JP3493048B2 - Operation control method of variable speed hydraulic machine in branch water system power plant. - Google Patents
Operation control method of variable speed hydraulic machine in branch water system power plant.Info
- Publication number
- JP3493048B2 JP3493048B2 JP29651793A JP29651793A JP3493048B2 JP 3493048 B2 JP3493048 B2 JP 3493048B2 JP 29651793 A JP29651793 A JP 29651793A JP 29651793 A JP29651793 A JP 29651793A JP 3493048 B2 JP3493048 B2 JP 3493048B2
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic machine
- variable speed
- hydraulic
- arbitrary
- machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Control Of Water Turbines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、分岐水路系発電所の可
変速形水力機械の運転制御方法に係り、特に上部貯水池
に連通された一本の水圧管から分岐された複数本の分岐
管に夫々接続された複数の水力機械のうちの可変速形水
力機械の運転制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a variable speed hydraulic machine of a branch waterway system power plant, and more particularly to a plurality of branch pipes branched from one hydraulic pipe communicating with an upper reservoir. The present invention relates to an operation control method for a variable speed hydraulic machine among a plurality of hydraulic machines connected to each other.
【0002】[0002]
【従来の技術】近年の揚水発電所は、大きな発電量を得
るためにポンプ水車等の水力機械を複数台設置する傾向
にあり、これらのポンプ水車は上部貯水池と下部貯水池
との間の複数の水路に夫々接続される。この上部貯水池
と下部貯水池との間の水路構築には多大な土木工事費を
要するので、この土木工事費を低減するために上部貯水
池には一本の共通の水圧管を接続し、この共通の水圧管
を複数の分岐管に分岐して、これらの分岐管にポンプ水
車等を接続することが多く行われている。2. Description of the Related Art In recent years, pumped-storage power plants have a tendency to install a plurality of hydraulic machines such as pump turbines in order to obtain a large amount of power generation. These pump turbines have a plurality of hydraulic machines between an upper reservoir and a lower reservoir. Each is connected to a waterway. Since a great amount of civil engineering work is required to construct a water channel between the upper reservoir and the lower reservoir, one common penstock is connected to the upper reservoir to reduce this civil works cost. In many cases, a water pressure pipe is branched into a plurality of branch pipes and a pump turbine or the like is connected to these branch pipes.
【0003】図8は、上述の分岐水路系揚水発電所の概
略構成を示したもので、上部貯水池1には一本の共通の
水圧管2が連通され、この水圧管2はその下端の分岐点
3において複数本の分岐管4a,4bに分岐されてい
る。これらの分岐管4a,4bは、夫々ポンプ水車5
a,5b及び放水路6a,6bを介して下部貯水池7に
接続されている。FIG. 8 shows a schematic structure of the above-mentioned branch waterway system pumped-storage power plant. One common hydraulic pipe 2 is connected to the upper reservoir 1 and the hydraulic pipe 2 is branched at the lower end thereof. At point 3, it is branched into a plurality of branch pipes 4a and 4b. These branch pipes 4a and 4b are respectively pump water turbine 5
It is connected to the lower reservoir 7 via a, 5b and discharge channels 6a, 6b.
【0004】また、水車やポンプやポンプ水車などの水
力機械は、従来は定速形の水力機械が多く使用されてい
たが、近年はパワーエレクトロニクスの進歩により主機
の回転速度を任意に制御することができる可変速形水力
機械が実用化されつつある。このような可変速形水力機
械の運転制御方法が、例えば特開昭48−21045号
公報または特開昭57−113971号公報に開示され
ている。Conventionally, as hydraulic machines such as turbines, pumps, and pump turbines, constant-speed type hydraulic machines have been widely used in the past, but in recent years, due to the progress of power electronics, the rotational speed of the main engine can be controlled arbitrarily. A variable speed hydraulic machine capable of doing so is being put to practical use. An operation control method for such a variable speed hydraulic machine is disclosed in, for example, Japanese Patent Application Laid-Open No. 48-21045 or Japanese Patent Application Laid-Open No. 57-113971.
【0005】[0005]
【発明が解決しようとする課題】ところが、上述した従
来の分岐水路系発電所は、複数台の水力機械の分岐管が
分岐点で互いに連通されているため、一台の水力機械の
運転状態の変化が他の水力機械に影響を及ぼし、常時最
適の運転状態を維持することができないといった問題が
ある。これを以下に詳述する。However, in the conventional branch waterway system power plant described above, since the branch pipes of a plurality of hydraulic machines are connected to each other at a branch point, the operation state of one hydraulic machine is There is a problem that the change affects other hydraulic machines and cannot always maintain the optimum operating condition. This will be described in detail below.
【0006】全台の水力機械が発電運転中に、そのうち
の一台が負荷遮断または非常停止した場合に、この水力
機械の主機の停止のために流量調整用のガイドベーンが
急停止され、これによって、負荷遮断した水力機械の分
岐管の水圧が水撃現象により大きく変動する。この水圧
変動は、分岐部を介して隣接の発電運転中の水力機械の
分岐管に伝播し、これによって、発電運転中の水力機械
の有効落差が過渡的に変化し、特に分岐管水圧の上昇に
よって有効落差が上昇する。更に、負荷遮断した水力機
械のガイドベーン閉鎖によって、発電運転中の水力機械
の流量が一時的に急増する。When all of the hydraulic machines are in a power generating operation and one of them has a load shed or an emergency stop, the flow control guide vanes are suddenly stopped to stop the main machine of the hydraulic machine. As a result, the water pressure in the branch pipe of the hydraulic machine with the load cut off fluctuates greatly due to the water hammer phenomenon. This water pressure fluctuation propagates to the branch pipe of the adjacent hydraulic machine during power generation operation via the branch portion, which transiently changes the effective head of the hydraulic machine during power generation operation, and in particular, the rise in the branch pipe water pressure. Will increase the effective head. Furthermore, the closing of the guide vanes of the hydraulic machine with the load cut off temporarily increases the flow rate of the hydraulic machine during the power generation operation.
【0007】このような一時的な有効落差の上昇及び流
量の急増によって、発電運転中の水力機械は水車出力が
過大になってしまい、この過大な水車出力は、発電電動
機にとって大きな負担となり、場合によっては事前に冗
長な設計を行わなければならないといった問題がある。Due to such a temporary rise in the effective head and a rapid increase in the flow rate, the hydraulic turbine output during the power generation operation becomes excessively large, and this excessive hydraulic turbine output imposes a great burden on the generator motor. Depending on the type, there is a problem that a redundant design must be done in advance.
