportional calculation element is greater than the gain Kpb of the latter proportional calculation element. Further, it also has an integral calculation element (I element) 5a during normal power generation operation and an integral calculation element (I element) 5b used during no-load operation after the load is interrupted. The former integral gain Kia> the latter integral gain Kib. The contact points 19a and 19b are contact points that detect the opening / closing of the breaker of the generator motor not shown in the drawing directly or indirectly. When the breaker opens, the lower contact is opened and the upper contact is closed simultaneously. It has become. The reason why there are two contacts 19a and 19b is that both the proportional calculation element and the integral calculation element are switched simultaneously. Further, the calculation unit has a differential calculation element (D element) 6 and outputs an output signal Zd. An output signal Zp is output from the proportional calculation element, and an output signal Zi is output from the integral calculation element.
[0045]
The adder 7 outputs a guide blade opening command Z that combines the output signal Zp of the proportional operation element, the output signal Zi of the integral operation element, and the output signal Zd of the differential operation element, and the actual guide blade opening Y is added. Negative feedback is provided to section 8. The limiter 9 and the hydraulic servo motor 10 are a kind of hydraulic amplifier, which constitutes a first-order lag element with a limiter in the transfer function, amplifies the guide vane opening command Z, and directly operates the guide vane which is a water amount control means. Is converted into a guide vane opening Y having a sufficient stroke and operating force. A signal Yε1 indicates a deviation between the guide blade opening command Z and the actual guide blade opening Y. The sudden closing command Yxxxx is applied at the time of emergency stop, and the time of application is the time when the effect of the S-characteristic corresponding control for at least the first rotational speed drop appears as will be described later. The adder 21 adds the guide vane opening command Z and the sudden closing command Yxxx, and outputs a correction signal Yε2 for the deviation signal. Note that the magnitude of the sudden closing command Yxxx is set to be at least θL larger than the maximum value of the guide blade opening command Z. The θR of the limiter 9 indicates the opening speed of the guide vane. Cy is the closing speed θl. This is for limiting to Cy. That is, the signal Yε3 is a signal obtained by limiting the correction signal Yε2 of the deviation signal in consideration of the opening / closing speed limitation. A desired guide blade opening setting signal Ya is given to the adding unit 11 from the output adjusting unit 13. If the actual guide vane opening Y does not reach the signal Ya, that is, if Y <Ya, the open signal σ (Ya−Y) is output to the governor's PID calculation unit until the difference becomes zero. Since it can continue to be sent, eventually Y = Ya and settle down at that stage. The speed regulation rate setting unit 12 is a part for setting the coefficient σ. In other words, the coefficient and σ are gains that determine the rate of change in the guide vane opening Y relative to the change in the speed detection signal Xn, and generally take into account the role of the plant in the power system, that is, the rate of load sharing. Once decided, it will not change. Moreover, it has the water wheel 14 containing a water channel system. An integrated generator load Pg is obtained from the load power L of the power plant given to the generator directly connected to the water wheel shaft and the load power RL given from the power system side. Therefore, the load characteristic 17b from the electric power system is shown, the self-controllability of the water turbine 100 is shown by 17a, and specifically, a characteristic part that integrates mechanical loss and efficiency reduction that increase with an increase in rotational speed. Therefore, the signal RT indicates the loss of the turbine output due to the self-controllability accompanying the change in the rotational speed. Thus, when viewed from the water wheel, not only the signal Pg but also the signal RT can be regarded as a kind of load. That is, it can be considered that the total load LΣ = Pg + RT that consumes the output Pt of the water turbine. Thus, (Pt−LΣ) becomes the input of the rotating portion inertia effect 16, and the output of the rotating portion inertia effect 16 becomes the rotation speed N. Note that Pg is equal to L after the load is interrupted.
[0046]
Here, the operation of the speed adjustment unit 2, the output adjustment unit 13, and the speed regulation rate setting unit 12 will be described with reference to FIGS. 6 (a) and 6 (b). Here, it is assumed that the guide vane opening degree at no load is 0.2 (pu). The solid line at the lower right of FIG. 6A shows a state immediately before this plant is connected to the power system. That is, the intersection of the rated value (synchronous speed) line of the rotational speed N and this solid line indicates the guide vane opening, which is just the no-load opening 0.2. The solid line is set at a lower position before starting the water wheel. For example, it is set at the position of the dotted line in FIG. Thus, the speed adjusting unit 2 translates the solid line vertically below the solid line in FIG. When this solid line is translated up and down, the no-load opening 0.2 The intersection on the line moves up and down, so the name of the speed adjuster is attached. On the other hand, the movement after this plant is connected to the power system will be described with reference to FIG. In this case, the intersection of the solid line and the rated speed is Y = 1.0. That is, 100% load operation is being performed. The solid line position in parallel in FIG. 6 (a) is the dotted line position in FIG. 6 (b). The output adjusting unit 13 adjusts the guide vane opening degree by translating the solid line in this way. The output adjustment unit 13 translates the solid line in the horizontal direction. However, when connected to the infinite power system, the rotation speed is practically fixed at 1.0, so the solid line can be moved in the horizontal direction. The intersection point on the N = 1.0 line accompanying this