【0008】同様に、全台の水力機械が揚水運転中に、
そのうちの一台が入力遮断または非常停止した場合に
も、水圧変動が発生する。このため、揚水運転続行中の
水力機械のポンプ全揚程が過渡的に変化し、特に分岐管
の水圧低下によってポンプ全揚程も低下し、一時的にポ
ンプの軸入力が過大となる。このような過大なポンプ軸
入力は、発電電動機にとって大きな負担となり、場合に
よっては事前に冗長な設計を行わなければならないとい
った問題がある。また、或る水力機械の揚水運転中に、
別の水力機械が揚水運転を開始する場合には、この新た
な揚水運転の開始によって共通の水圧管の流量が増加す
るため、水路の水力摩擦損失も増加し、これによって揚
水運転中の水力機械のポンプ全揚程が大きくなり、それ
の揚水量が減少するといった問題が生ずる。これを更に
詳述すると、ポンプ水車等の水力機械の全揚程は、図8
に示した上部貯水池1と下部貯水池7との静落差に水路
の水力損失を加えたものであり、水力機械の運転台数が
増加するにつれて水路の水力損失が流量の2乗にほぼ比
例して増加するため、新たな揚水運転の開始は、揚水運
転中の水力機械のポンプ全揚程を大きくし、揚水運転中
の水力機械の揚水量の減少を招来する。Similarly, during the pumping operation of all hydraulic machines,
Water pressure fluctuations also occur when one of them shuts off the input or is in an emergency stop. For this reason, the total pump head of the hydraulic machine during the pumping operation is transiently changed, and the pump total head is also decreased due to the decrease in the water pressure of the branch pipe, and the axial input of the pump becomes temporarily excessive. Such an excessive pump shaft input imposes a heavy burden on the generator motor, and there is a problem that a redundant design must be performed in advance depending on the case. Also, during pumping operation of a certain hydraulic machine,
When another hydraulic machine starts the pumping operation, this new pumping operation also increases the flow rate of the common penstock, which also increases the hydraulic friction loss in the canal, which causes the hydraulic machine to operate during the pumping operation. There is a problem that the total pump head of the pump becomes large and the pumping amount of the pump decreases. This will be described in more detail. The total head of a hydraulic machine such as a pump turbine is shown in FIG.
It is the sum of the static head between the upper reservoir 1 and the lower reservoir 7 shown in Fig. 4 plus the hydraulic loss of the canal. As the number of operating hydraulic machinery increases, the hydraulic loss of the canal increases almost in proportion to the square of the flow rate. Therefore, the start of a new pumping operation increases the total pump head of the hydraulic machine during the pumping operation, which leads to a decrease in the pumping amount of the hydraulic machine during the pumping operation.
【0009】揚水発電所において、水力機械を新たに揚
水運転開始させることは、一般に電力系統に余力が存在
することであるため、上述の揚水運転中の水力機械の揚
水量の減少は、揚水発電所の効率的運転の障害となる。
更に、全台の水力機械の揚水運転中に、一部の水力機械
が運転を停止する場合には、前述とは逆に、運転停止に
よって共通の水圧管の流量が減少するため、水路の水力
摩擦損失も減少し、これによって揚水運転中の水力機械
のポンプ全揚程が低下し、水力機械の軸入力が増大する
といった問題が生ずる。一般に、揚水発電所において揚
水運転中の複数の水力機械の一部を停止させることは、
電力系統にあまり余力がない場合が多いため、一部の水
力機械の停止に伴って、他の水力機械の軸入力が増大す
ることは、揚水発電所の効率的な運転上好ましくない。In a pumped-storage power station, starting a new pumping operation of a hydraulic machine generally means that there is extra capacity in the electric power system. Therefore, the decrease in the pumping amount of the hydraulic machine during the above-mentioned pumping operation is It becomes a hindrance to the efficient driving of the place.
Furthermore, when some of the hydraulic machines stop operating during the pumping operation of all the hydraulic machines, contrary to the above, the flow rate of the common penstock decreases due to the stop of operation, so Friction loss is also reduced, which causes a problem that the total pump head of the hydraulic machine during the pumping operation is reduced and the shaft input of the hydraulic machine is increased. In general, shutting down a part of a plurality of hydraulic machines during pumping operation at a pumped storage power plant is
In many cases, the electric power system does not have enough reserve capacity, and therefore it is not preferable for the efficient operation of the pumped storage power station that the shaft input of other hydraulic machines increases with the stop of some hydraulic machines.
【0010】そこで、請求項1に記載の発明の目的は、
発電運転中の複数の水力機械のうちの一部が負荷遮断ま
たは非常停止した場合に発生する分岐管の水圧変動に起
因する水力機械の水車出力の過大を防止することができ
る分岐水路系発電所の可変速形水力機械の運転制御方法
を提供することにある。Therefore, the object of the invention described in claim 1 is to:
Branch waterway system power plant that can prevent excessive hydraulic turbine output of hydraulic machines due to fluctuations in water pressure in branch pipes that occur when a part of a plurality of hydraulic machines that are in power generation operation has a load cut off or an emergency stop Another object of the present invention is to provide an operation control method for a variable speed hydraulic machine.
【0011】請求項2に記載の発明の目的は、揚水運転
中の複数の水力機械のうちの一部が入力遮断または非常
停止した場合に発生する分岐管の水圧変動に起因する水
力機械のポンプ軸入力の過大を防止することができる分
岐水路系発電所の可変速形水力機械の運転制御方法を提
供することにある。請求項3に記載の発明の目的は、或
る水力機械の揚水運転中に別の水力機械が揚水運転を開
始する場合に発生するポンプ全揚程の増大に起因する水
力機械の揚水量の減少を防止することができる分岐水路
系発電所の可変速形水力機械の運転制御方法を提供する
ことにある。請求項4に記載の発明の目的は、揚水運転
中の複数の水力機械のうちの一部が運転を停止する場合
に発生するポンプ全揚程の低下に起因する水力機械の軸
入力の増大を防止することができる分岐水路系発電所の
可変速形水力機械の運転制御方法を提供することにあ
る。A second object of the present invention is to provide a pump for a hydraulic machine, which is caused by a fluctuation in hydraulic pressure in a branch pipe that occurs when a part of a plurality of hydraulic machines during pumping operation is shut off or an emergency stop occurs. An object of the present invention is to provide an operation control method of a variable speed hydraulic machine of a branch waterway system power plant, which is capable of preventing an excessive shaft input. The object of the invention as set forth in claim 3 is to reduce the pumping amount of a hydraulic machine due to an increase in the total pump head that occurs when another hydraulic machine starts the pumping operation during the pumping operation of one hydraulic machine. An object of the present invention is to provide an operation control method of a variable speed hydraulic machine of a branch waterway system power plant that can be prevented. An object of the invention described in claim 4 is to prevent an increase in shaft input of the hydraulic machine due to a decrease in the total pump head that occurs when a part of the plurality of hydraulic machines during the pumping operation is stopped. It is an object of the present invention to provide an operation control method of a variable speed hydraulic machine of a branch waterway system power plant which can be performed.
【0012】[0012]
【課題を解決するための手段】この目的を達成するため
に請求項1に記載の発明は、上部貯水池に連通された一
本の水圧管から分岐された複数本の分岐管の一つに接続
された可変速形の水力機械と、残りの分岐管に接続され
た任意の方式の水力機械とを具備する分岐水路系発電所
の可変速形水力機械の運転制御方法において、上記可変
速形水力機械と上記任意方式の水力機械との発電運転中
に、上記任意方式の水力機械が負荷遮断または非常停止
した時に、上記可変速形水力機械の回転速度をほぼ運用
最高回転速度に上昇させると共にガイドベーンを所定開
度まで閉鎖し、その後に、上記負荷遮断または非常停止
に起因する水路の水圧変動がほぼ消失した時に上記可変
速形水力機械の回転速度及びガイドベーン開度を夫々所
定の運転点に復帰させることを特徴とするものである。In order to achieve this object, the invention according to claim 1 is connected to one of a plurality of branch pipes branched from one penstock connected to the upper reservoir. A variable speed hydraulic machine and a hydraulic machine of any type connected to the remaining branch pipes, the method of controlling a variable speed hydraulic machine of a branch waterway system power plant, comprising: During power generation operation of the machine and the above-mentioned arbitrary type hydraulic machine, when the load of the arbitrary type hydraulic machine is interrupted or an emergency stop occurs, the rotation speed of the variable speed type hydraulic machine is increased to almost the maximum operating speed and guide When the vane is closed to a predetermined opening and then the water pressure fluctuation in the water channel due to the load cutoff or the emergency stop disappears, the rotation speed of the variable speed hydraulic machine and the guide vane opening are respectively set to the predetermined operating points. Return to It is characterized in that to.
【0013】請求項2に記載の発明は、上部貯水池に連
通された一本の水圧管から分岐された複数本の分岐管の
一つに接続された可変速形の水力機械と、残りの分岐管
に接続された任意の方式の水力機械とを具備する分岐水
路系発電所の可変速形水力機械の運転制御方法におい
て、上記可変速形水力機械と上記任意方式の水力機械と
の揚水運転中に、上記任意方式の水力機械が入力遮断ま
たは非常停止した時に、上記可変速形水力機械の回転速
度をほぼ運用最低回転速度に下降制御し、その後に、上
記入力遮断または非常停止に起因する水路の水圧変動が
ほぼ消失した時に上記可変速形水力機械の回転速度を所
定の回転速度に上昇させることを特徴とするものであ
る。According to a second aspect of the present invention, there is provided a variable speed hydraulic machine connected to one of a plurality of branch pipes branched from a single penstock communicating with the upper reservoir, and the remaining branch. In an operation control method for a variable speed hydraulic machine of a branch waterway system power plant, which comprises a hydraulic machine of any method connected to a pipe, during pumping operation of the variable speed hydraulic machine and the hydraulic machine of any method. In addition, when the input of the hydraulic machine of the above-mentioned arbitrary system is interrupted or an emergency stop is performed, the rotation speed of the variable speed type hydraulic machine is controlled to be lowered to almost the minimum operation speed, and then the water channel caused by the input cutoff or emergency stop is controlled. It is characterized in that the rotational speed of the variable speed type hydraulic machine is increased to a predetermined rotational speed when the water pressure fluctuation of (1) has almost disappeared.
【0014】請求項3に記載の発明は、上部貯水池に連
通された一本の水圧管から分岐された複数本の分岐管の
一つに接続された可変速形の水力機械と、残りの分岐管
に接続された任意の方式の水力機械とを具備する分岐水
路系発電所の可変速形水力機械の運転制御方法におい
て、上記可変速形水力機械の揚水運転中に、上記任意方
式の水力機械が揚水運転を開始した時に、上記任意方式
の水力機械のプライミング水圧確立またはガイドベーン
開制御の開始に応じて上記可変速形水力機械の回転速度
をほぼ運用最高回転速度に上昇させることを特徴とする
ものである。請求項4に記載の発明は、上部貯水池に連
通された一本の水圧管から分岐された複数本の分岐管の
一つに接続された可変速形の水力機械と、残りの分岐管
に接続された任意の方式の水力機械とを具備する分岐水
路系発電所の可変速形水力機械の運転制御方法におい
て、上記可変速形水力機械と上記任意方式の水力機械と
の揚水運転中に、上記任意方式の水力機械が運転を停止
する時に、上記任意方式の水力機械のガイドベーン閉制
御の開始に応じて上記可変速形水力機械の回転速度をほ
ぼ運用最低回転速度に下降させることを特徴とするもの
である。According to a third aspect of the present invention, a variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one hydraulic pipe communicating with the upper reservoir and the remaining branch In an operation control method of a variable speed hydraulic machine of a branch waterway power plant, which comprises a hydraulic machine of an arbitrary method connected to a pipe, the hydraulic machine of the arbitrary method during pumping operation of the variable speed hydraulic machine. When the pumping operation is started, the rotating speed of the variable speed type hydraulic machine is increased to almost the maximum operating speed in response to the establishment of priming water pressure of the arbitrary type hydraulic machine or the start of the guide vane opening control. To do. The invention according to claim 4 is a variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one hydraulic pipe communicating with the upper reservoir, and the remaining branch pipes. In a method of controlling operation of a variable speed hydraulic machine of a branch waterway system power plant including a hydraulic machine of any of the above described types, during the pumping operation of the variable speed hydraulic machine and the hydraulic machine of the arbitrary method, When the operation of the arbitrary type hydraulic machine is stopped, the rotation speed of the variable speed type hydraulic machine is decreased to almost the minimum operation speed in response to the start of the guide vane closing control of the arbitrary type hydraulic machine. To do.
【0015】[0015]
【作用】請求項1に記載の発明では、可変速形水力機械
と任意方式の水力機械との両方が発電運転中に、任意方
式の水力機械が負荷遮断または非常停止すると、これに
よって任意方式の水力機械の分岐管に水圧変動が発生す
る。この水圧変動は、可変速形水力機械の分岐管に伝播
し、可変速形水力機械の有効落差を増大させる。また、
負荷遮断した水力機械のガイドベーン閉鎖によって、可
変速形水力機械の流量が一時的に急増する。このような
一時的な有効落差の増大及び流量の急増は、可変速形水
力機械の水車出力を過大にする方向に作用する。According to the invention described in claim 1, when both the variable speed type hydraulic machine and the arbitrary type hydraulic machine are in a power generating operation and the load of the arbitrary type hydraulic machine is interrupted or an emergency stop occurs, the Water pressure fluctuations occur in the branch pipes of hydraulic machines. This water pressure fluctuation propagates to the branch pipe of the variable speed hydraulic machine and increases the effective head of the variable speed hydraulic machine. Also,
Closing the guide vanes of a hydromachine with a load off causes a temporary surge in the flow rate of the variable speed hydromachine. Such a temporary increase in the effective head and a rapid increase in the flow rate act in the direction of making the hydraulic turbine output of the variable speed hydraulic machine excessive.
【0016】しかしながら、可変速形水力機械は、この
ような事態を未然に回避するために、任意方式の水力機
械の負荷遮断または非常停止に応じて、その回転速度が
ほぼ運用最高回転速度に上昇されると共にそのガイドベ
ーンが所定の開度まで閉鎖され、これによって水車トル
クを減少させ、一時的な過出力を防止する。その後に、
負荷遮断または非常停止に起因する水路の水圧変動がほ
ぼ消失した時に可変速形水力機械の回転速度及びガイド
ベーン開度を夫々所定の運転点に復帰させる。However, in order to avoid such a situation, the variable speed hydraulic machine has its rotational speed increased to almost the maximum operating speed in response to load shedding or an emergency stop of the arbitrary type hydraulic machine. At the same time, the guide vanes are closed to a predetermined opening, thereby reducing the turbine torque and preventing temporary overpower. After that,
When the water pressure fluctuations in the water channel due to load shedding or emergency stop have almost disappeared, the rotational speed and the guide vane opening of the variable speed hydraulic machine are respectively returned to predetermined operating points.