moves from side to side, so this name is given. In the setting of the solid line in FIG. 6B, the operation is performed with N = 1.0 and Y = 1.0 in the steady state, but now the frequency of the power system is increased by 3% and N = 1.03. If so, Y becomes 0.2. If the increase rate of the power system frequency is 1.5%, Y = 0.6. Thus, the speed regulation rate setting unit 12 gives a proportional relationship between the frequency change width and the guide blade closing width. If the gain of the speed regulation rate setting unit 12 is increased, the downward slope of the solid line in FIG. 6 (b) becomes tighter, and the gain of the guide blade opening response width with respect to the frequency change decreases. Therefore, if load interruption occurs during full load (100% load) operation at the rated speed (N = 1.0) with the setting of the solid line in FIG. 6B, the governor will eventually set the speed N. It operates to settle down to 1.03, which is higher than the rated value by the speed regulation rate.
[0047]
Fig.7 (a) is a typical example figure which shows the guide blade closing speed restriction | limiting of a pump turbine. In the case of a pump turbine, a speed limit is given so that the gradient does not become larger than θ1a in the range of the guide blade opening Y> Ya and the gradient does not become larger than θ1b smaller than θ1a in the range of Y <Ya. That is, θL of the limiter of FIG. 3 is set to a relatively large tan (θ1a) / Cy in the range of Y> Ya, and to a relatively small tan (θ1b) / Cy in the range of Y <Ya. On the other hand, the opening operation of the guide vanes is not affected by the S-characteristic unlike the closing operation, and therefore, for example, as shown in FIG. 7B, | θ1a |> | θ2 |> | A constant value θ2 is set such that θ1b |.
[0048]
The correction control circuit 200 in the governor of the present invention shown in FIG. 3 is designed as follows, for example. When the emergency stop command is received, the load is immediately cut off, so the rotation speed starts to rise immediately. Therefore, the first design point is to raise the output X200 of the correction control circuit 200 relatively quickly following the first increase in the rotational speed. In this case, if the follow-up gain of the correction control circuit 200 is made too high, (X200 + X0) becomes too large with respect to Xn, and the closing speed of the guide blade of the kite that runs at the highest speed will decrease. The gain should not be affected. The second circuit design point is that when the rotation speed starts to decrease, the output X200 that has increased is decreased this time, but at this time, unlike the increase in rotation speed, it is to decrease slowly. In other words, at this stage, the output X200 is maintained at a high level, and the effect of gently pulling back the decreasing gradient of the rotational speed is caused. When the full load is interrupted, the rotation speed is prevented from dropping to the vicinity of the rated rotation speed. The rotation speed is [rated rotation speed + 1/3 (peak value of rotation speed after load interruption−rated rotation speed). )] Reverse at a higher rotational speed and start to rise again. As described above, if the influence of the S-characteristics is accurately suppressed when the first rotational speed is lowered after the load is interrupted, the same applies when the second rotational speed is lowered and the third rotational speed is lowered. There is a possibility that it is not necessary to perform the S-characteristic response control. Of course, in the second and third stages, it is desirable to operate the S-characteristic corresponding control with the same logic as that of the first stage to make the effect of the S-characteristic corresponding control more reliable. That is, in the second and third stages, similarly to the first stage, the output X200 is caused to follow the increasing direction relatively quickly when the rotation speed is increased, and is slowly decreased when the rotation is lowered.
[0049]
The time response graph at the time of emergency stop of the pump turbine using the above-mentioned present invention is shown in FIG. In the graph, Q represents the flow rate, Y represents the guide blade opening, Hp represents the turbine inlet water pressure, N represents the rotational speed, and Hd represents the turbine outlet water pressure. S-characteristic control corresponding to the first rotation speed drop works effectively, a sudden drop in rotation speed is avoided, no temporary reversal of the flow rate Q (temporary pump flow) occurs, The second mountain Hpy has also disappeared completely.
The details are as follows over time. An emergency stop command is given at 10 seconds by the operation of a protective relay or the like that detects an abnormality on the generator motor side. Then, the circuit breaker connecting the generator motor and the power system is opened immediately. As a result, the rotation speed N starts to increase. On the other hand, the guide blade quick closing command Yxxx is not given immediately, and the guide blade is continuously under the control of the governor. Thus, the governor closes the guide vanes rapidly in response to an increase in rotational speed. Since the guide blade has a closing speed limit, a relatively high-speed closing is performed up to a predetermined hip folding opening, but if the opening is below the hip folding opening, a transition to a relatively low speed closing is made automatically. It has become. Thus, the Hp turbine inlet water pressure rapidly rises due to the high-speed closing of the guide vanes to the hip folding opening, and the first peak Hpx appears. This is because the rate of decrease in the flow rate rapidly decreases due to the transition from the guide blade closing speed to the gentle closing. At this stage, the rotational speed N continues to increase, but eventually the operating speed of the pump turbine approaches the S-characteristic, so that the upward speed gradually decreases and the first peak of the rotational speed is produced. After that, the rotational speed starts to decrease, but the operation point of the pump turbine almost follows the S-characteristic in the direction of decreasing the flow rate from this point, so that the opening operation of the guide vane is started almost from this point by the correction control signal X200. First, the correction control