【0017】請求項2に記載の発明では、可変速形水力
機械と任意方式の水力機械との両方が揚水運転中に、任
意方式の水力機械が入力遮断または非常停止すると、こ
れによって任意方式の水力機械の分岐管に水圧変動が発
生する。この水圧変動は、可変速形水力機械の分岐管に
伝播し、ポンプ全揚程を低下させ、可変速形水力機械の
ポンプ軸入力を過大にする方向に作用する。しかしなが
ら、可変速形水力機械は、このような事態を未然に回避
するために、任意方式の水力機械の入力遮断または非常
停止に応じて、その回転速度がほぼ運用最低回転速度に
下降制御され、ポンプ軸入力の過大を防止する。その後
に、入力遮断または非常停止に起因する水路の水圧変動
がほぼ消失した時に、可変速形水力機械の回転速度が所
定の回転速度に上昇される。According to the second aspect of the present invention, when the variable-speed hydraulic machine and the arbitrary-type hydraulic machine are both in pumping operation and the input of the arbitrary-type hydraulic machine is interrupted or an emergency stop occurs, the arbitrary-type hydraulic machine is Water pressure fluctuations occur in the branch pipes of hydraulic machines. This water pressure fluctuation propagates to the branch pipe of the variable speed hydraulic machine, reduces the total head of the pump, and acts to make the pump shaft input of the variable speed hydraulic machine excessive. However, in order to avoid such a situation, the variable speed hydraulic machine is controlled so that its rotational speed is lowered to almost the minimum operational rotational speed in accordance with the input interruption or the emergency stop of the hydraulic machine of any method. Prevents excessive pump shaft input. After that, when the water pressure fluctuation in the water channel due to the input interruption or the emergency stop is almost disappeared, the rotation speed of the variable speed hydraulic machine is increased to a predetermined rotation speed.
【0018】請求項3に記載の発明は、可変速形水力機
械の揚水運転中に任意方式の水力機械が揚水運転を開始
すると、この任意方式の水力機械の揚水運転の開始によ
って水圧管の流量が増大し、これにより水路摩擦損失も
増加するため、揚水運転中の可変速形水力機械のポンプ
全揚程が大きくなる。このポンプ全揚程の増大は、揚水
運転中の可変速形水力機械の揚水量を減少させる方向に
作用する。しかしながら、可変速形水力機械は、このよ
うな事態を未然に避けるために、任意方式の水力機械の
プライミング水圧確立またはガイドベーン開制御の開始
に応じて、その回転速度がほぼ運用最高回転速度に上昇
され、揚水量の減少を防止する。According to the third aspect of the present invention, when the hydraulic machine of an arbitrary system starts the pumping operation during the pumping operation of the variable speed hydraulic machine, the flow rate of the penstock is increased by the start of the pumping operation of the hydraulic machine of the arbitrary system. , Which increases the friction loss in the water channel, and thus increases the total pump head of the variable speed hydraulic machine during the pumping operation. This increase in the total pump head acts in the direction of reducing the pumping amount of the variable speed hydraulic machine during the pumping operation. However, in order to avoid such a situation, the variable speed hydraulic machine has its rotational speed almost reached the maximum operating speed in response to the establishment of the priming hydraulic pressure of an arbitrary type hydraulic machine or the start of the guide vane opening control. Raised to prevent a reduction in pumping.
【0019】請求項4に記載の発明では、可変速形水力
機械と任意方式の水力機械の両方が揚水運転中に、任意
方式の水力機械が運転を停止すると、水圧管の流量が減
少するため、可変速形水力機械のポンプ全揚程が低下す
る。このポンプ全揚程の低下は、可変速形水力機械の軸
入力を増大させる方向に作用する。しかしながら、可変
速形水力機械は、このような事態を未然に避けるため
に、任意方式の水力機械のガイドベーン閉制御の開始に
応じて、その回転速度がほぼ運用最低回転速度に下降さ
れ、これによって軸入力の増大を防止する。According to the fourth aspect of the present invention, when both the variable speed type hydraulic machine and the arbitrary type hydraulic machine are in the pumping operation and the arbitrary type hydraulic machine stops operating, the flow rate of the penstock decreases. , The total pump head of the variable speed hydraulic machine is reduced. This reduction in the total pump head acts in the direction of increasing the shaft input of the variable speed hydraulic machine. However, in order to avoid such a situation, the variable speed hydraulic machine has its rotational speed lowered to almost the minimum operating speed in response to the start of the guide vane closing control of the hydraulic machine of any method. To prevent an increase in shaft input.
【0020】[0020]
【実施例】以下に本発明による分岐水路系発電所の可変
速形水力機械の運転制御方法の実施例を図1乃至図8を
参照して説明する。本実施例は、本発明を図8に示した
一般的な2分岐水路系揚水発電所に適用したもので、図
8において上部貯水池1には一本の共通の水圧管2が連
通され、この水圧管2はその下端の分岐点3において複
数本の分岐管4a,4bに分岐されている。これらの分
岐管4a,4bには定速形のポンプ水車5aと可変速形
のポンプ水車5bとが夫々接続され、これらの定速形及
び可変速形のポンプ水車5a、5bは放水路6a,6b
によって夫々下部貯水池7に接続されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an operation control method for a variable speed hydraulic machine of a branch waterway power plant according to the present invention will be described below with reference to FIGS. 1 to 8. In this embodiment, the present invention is applied to the general two-branch water storage system pumped-storage power plant shown in FIG. 8. In FIG. 8, one common hydraulic pipe 2 is connected to the upper reservoir 1 and The hydraulic pipe 2 is branched into a plurality of branch pipes 4a and 4b at a branch point 3 at the lower end thereof. A constant speed pump turbine 5a and a variable speed pump turbine 5b are connected to the branch pipes 4a and 4b, respectively, and the constant speed and variable speed pump turbines 5a and 5b are connected to the discharge channel 6a, 6b
Respectively connected to the lower reservoir 7.
【0021】定速形及び可変速形ポンプ水車5a、5b
の両方が発電運転を行っている時に、定速形ポンプ水車
5aが負荷遮断すると、この定速形ポンプ水車5aの分
岐管4aの水圧は、水撃現象によって大きく変動し、不
安定な状態が過渡的に発生する。図1の(a)、(b)
及び(c)はこの負荷遮断時の定速形ポンプ水車5aの
回転速度と分岐管4aの水圧とガイドベーン開度を夫々
示している。この分岐管4aの水圧変動は、分岐点3を
介して隣接の可変速形ポンプ水車5bの分岐管4bに伝
播する。従って、この可変速形ポンプ水車5bの分岐管
4bの水圧も図1の(d)に示したように大きく変動す
る。Constant and variable speed pump turbines 5a, 5b
When the constant speed pump turbine 5a is unloaded while both of them are in the power generation operation, the water pressure of the branch pipe 4a of the constant speed pump turbine 5a greatly changes due to a water hammer phenomenon, and an unstable state occurs. Occurs transiently. 1 (a), (b)
And (c) show the rotation speed of the constant velocity pump turbine 5a, the water pressure of the branch pipe 4a, and the guide vane opening when the load is cut off, respectively. The water pressure fluctuation of the branch pipe 4a propagates to the branch pipe 4b of the adjacent variable speed pump turbine 5b via the branch point 3. Therefore, the water pressure in the branch pipe 4b of the variable speed pump turbine 5b also fluctuates greatly as shown in FIG.
【0022】そこで、この分岐管4aまたは4bの水圧
変動などを測定することによって、定速形ポンプ水車5
aの負荷遮断を検出し、この検出結果に応じて発電運転
続行中の可変速形ポンプ水車5bの回転速度N0を図1
の(e)に示したように運用最高回転速度Nmaxまで
上昇させると同時に、ガイドベーン開度を図1の(f)
に示したように50%開度まで閉成する。Therefore, the constant speed pump turbine 5 is measured by measuring the water pressure fluctuation of the branch pipe 4a or 4b.
1 is detected, and the rotation speed N 0 of the variable speed pump turbine 5b during the power generation operation is continued according to the detection result.
As shown in (e) of Fig. 1, the guide vane opening is increased at the same time as the operating maximum rotation speed Nmax is increased.
As shown in, closed to 50% opening.
【0023】負荷遮断から所定時間T1が経過して水圧
変動が収まると、可変速形ポンプ水車5bの回転速度N
maxを図1の(e)に示したように、所定の回転速
度、例えば元の回転速度N0に降下させると同時に、ガ
イドベーン開度を図1の(f)に示したように、例えば
元の開度に復帰させる。なお、この回転速度及びガイド
ベーン開度の復帰のタイミングは、分岐管の水圧測定を
行って、水圧変動がほぼ消失した時点を検出することに
よって決定することもできるし、または、水圧変動が消
失するのに要する時間が水路構成に応じてほぼ一定であ
るので、負荷遮断の発生からの時間経過T1を計時して
この計時結果によって決定することもできる。When a predetermined time T 1 elapses after the load is cut off and the fluctuation in water pressure subsides, the rotational speed N of the variable speed pump turbine 5b is reduced.
As shown in (e) of FIG. 1, the max is lowered to a predetermined rotation speed, for example, the original rotation speed N 0 , and at the same time, the guide vane opening is set to, for example, as shown in (f) of FIG. Restore the original opening. The rotation speed and the timing of returning the guide vane opening can be determined by measuring the water pressure in the branch pipe and detecting the time when the water pressure fluctuations almost disappear, or the water pressure fluctuations disappear. Since the time required to do so is substantially constant according to the waterway configuration, it is also possible to measure the time lapse T 1 from the occurrence of load shedding and determine it by this time measurement result.
【0024】図2は可変速形ポンプ水車5bの発電運転
特性を示したグラフであり、可変速形ポンプ水車5bは
通常、出力に応じて最適運転曲線L1上を運転してい
る。有効落差H0及び回転速度N0の運転点P1の時
に、定速形ポンプ水車5aに負荷遮断が発生すると、こ
の負荷遮断によって有効落差が過渡的にH1に増大する
ため、もし可変速形ポンプ水車5bの回転速度及びガイ
ドベーン開度が不変のままであると、可変速形ポンプ水
車5bの運転点はP2に移り、流量が増大してしまう。
このような事態を未然に回避するために、上述のように
可変速形ポンプ水車5bの回転速度を運用最高速度Nm
axに上昇させることによって、運転点をP1に戻すと
共に、ガイドベーン開度を50%開度まで閉成すること
によって、運転点を更にP3に移動させる。こうして、
定速形ポンプ水車5aの負荷遮断に伴う可変速形ポンプ
水車5bの流量増大を回避することができ、可変速形ポ
ンプ水車5bの過出力を防止することができる。FIG. 2 is a graph showing the power generation operation characteristics of the variable speed pump turbine 5b. The variable speed pump turbine 5b normally operates on the optimum operation curve L 1 according to the output. When the effective head operating point P 1 of the H 0 and rotational speed N 0, the load shedding in Josokukatachi pump turbine 5a occurs, the effective head by this load shedding is increased in transiently H 1, if variable speed If the rotation speed and the guide vane opening of the model pump turbine 5b remain unchanged, the operating point of the variable speed pump turbine 5b shifts to P 2 and the flow rate increases.
In order to avoid such a situation, as described above, the rotation speed of the variable speed pump turbine 5b is set to the maximum operation speed Nm.
The operating point is returned to P 1 by increasing it to ax, and the operating point is further moved to P 3 by closing the guide vane opening to 50% opening. Thus
It is possible to avoid an increase in the flow rate of the variable speed pump turbine 5b due to the load shedding of the constant speed pump turbine 5a, and it is possible to prevent over-output of the variable speed pump turbine 5b.
【0025】図3は、可変速形ポンプ水車5bの単位落
差当りの回転速度と単位落差当りの水車トルクとガイド
ベーン開度との関係を示したもので、運転点P1、P2
及びP3は、図2のそれに対応しており、運転点P
1は、負荷遮断の発生によって過渡的に運転点P2に移
った後、直ちに運転点P3に移動し、水車トルクを減少
させることができる。なお、以上の説明では負荷遮断が
発生した場合を例に説明した。しかしながら、機器の事
故などによって非常停止が発生した場合も全く同様であ
る。FIG. 3 shows the relationship between the rotational speed per unit head of the variable-speed pump turbine 5b, the turbine torque per unit head, and the guide vane opening. The operating points P 1 and P 2 are shown.
And P 3 correspond to those in FIG. 2, and the operating point P
In No. 1 , the hydraulic turbine torque can be decreased by transiently moving to the operating point P 2 due to the occurrence of load shedding and then immediately moving to the operating point P 3 . In the above description, the case where the load is cut off is described as an example. However, the same is true when an emergency stop occurs due to an equipment accident or the like.
【0026】また、以上の説明では定速形及び可変速形
ポンプ水車5a、5bの組合わせであった。しかしなが
ら、本発明はこれに限るものではなく、可変速形のポン
プ水車と可変速形のポンプ水車との組合わせも同様に可
能であり、更には、少なくとも一方が可変速形であれ
ば、水車とポンプ水車との組合わせや、発電運転に限れ
ば水車と水車との組合わせも可能である。Further, in the above description, the constant speed type and variable speed type pump turbines 5a and 5b are combined. However, the present invention is not limited to this, and a combination of a variable speed pump turbine and a variable speed pump turbine is also possible. Further, if at least one is a variable speed turbine, It is also possible to combine a turbine with a pump turbine, or a combination of a turbine and a turbine if the operation is limited to power generation.
【0027】次に、定速形及び可変速形ポンプ水車5
a、5bが揚水運転している時に、定速形ポンプ水車5
aが入力遮断した場合を説明する。図4の(a)に示し
たように定速形ポンプ水車5aの回転速度が急減速した
場合に、主機停止のために定速形ポンプ水車5aのガイ
ドベーンを急停止する。これによって、定速形ポンプ水
車5aの分岐管4aの水圧が水撃現象により図4の
(b)に示したように大きく変動する。この水圧変動に
よって、可変速形ポンプ水車5bの分岐管4bの水圧も
図4の(c)に示したように大きく変動する。この分岐
管4bの水圧変動によって、揚水運転続行中の可変速形
ポンプ水車5bのポンプ全揚程が過渡的に低下し、一時
的にポンプ軸入力が過大となる。そこで、このような事
態を未然に回避するために、分岐管4aまたは4bの水
圧変動の測定などによって、定速形ポンプ水車5aの入
力遮断を検出し、この検出結果に応じて揚水運転続行中
の可変速形ポンプ水車5bの回転速度を図4の(d)に
示したように運用最低回転速度まで下降させる。これに
よって、ポンプ軸入力の増加を最小限に押えることがで
きる。Next, a constant speed type and a variable speed type pump turbine 5
Constant speed pump turbine 5 when a and 5b are in pumping operation
The case where the input of a is blocked will be described. As shown in FIG. 4A, when the rotation speed of the constant speed pump turbine 5a is rapidly reduced, the guide vanes of the constant speed pump turbine 5a are suddenly stopped to stop the main engine. As a result, the water pressure in the branch pipe 4a of the constant velocity pump turbine 5a greatly changes due to the water hammer phenomenon as shown in FIG. 4 (b). Due to this fluctuation of water pressure, the water pressure of the branch pipe 4b of the variable speed pump turbine 5b also largely changes as shown in FIG. 4 (c). Due to the fluctuation of the water pressure in the branch pipe 4b, the total pump head of the variable-speed pump turbine 5b during the pumping operation is transiently reduced, and the pump shaft input is temporarily excessive. Therefore, in order to avoid such a situation, the input cutoff of the constant speed pump turbine 5a is detected by measuring the water pressure fluctuation of the branch pipe 4a or 4b, and the pumping operation is being continued according to the detection result. The rotation speed of the variable-speed pump turbine 5b is decreased to the minimum operation rotation speed as shown in FIG. 4 (d). As a result, the increase in pump shaft input can be suppressed to a minimum.