circuit 200 is adjusted. For example, the target value of the rotational speed recognized by the governor by this time (during the increase in the rotational speed) may be temporarily corrected to be sufficiently higher than the target value in the steady state. Thus, the guide vanes that were in the middle of closing turn into an opening operation. If this correction control becomes effective, for example, if the rotational speed decrease gradient becomes too steep, the output of the governor differential operation circuit increases and the guide blade opening control is strengthened. Correction control to work. When the rotational speed reduction speed becomes sufficiently slow but starts to rise, the governor differential operation circuit weakens the guide blade opening control action or turns to the closing control action, so that the guide vanes are guided to gradually return to closing. Thus, dQ1 / dN1 of the operation point locus of the pump turbine changes to negative instead of being positive while the rotational speed is initially reduced after the first peak as in the operation point locus on the plane N1-Q1 in FIG. . As a result, as shown in FIG. 1, the second peak Hpy of the turbine inlet water pressure Hp disappears completely. After that, the target correction value of the rotational speed is gradually lowered and finally made zero.
[0050]
Then, it is shown that the guide blade quick closing command Yxxx is applied after the time when the main effect of the S-characteristic response control can be confirmed, for example, at tx. When the command Yxxxx is applied, the guide vane is unconditionally set to θL. It is closed suddenly at a rate of Cy / sec. In FIG. 1, the guide blade is folded back just before it is fully closed. This is due to the fully closed end cushion mechanism of the guide blade servomotor. Of course, after the sudden closing command Yxxx is applied, the S-characteristic response control input upstream is lost, but it is not a problem because the effect is sufficiently exhibited before that. FIG. 2 shows an operating point locus on the N1-Q1 plane when the pump turbine of FIG. 1 is in an emergency stop. With the S-characteristic control, it is dynamically (Q1 / N1) <0 while in the S-characteristic area even during the first rotational speed drop, and a clear difference from the prior art can be confirmed. The above is an example using S-characteristic control corresponding to the method of correcting the target rotation speed of the governor, but instead, the method of temporarily correcting the gain of the governor and the output of the governor are directly Similar actions and effects can be achieved by the correction method or a combination thereof. That is, as long as the primary opening operation of the same guide blade and the reduction in the descending gradient of the rotational speed can be finally achieved, the means need not be selected.
[0051]
【The invention's effect】
The effect of the present invention is clear from the above. That is, even when the load of the pump turbine is cut off or during an emergency stop, the flow rate is smoothly converged to the no-load flow rate without excessive flow rate fluctuations. For this reason, the upstream water pressure increase width of the water turbine, in particular, the second peak Hpy can be lowered, and in some cases, it can be almost eliminated. Therefore, the first peak Hpx can be significantly lowered even if the conventional mainstream adjustment method is adopted in which the first peak Hpx is not lower than the second peak Hpy under any conditions. For this reason, it is possible to greatly reduce the design water pressure of the water turbine upstream side pipeline and the pump water turbine itself. The water pressure drop due to the S-characteristic can be greatly reduced for the downstream pipeline of the water turbine, and in particular, the design water pressure can be greatly reduced when a plurality of pump turbines share the upstream pipeline. .
[0052]
Moreover, it becomes possible to eliminate abnormal spikes due to mutual interference between units when a plurality of pump turbines share the downstream pipeline. For this reason, it is possible to increase the installation height of the pump turbine under the same lower pond water level, and it is possible to reduce the civil engineering excavation volume particularly in the case of underground power plants.
[0053]
Further, since the abnormal flow rate fluctuation range due to the S-shaped characteristic can be greatly compressed, there is a possibility that the transient water thrust fluctuation that the pump turbine receives is greatly reduced. Accordingly, it is possible to rationalize the design of the thrust bearing. In the case of multiple pump turbines sharing the upstream or downstream pipeline of the pump turbine, there have been cases where operation restrictions have been given to each unit as countermeasures against abnormal water hammer interference. Units will be able to drive each other freely. Furthermore, since excessive flow rate fluctuations at the time of load interruption or emergency stop can be suppressed, vibration, noise, etc. are reduced, the operation state of the pump turbine itself is improved, and the life can be extended. Needless to say, all of these effects contribute to the cost reduction of pumped storage power plants. Moreover, the present invention can be achieved simply by adding a simple correction control circuit to the governor. In particular, in the case of a microprocessor type governor capable of inputting a calculation unit program from the outside, there is a possibility that only correction of the calculation program may be required.
[Brief description of the drawings]
FIG. 1 shows a response graph during an emergency stop according to an embodiment of the present invention.
FIG. 2 is another response graph during an emergency stop according to an embodiment of the present invention.
FIG. 3 is a block diagram of a pump turbine according to an embodiment of the present invention.
FIG. 4 is a characteristic graph of a pump turbine.
FIG. 5 is an example of a power plant in which a plurality of pump turbines share a pipeline.
FIG. 6 is an explanatory diagram of a steady state of the governor.
FIG. 7 is an explanatory diagram of guide vane travel speed limitation of the governor.
[Explanation of symbols]
2 ... speed adjustment unit, 100 ... water wheel, 200 ... correction control circuit.