【0028】入力遮断から所定時間T2が経過して水圧
変動が収まると、可変速形ポンプ水車5bの回転速度を
図1の(d)に示したように、所定の回転速度、例えば
元の回転速度に上昇させる。なお、この回転速度の上昇
のタイミングは、前述のように、分岐管の水圧測定によ
って、または負荷遮断の発生からの時間経過の計時など
によって設定することができる。なお、以上の説明では
入力遮断が発生した場合を例に説明した。しかしなが
ら、機器の事故などによって非常停止が発生した場合も
全く同様である。When the water pressure fluctuation has subsided after a lapse of a predetermined time T 2 from the input interruption, the rotation speed of the variable speed pump turbine 5b is changed to a predetermined rotation speed as shown in FIG. Increase to rotation speed. The timing of the increase in the rotation speed can be set, as described above, by measuring the water pressure in the branch pipe, or by measuring the elapsed time from the occurrence of load shedding. In the above description, the case where the input cutoff occurs has been described as an example. However, the same is true when an emergency stop occurs due to an equipment accident or the like.
【0029】次に、可変速形ポンプ水車5bが揚水運転
している時に、定速形ポンプ水車5aが揚水運転を開始
する場合を説明する。この定速形ポンプ水車5aが揚水
運転を開始すると、共通水圧管2の流量が増大し、これ
に伴ってこの水圧管2の水力摩擦損失が増加する。これ
によって揚水運転中の可変速形ポンプ水車5bのポンプ
全揚程が大きくなり、揚水量が減少し、揚水発電所の運
転効率が低下する。Next, the case where the constant speed pump turbine 5a starts the pumping operation while the variable speed pump turbine 5b is in the pumping operation will be described. When the constant velocity pump turbine 5a starts the pumping operation, the flow rate of the common hydraulic pipe 2 increases, and accordingly the hydraulic friction loss of the hydraulic pipe 2 increases. As a result, the total pump head of the variable speed pump turbine 5b during the pumping operation increases, the amount of pumped water decreases, and the operating efficiency of the pumped storage power plant decreases.
【0030】そこで、このような事態を未然に避けるた
めに、定速形ポンプ水車5aの揚水始動条件が成立した
時点、例えば図5の(a)に示したように定速形ポンプ
水車5aのガイドベーン開制御の開始時点に、または図
5の(b)に示したように定速形ポンプ水車5aのプラ
イミング水圧の確立時点に、揚水運転中の可変速形ポン
プ水車5bの回転速度を図5の(c)に示したように運
用最大回転速度まで上昇させる。これに伴い、可変速形
ポンプ水車5bの揚水量も図5の(d)に示したように
増加する。このような運転制御を、図6を使用してポン
プ水車の水力特性の観点から説明する。Therefore, in order to avoid such a situation, when the pumping start condition of the constant speed pump turbine 5a is satisfied, for example, as shown in FIG. At the start of the guide vane opening control, or at the time of establishing the priming water pressure of the constant speed pump turbine 5a as shown in FIG. 5B, the rotation speed of the variable speed pump turbine 5b during the pumping operation is shown. As shown in (c) of 5, the operating maximum rotation speed is increased. Along with this, the pumping volume of the variable speed pump turbine 5b also increases as shown in FIG. 5 (d). Such operation control will be described from the viewpoint of hydraulic characteristics of the pump turbine using FIG.
【0031】図6は、可変速形ポンプ水車5bのポンプ
運転時の水力特性の一部を示したもので、揚水運転中の
可変速形ポンプ水車5bは当初、運転点P4で運転して
おり、その後に定速形ポンプ水車5aが揚水運転を開始
すると、もし可変速形ポンプ水車5bの回転速度が不変
である場合には、可変速形ポンプ水車5bの運転点はP
5に移動し、揚水量が減少してしまう。そこで、可変速
形ポンプ水車5bの回転速度を運用最大回転速度まで上
昇させると、軌跡Aを通って運転点P6に移動し、揚水
量を増大させる。[0031] Figure 6 shows a part of the hydraulic characteristics of the pump operation of the variable speed pump-turbine 5b, the variable speed pump-turbine 5b during pumping operation initially operating at the operating point P 4 If the constant speed pump turbine 5a starts pumping operation after that, if the rotation speed of the variable speed pump turbine 5b is unchanged, the operating point of the variable speed pump turbine 5b is P
It moves to 5 , and the amount of pumped water decreases. Therefore, when the rotation speed of the variable speed pump turbine 5b is increased to the operation maximum rotation speed, the variable speed pump water turbine 5 moves to the operating point P 6 through the locus A and increases the pumping amount.
【0032】次に、定速形及び可変速形ポンプ水車5
a、5bが揚水運転している時に、定速形ポンプ水車5
aが運転を停止する場合を説明する。定速形及び可変速
形ポンプ水車5a、5bの揚水運転中に、定速形ポンプ
水車5aの停止指令が発生して図7の(a)に示したよ
うに定速形ポンプ水車5aのガイドベーンが閉鎖される
と、水路の水力損失が減少し、ポンプ全揚程が低下して
ポンプ軸入力が増大してしまう。そこで、このような事
態を未然に回避するために、定速形ポンプ水車5aの停
止指令に応じて、図7の(b)に示したように可変速形
ポンプ水車5bの回転速度を運用最低回転速度まで下降
させる。これに伴って、可変速形ポンプ水車5bのポン
プ軸入力が図7の(c)に示したように低下する。Next, a constant speed type and a variable speed type pump turbine 5
Constant speed pump turbine 5 when a and 5b are in pumping operation
The case where a stops driving will be described. During the pumping operation of the constant speed and variable speed pump turbines 5a and 5b, a stop command for the constant speed pump turbine 5a is generated, and the guide of the constant speed pump turbine 5a is generated as shown in FIG. When the vanes are closed, the hydraulic losses in the canals are reduced, the total pump head is reduced and the pump shaft input is increased. Therefore, in order to avoid such a situation, the rotation speed of the variable speed pump turbine 5b is set to the minimum operation speed as shown in FIG. 7B in response to the stop command of the constant speed pump turbine 5a. Lower to rotation speed. Along with this, the pump shaft input of the variable speed pump turbine 5b decreases as shown in FIG. 7 (c).
【0033】このような運転制御を、図6を使用してポ
ンプ水車の水力特性の観点から説明する。定速形及び可
変速形ポンプ水車5a、5bの両方が揚水運転している
時の可変速形ポンプ水車5bの運転点をP5とする。定
速形ポンプ水車5aの運転が停止すると、もし可変速形
ポンプ水車5bの回転速度を変化させない場合には可変
速形ポンプ水車5bの運転点はP4に移動し、ポンプ軸
入力が増大してしまう。そこで、上述のように定速形ポ
ンプ水車5aの停止指令に応じて可変速形ポンプ水車5
bの回転速度を運用最低回転速度まで下降させると、可
変速形ポンプ水車5bの運転点が軌跡Bを通ってP7に
移動し、ポンプ軸入力が低下して、電力系統に与える影
響を最小限に押えることができる。Such operation control will be described from the viewpoint of hydraulic characteristics of the pump turbine with reference to FIG. Let P 5 be the operating point of the variable speed pump turbine 5b when both the constant speed and variable speed pump turbines 5a and 5b are in the pumping operation. When the operation of the constant speed pump turbine 5a is stopped, if the rotation speed of the variable speed pump turbine 5b is not changed, the operating point of the variable speed pump turbine 5b moves to P 4 , and the pump shaft input increases. Will end up. Therefore, as described above, the variable speed pump turbine 5a is operated in response to the stop command of the constant speed pump turbine 5a.
When the rotation speed of b is lowered to the operation minimum rotation speed, the operating point of the variable speed pump turbine 5b moves to P 7 through the locus B, the pump shaft input decreases, and the influence on the power system is minimized. You can hold it down.
【0034】以上の揚水運転時の制御方法は、定速形及
び可変速形ポンプ水車5a、5bの組合わせに対するも
のであった。しかしながら、本発明はこれに限らず、可
変速形のポンプ水車と可変速形のポンプ水車との組合わ
せでもよく、また、少なくとも一方が可変速形であれ
ば、水車とポンプ水車との組合わせや、ポンプとポンプ
との組合わせも可能である。更に、上述の実施例は、本
発明を一般的な2分岐水路系揚水発電所に適用したもの
であった。しかしながら、本発明は、少なくとも一つの
分岐管に可変速形の水力機械を接続すれば、三つ以上の
分岐管を有する発電所にも適用することができる。The control method during the pumping operation described above is for the combination of the constant speed type and variable speed type pump turbines 5a and 5b. However, the present invention is not limited to this, and may be a combination of a variable speed pump turbine and a variable speed pump turbine, and if at least one is a variable speed combination, Also, a combination of pumps and pumps is possible. Furthermore, the above-described embodiment is one in which the present invention is applied to a general two-branch waterway system pumped storage power plant. However, the present invention can be applied to a power plant having three or more branch pipes by connecting a variable speed hydraulic machine to at least one branch pipe.
【0035】[0035]
【発明の効果】以上の説明から明らかなように、請求項
1に記載の発明によると、発電運転中の複数の水力機械
のうちの一部が負荷遮断または非常停止した場合におい
ても、分岐管の水圧変動に起因する水力機械の水車出力
の過大を防止し、発電運転を効率的に行うことができ
る。請求項2に記載の発明によると、揚水運転中の複数
の水力機械のうちの一部が入力遮断または非常停止した
場合においても、分岐管の水圧変動に起因する水力機械
のポンプ軸入力の過大を防止し、揚水運転を効率的に行
うことができる。請求項3に記載の発明によると、或る
水力機械の揚水運転中に別の水力機械が揚水運転を開始
する場合においても、ポンプ全揚程の増大に起因する水
力機械の揚水量の減少を防止し、揚水運転を効率的に行
うことができる。請求項4に記載の発明によると、揚水
運転中の複数の水力機械のうちの一部が運転を停止する
場合においても、ポンプ全揚程の低下に起因する水力機
械の軸入力の増大を防止し、揚水運転を効率的に行うこ
とができる。As is apparent from the above description, according to the invention described in claim 1, even when a part of a plurality of hydraulic machines during power generating operation is subjected to load interruption or emergency stop, the branch pipe is provided. It is possible to prevent the output of the hydraulic turbine of the hydraulic machine from being excessively large due to the fluctuation of the water pressure, and to efficiently perform the power generation operation. According to the invention described in claim 2, even when a part of the plurality of hydraulic machines during the pumping operation is shut off or an emergency stop occurs, the pump shaft input of the hydraulic machine is excessive due to the fluctuation of the hydraulic pressure in the branch pipe. Can be prevented and the pumping operation can be performed efficiently. According to the invention described in claim 3, even when another hydraulic machine starts the pumping operation during the pumping operation of a certain hydraulic machine, the reduction of the pumping amount of the hydraulic machine due to the increase of the total pump head is prevented. Therefore, the pumping operation can be efficiently performed. According to the invention described in claim 4, even when a part of the plurality of hydraulic machines during the pumping operation is stopped, the increase of the shaft input of the hydraulic machine due to the reduction of the total pump head is prevented. The pumping operation can be performed efficiently.
【図1】本発明の分岐水路系発電所の可変速形水力機械
の運転制御方法の一実施例の発電運転時の制御状態を示
したタイミングチャート図。FIG. 1 is a timing chart showing a control state during power generation operation of an embodiment of an operation control method for a variable speed hydraulic machine of a branch waterway system power plant of the present invention.
【図2】可変速形水力機械の単位落差当りの回転速度と
単位落差当りの流量との関係を示したグラフ。FIG. 2 is a graph showing the relationship between the rotation speed per unit head and the flow rate per unit head of the variable speed hydraulic machine.
【図3】可変速形水力機械の単位落差当りの回転速度と
単位落差当りのトルクとの関係を示したグラフ。FIG. 3 is a graph showing the relationship between the rotation speed per unit head and the torque per unit head of the variable speed hydraulic machine.
【図4】上記実施例の揚水運転時の制御状態を示したタ
イミングチャート図。FIG. 4 is a timing chart showing the control state during the pumping operation of the above embodiment.
【図5】上記実施例の揚水運転時の制御状態を示したタ
イミングチャート図。FIG. 5 is a timing chart showing a control state during the pumping operation of the above embodiment.
【図6】可変速形水力機械の揚水運転時の全揚程と軸入
力または揚水量との関係を示したグラフ。FIG. 6 is a graph showing the relationship between the total head and the shaft input or the pumping amount during the pumping operation of the variable speed hydraulic machine.
【図7】上記実施例の揚水運転時の制御状態を示したタ
イミングチャート図。FIG. 7 is a timing chart showing the control state during the pumping operation of the above embodiment.
【図8】一般的な2分岐水路系揚水発電所の水路を示し
た概略図。FIG. 8 is a schematic diagram showing a waterway of a general two-branch pumped storage power plant.
1 上部貯水池 2 水圧管 4a 分岐管 4b 分岐管 5a 定速形水力機械 5b 可変速形水力機械 1 upper reservoir 2 penstock 4a Branch pipe 4b Branch pipe 5a Constant speed hydraulic machine 5b Variable speed hydraulic machine
Claims (4)
分岐された複数本の分岐管の一つに接続された可変速形
の水力機械と、残りの分岐管に接続された任意の方式の
水力機械とを具備する分岐水路系発電所の可変速形水力
機械の運転制御方法において、上記可変速形水力機械と
上記任意方式の水力機械との発電運転中に、上記任意方
式の水力機械が負荷遮断または非常停止した時に、上記
可変速形水力機械の回転速度をほぼ運用最高回転速度に
上昇させると共にガイドベーンを所定開度まで閉鎖し、
その後に、上記負荷遮断または非常停止に起因する水路
の水圧変動がほぼ消失した時に上記可変速形水力機械の
回転速度及びガイドベーン開度を夫々所定の運転点に復
帰させることを特徴とする分岐水路系発電所の可変速形
水力機械の運転制御方法。1. A variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one hydraulic pipe connected to an upper reservoir, and an arbitrary hydraulic pipe connected to the remaining branch pipes. In a method for controlling operation of a variable speed hydraulic machine of a branch waterway system power plant including a hydraulic machine of the method, a hydraulic power of the arbitrary method is generated during power generation operation of the variable speed hydraulic machine and the hydraulic machine of the arbitrary method. When the machine has a load shedding or an emergency stop, the rotation speed of the variable speed hydraulic machine is increased to almost the maximum operating speed and the guide vanes are closed to a predetermined opening.