Claims (6)

ランナーと、前記ランナーと接続された発電電動機と、前記ランナーを通過する水量を調整する水量調整手段と、前記発電電動機の回転速度を検出する回転速度検出部と、前記回転速度検出部からの回転速度信号に応じて前記水量調整手段を制御するガバナーとを備えたポンプ水車において
前記ガバナーは、負荷遮断の際に前記水量調整手段を閉鎖する閉鎖手段と、回転速度の上昇ピークを経て下降する段階で前記水量調整手段を一時的に開動作させる開動作手段からなるS字特性対応制御手段を含み、
非常停止信号に応じて負荷を遮断する負荷遮断手段と、前記非常停止信号に応じて前記S字特性対応制御手段による制御をロックさせて前記水量調整手段を全閉まで閉め切る急閉鎖指令を前記ガバナーに与える急閉鎖指令印加手段とを備え、
前記急閉鎖指令印加手段は、前記S字特性対応制御手段における前記開動作手段による前記水量調整手段の前記一時的な開動作をさせた後で前記ガバナーに急閉鎖指令を与えることを特徴とするポンプ水車。
A runner, a generator motor connected to the runner, a water amount adjusting means for adjusting the amount of water passing through the runner, a rotation speed detection unit for detecting a rotation speed of the generator motor, and a rotation from the rotation speed detection unit In a pump turbine equipped with a governor for controlling the water amount adjusting means according to a speed signal,
The governor comprises an S-characteristic comprising a closing means for closing the water amount adjusting means when the load is interrupted, and an opening operation means for temporarily opening the water amount adjusting means at a stage where the water amount adjusting means is lowered through a rising peak of the rotational speed. Including corresponding control means,
The emergency and load shedding unit for interrupting the load in response to the stop signal, the said S-characteristic response control means of the water amount adjusting means to lock the control of the fully closed close off abruptly closed command in response to the emergency stop signal A quick closing command applying means for giving to the governor ,
The sudden closing command applying means gives a sudden closing command to the governor after the water amount adjusting means is temporarily opened by the opening action means in the S-characteristic correspondence control means. Pump water wheel.
請求項1のポンプ水車において、前記急閉鎖指令印加手段は、回転速度が第1の前記上昇ピークを経て下降し再上昇が始まる状態において、前記ガバナーに急閉鎖指令を与えることを特徴とするポンプ水車。  2. The pump turbine according to claim 1, wherein the sudden closing command applying means gives a sudden closing command to the governor in a state where the rotational speed is lowered after the first rising peak and starts to rise again. Water wheel. 請求項2のポンプ水車において、前記ガバナーは前記第1の上昇ピークを経て再上昇が始まる回転速度が定格回転速度より高い回転速度となるようにしたことを特徴とするポンプ水車。  3. The pump turbine according to claim 2, wherein the governor is configured such that a rotational speed at which re-rise starts after the first rising peak is higher than a rated rotational speed. 請求項3のポンプ水車において、前記ガバナーは前記第1の上昇ピークを経て再上昇が始まる回転速度が、定格回転速度+1/3(負荷遮断後の回転速度のピーク値−定格回転速度)より高い回転速度となるようにしたことを特徴とするポンプ水車。  4. The pump turbine according to claim 3, wherein the governor has a rotational speed at which re-rise starts after the first rising peak is higher than a rated rotational speed + 1/3 (peak value of rotational speed after load interruption−rated rotational speed). A pump turbine characterized by having a rotational speed. 請求項1のポンプ水車において、前記発電電動機が電力系統に連繋された通常運転中においても、非常停止開始直後の過渡状態においても、同一のガバナーで対応することを特徴とするポンプ水車。  2. The pump turbine according to claim 1, wherein the same governor is used during normal operation in which the generator motor is connected to an electric power system and in a transient state immediately after the start of an emergency stop. 請求項1のポンプ水車において、非常停止開始直後の過渡時には、電力系統に連繋された通常運転中とは別のガバナーを使用するようにし、該2つのガバナーを切り換えるための切換装置を備えたことを特徴とするポンプ水車。  The pump turbine according to claim 1, further comprising a switching device for switching between the two governors so as to use a governor different from that during normal operation linked to the electric power system at the time of transition immediately after the start of the emergency stop. Pump water turbine characterized by.
JP33556899A 1999-11-26 1999-11-26 Pump turbine Expired - Lifetime JP4269449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33556899A JP4269449B2 (en) 1999-11-26 1999-11-26 Pump turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33556899A JP4269449B2 (en) 1999-11-26 1999-11-26 Pump turbine

Publications (2)

Publication Number Publication Date
JP2001153022A JP2001153022A (en) 2001-06-05
JP4269449B2 true JP4269449B2 (en) 2009-05-27

Family

ID=18290049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33556899A Expired - Lifetime JP4269449B2 (en) 1999-11-26 1999-11-26 Pump turbine

Country Status (1)

Country Link
JP (1) JP4269449B2 (en)

Also Published As

Publication number Publication date
JP2001153022A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP4123890B2 (en) Pump water wheel
US6336322B1 (en) Method of controlling a pump turbine
JPS6411828B2 (en)
US6602044B1 (en) Pump turbine, method of controlling thereof, and method of stopping thereof
US11608809B2 (en) Startup method of Francis turbine and Francis turbine
JP4269449B2 (en) Pump turbine
JP4006149B2 (en) Pump turbine
JP4223645B2 (en) Pump turbine
JP4078003B2 (en) Pump water wheel
JP4337270B2 (en) Pump turbine
JP3752110B2 (en) Generator water turbine speed governor
JP3965264B2 (en) Hydropower plant hydraulic machine with surge tank
JP2001342939A (en) Pump turbine
US6250887B1 (en) Reversible pump-turbine system
JP2796298B2 (en) Variable speed pumping plant
JP2002021700A (en) Pump turbine
JP2644787B2 (en) Variable speed pumping system
JPH09303247A (en) Control method for hydraulic turbine and pump hydraulic turbine
JP3493048B2 (en) Operation control method of variable speed hydraulic machine in branch water system power plant.
JPS6230303B2 (en)
JPH0732945Y2 (en) Turbine governor controller
JPH11343812A (en) Turbine control device
JPS63173853A (en) Operating method for axial-flow water turbine with discharge valve
JPS628636B2 (en)
JP2002180950A (en) Operation control method for reversible pump-turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4269449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term