After that, when the water pressure fluctuations in the water channel due to the load shedding or the emergency stop have almost disappeared, the rotation speed and the guide vane opening of the variable speed hydraulic machine are respectively returned to predetermined operating points. Operation control method for variable speed hydraulic machines in hydropower stations.
分岐された複数本の分岐管の一つに接続された可変速形
の水力機械と、残りの分岐管に接続された任意の方式の
水力機械とを具備する分岐水路系発電所の可変速形水力
機械の運転制御方法において、上記可変速形水力機械と
上記任意方式の水力機械との揚水運転中に、上記任意方
式の水力機械が入力遮断または非常停止した時に、上記
可変速形水力機械の回転速度をほぼ運用最低回転速度に
下降制御し、その後に、上記入力遮断または非常停止に
起因する水路の水圧変動がほぼ消失した時に上記可変速
形水力機械の回転速度を所定の回転速度に上昇させるこ
とを特徴とする分岐水路系発電所の可変速形水力機械の
運転制御方法。2. A variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one penstock communicating with the upper reservoir, and an arbitrary hydraulic pipe connected to the remaining branch pipes. In the operation control method of the variable speed hydraulic machine of the branch waterway system power plant including the hydraulic machine of the method, in the pumping operation of the variable speed hydraulic machine and the hydraulic machine of the arbitrary method, the hydraulic power of the arbitrary method is used. When the machine cuts off the input or makes an emergency stop, the rotation speed of the variable speed hydraulic machine is controlled to a minimum operation speed, and then the water pressure fluctuations in the water channel due to the cut-off of the input or an emergency stop almost disappeared. A method of controlling the operation of a variable speed hydraulic machine of a branch waterway power plant, wherein the rotational speed of the variable speed hydraulic machine is increased to a predetermined rotational speed.
分岐された複数本の分岐管の一つに接続された可変速形
の水力機械と、残りの分岐管に接続された任意の方式の
水力機械とを具備する分岐水路系発電所の可変速形水力
機械の運転制御方法において、上記可変速形水力機械の
揚水運転中に、上記任意方式の水力機械が揚水運転を開
始した時に、上記任意方式の水力機械のプライミング水
圧確立またはガイドベーン開制御の開始に応じて上記可
変速形水力機械の回転速度をほぼ運用最高回転速度に上
昇させることを特徴とする分岐水路系発電所の可変速形
水力機械の運転制御方法。3. A variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one penstock communicating with the upper reservoir, and an arbitrary hydraulic pipe connected to the remaining branch pipes. In the operation control method of the variable speed hydraulic machine of the branch waterway system power plant including the hydraulic machine of the method, when the hydraulic machine of the arbitrary method starts the pumping operation during the pumping operation of the variable speed hydraulic machine. , A branching hydropower plant characterized by increasing the rotation speed of the variable speed hydraulic machine to almost the maximum operating speed in response to establishment of priming water pressure of the arbitrary type hydraulic machine or start of guide vane opening control. Variable speed hydraulic machine operation control method.
分岐された複数本の分岐管の一つに接続された可変速形
の水力機械と、残りの分岐管に接続された任意の方式の
水力機械とを具備する分岐水路系発電所の可変速形水力
機械の運転制御方法において、上記可変速形水力機械と
上記任意方式の水力機械との揚水運転中に、上記任意方
式の水力機械が運転を停止する時に、上記任意方式の水
力機械のガイドベーン閉制御の開始に応じて上記可変速
形水力機械の回転速度をほぼ運用最低回転速度に下降さ
せることを特徴とする分岐水路系発電所の可変速形水力
機械の運転制御方法。4. A variable speed hydraulic machine connected to one of a plurality of branch pipes branched from one penstock connected to the upper reservoir, and an arbitrary hydraulic pipe connected to the remaining branch pipes. In the operation control method of the variable speed hydraulic machine of the branch waterway system power plant including the hydraulic machine of the method, in the pumping operation of the variable speed hydraulic machine and the hydraulic machine of the arbitrary method, the hydraulic power of the arbitrary method is used. A branch waterway system characterized in that, when the machine stops operating, the rotational speed of the variable speed hydraulic machine is lowered to almost the minimum operating speed in response to the start of guide vane closing control of the hydraulic machine of the arbitrary method. Operation control method for variable speed hydraulic machine at power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29651793A JP3493048B2 (en) | 1993-11-26 | 1993-11-26 | Operation control method of variable speed hydraulic machine in branch water system power plant. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29651793A JP3493048B2 (en) | 1993-11-26 | 1993-11-26 | Operation control method of variable speed hydraulic machine in branch water system power plant. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07145775A JPH07145775A (en) | 1995-06-06 |
JP3493048B2 true JP3493048B2 (en) | 2004-02-03 |
Family
ID=17834567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29651793A Expired - Fee Related JP3493048B2 (en) | 1993-11-26 | 1993-11-26 | Operation control method of variable speed hydraulic machine in branch water system power plant. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3493048B2 (en) |
-
1993
- 1993-11-26 JP JP29651793A patent/JP3493048B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07145775A (en) | 1995-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4408452A (en) | Pumping-up hydroelectric power plants | |
KR890004072A (en) | Control System for Variable Speed Pumped Power Plant | |
KR890000264B1 (en) | Method of starting a variable-speed pump turbine or a variable speed pump | |
CN108131306A (en) | A kind of more rotating speed vapour electricity dual drive systems for axial fan | |
US6336322B1 (en) | Method of controlling a pump turbine | |
US6602044B1 (en) | Pump turbine, method of controlling thereof, and method of stopping thereof | |
JP3493048B2 (en) | Operation control method of variable speed hydraulic machine in branch water system power plant. | |
US4391097A (en) | Pumping up hydroelectric power plant | |
CN207960984U (en) | A kind of more rotating speed vapour electricity dual drive systems for axial fan | |
JP4006149B2 (en) | Pump turbine | |
CN219795437U (en) | Three-machine type energy storage pump capable of self-adapting power adjustment | |
JP4223645B2 (en) | Pump turbine | |
JP2796298B2 (en) | Variable speed pumping plant | |
JP4078003B2 (en) | Pump water wheel | |
JPH0144905B2 (en) | ||
JP4269449B2 (en) | Pump turbine | |
JPH06241158A (en) | Variable velocity power generator, variable velocity pumped storage power generator and drive control of them | |
JPS61129478A (en) | Method for controlling water pumping amount of pumping-up electric power station | |
JP2514962B2 (en) | How to operate a hydraulic machine | |
US4207023A (en) | Multistage hydraulic machine | |
CN116591882A (en) | Turbine motor pump group for high-fall heading machine | |
JPH09203372A (en) | Pump turbine guide vane controlling method for branch channel | |
JPS63277870A (en) | Pumping starting method for variable speed pump water turbine of pump | |
JPS6230303B2 (en) | ||
JP2523520B2 (en) | Control device for variable speed turbine generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091114 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |