JPH023205B2 - - Google Patents

Info

Publication number
JPH023205B2
JPH023205B2 JP56145427A JP14542781A JPH023205B2 JP H023205 B2 JPH023205 B2 JP H023205B2 JP 56145427 A JP56145427 A JP 56145427A JP 14542781 A JP14542781 A JP 14542781A JP H023205 B2 JPH023205 B2 JP H023205B2
Authority
JP
Japan
Prior art keywords
water level
surge tank
guide vane
water
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56145427A
Other languages
Japanese (ja)
Other versions
JPS5848108A (en
Inventor
Susumu Sumikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14542781A priority Critical patent/JPS5848108A/en
Publication of JPS5848108A publication Critical patent/JPS5848108A/en
Publication of JPH023205B2 publication Critical patent/JPH023205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は水力発電所上流に設けられた調整池の
水位およびサージタンクの水位に応じて水車のガ
イドベーンを制御する水力発電プラントの水位調
整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water level adjustment device for a hydroelectric power plant that controls guide vanes of a water turbine according to the water level of a regulating pond and a surge tank provided upstream of the hydroelectric power plant.

一般に水路式発電プラントにおいては、発電所
上流の水は、導水路から調整池に貯えられ、そこ
から圧力導水路、サージタンク、圧力鉄管を介し
て水車に供給され、水車発電機を回転したのち、
下池へと放水されるが、このときの放水量即ち水
車流量を調整池水位およびサージタンク水位に応
じて調節するため、水位調整装置が設けられる。
Generally, in a conduit-type power plant, water upstream of the power plant is stored in a regulating pond from the headrace, and from there is supplied to the water turbine via the pressure headrace, surge tank, and pressure iron pipe, and after rotating the water turbine generator. ,
Water is discharged to the lower pond, and in order to adjust the amount of water discharged at this time, that is, the flow rate of the water wheel, according to the water level of the regulating pond and the surge tank water level, a water level adjustment device is provided.

このような水路式発電プラントにおいて、従
来、そのサージタンク水位はそれ程厳密に調整す
る必要がなかつたため、水位調整装置も調整池水
位を調整することを主眼に構成され、サージタン
ク水位の調整については、あまり考慮が払われて
いなかつた。
Conventionally, in such conduit-type power plants, the surge tank water level did not need to be adjusted so strictly, so the water level adjustment device was also configured with the main purpose of adjusting the water level in the regulation pond, and the surge tank water level was not adjusted. , not much consideration was given to it.

ところが、最近は、水資源の有効利用のため、
発電所上流の水は、単に発電のためばかりでな
く、農業用水あるいは飲料水等多目的に利用さ
れ、調整池から長い圧力導水路を敷設し、サージ
タンクを田畑や民間近くに設置してそこから生活
用水を取水することが行なわれるようになつてき
た。
However, recently, due to the effective use of water resources,
The water upstream of the power plant is used not only for power generation, but also for multiple purposes such as agricultural water and drinking water. A long pressure conduit is laid from the regulating pond, and a surge tank is installed near the fields or private sector. It has become common practice to extract water for domestic use.

このため、従来の水位調整装置をそのまま最近
の水路式発電プラントに適用しようとすると、流
量外乱発生時、サージタンク水位に過度の上昇、
下降が生じる結果、サージタンクより瞬時に大量
の水が流出したり、取水ができなくなつたりし、
周囲の生活環境に悪影響を及ぼす欠点があつた。
For this reason, if a conventional water level adjustment device is applied to a recent waterway power generation plant, the surge tank water level will rise excessively when a flow disturbance occurs.
As a result of the downward movement, a large amount of water may instantly flow out of the surge tank, or water may not be able to be taken in.
There were drawbacks that had a negative impact on the surrounding living environment.

本発明は、圧力導水路が長く、それ程容積の大
きくないサージタンクを有する水路式発電プラン
トにおいて、流量外乱発生時、サージタンク水位
を過度に上昇、下降させることなく、安全に運転
することができる水位調整装置を提供することを
目的とする。
The present invention enables safe operation of a conduit power generation plant having a long pressure conduit and a not-so-large-volume surge tank without excessively raising or lowering the surge tank water level when a flow disturbance occurs. The purpose is to provide a water level adjustment device.

以下、本発明を図の実施例を参照して説明す
る。
The present invention will be explained below with reference to the embodiments shown in the drawings.

第1図は本発明の一実施例に係る水路式発電プ
ラントの概念図を示したもので、1は導水路、2
は調整池、3は圧力導水路、4はサージタンク、
5は圧力鉄管、6はガイドベーン、7は水車、8
は発電機、9は下池、10は水位調整装置
(WLR)である。
FIG. 1 shows a conceptual diagram of a conduit-type power generation plant according to an embodiment of the present invention, where 1 is a headrace, 2 is
is a regulating reservoir, 3 is a pressure conduit, 4 is a surge tank,
5 is a pressure iron pipe, 6 is a guide vane, 7 is a water wheel, 8
is a generator, 9 is a lower pond, and 10 is a water level regulator (WLR).

この水位調整装置10は調整池2の水位HT
サージタンク4の水位HS、ガイドベーン6の開
度ηを入力として、後述するように所定の演算処
理を行ない、その出力でモータ11を駆動し、ガ
イドベーン駆動機構12を介してガイドベーン6
の開度を調整するように構成されている。
This water level adjusting device 10 has a water level H T of the regulating pond 2,
Using the water level H S of the surge tank 4 and the opening degree η of the guide vane 6 as input, predetermined calculation processing is performed as described later, and the output drives the motor 11 to drive the guide vane 6 via the guide vane drive mechanism 12.
It is configured to adjust the opening degree of.

尚、図におけるQ1は調整池2への流入量、Q2
は調整池2からの流出量、Q3はサージタンク4
からの流出量即ち水車流量を表わす。また、サー
ジタンク4には、図示せぬ圧力鉄管を介して更に
幾つかの水車発電機も接続されているが、本実施
例ではこれらの水車発電機は水位調整機能は有し
ないものとする。従つて、以下の記載においては
図示水車発電機を水調号機、図示せぬ水車発電機
を非水調号機と呼んで区別する。
In addition, Q 1 in the figure is the inflow amount to the regulating pond 2, and Q 2
is the outflow amount from regulating pond 2, Q 3 is surge tank 4
It represents the amount of outflow from the turbine, that is, the flow rate of the water turbine. Further, several water turbine generators are also connected to the surge tank 4 via pressure iron pipes (not shown), but in this embodiment, these water turbine generators do not have a water level adjustment function. Therefore, in the following description, the illustrated water turbine generator will be referred to as a water controller, and the unillustrated water turbine generator will be referred to as a non-water controller.

第2図はその水位調整装置10の内部構成を示
すと共に、それ以外の第1図における水路系、水
車などの物理系をブロツクダイヤグラムにて示し
たもので、水位調整装置10は加算器A1,A2
ゲイン回路C1、不完全微分回路C2、低域補正回
路C3、高域補正回路C4、増指令出力回路C5、減
指令出力回路C6、下限検出回路C7、上限検出回
路C8、接点S1,S2より構成されている。尚、図
中Hrefは基準水位、HRは後述する水位垂下率、
ηFはガイドベーン開度バイアス、TDは不完全微
分時定数、KDは不完全微分ゲイン、HHはサージ
タンク上限水位、HLはサージタンク下限水位、
Sはラプラス演算子を示す。
FIG. 2 shows the internal structure of the water level adjustment device 10, and also shows the other physical systems such as the waterway system and water wheel in FIG. 1 in a block diagram. ,A 2 ,
Gain circuit C 1 , incomplete differentiation circuit C 2 , low frequency correction circuit C 3 , high frequency correction circuit C 4 , increase command output circuit C 5 , decrease command output circuit C 6 , lower limit detection circuit C 7 , upper limit detection circuit C 8 , and consists of contacts S 1 and S 2 . In addition, in the figure, H ref is the reference water level, HR is the water level drooping rate, which will be described later.
η F is the guide vane opening bias, T D is the incomplete differential time constant, K D is the incomplete differential gain, H H is the surge tank upper limit water level, H L is the surge tank lower limit water level,
S represents a Laplace operator.

一方、水位調整装置10以外の物理系におい
て、BOはモータ11、ガイドベーン駆動機構1
2、ガイドベーン6から成る駆動部の総合伝達関
数を表わす。
On the other hand, in the physical system other than the water level adjustment device 10, B O is the motor 11, the guide vane drive mechanism 1
2 represents the overall transfer function of the drive unit consisting of the guide vane 6.

B1,B2は調整池2への流入量Q1と圧力導水路
3の流量Q2との差により、積分時定数THTで、調
整池2の水位HTが変化することを示す調整池2
の伝達関数要素である。
B 1 and B 2 are adjustments indicating that the water level H T in the regulating pond 2 changes with the integral time constant T HT due to the difference between the inflow Q 1 to the regulating reservoir 2 and the flow rate Q 2 in the pressure headrace 3. Pond 2
is the transfer function element of

B3,B4は圧力導水路3の流量Q2とその水車流
量Q3との差により、積分時定数THSでサージタン
ク4の水位信号HSが変化することを示すサージ
タンク4の伝達関数要素である。
B 3 and B 4 are transmission signals of the surge tank 4 indicating that the water level signal H S of the surge tank 4 changes with an integral time constant T HS due to the difference between the flow rate Q 2 of the pressure headrace 3 and its turbine flow rate Q 3 It is a functional element.

B5,B6は調整池2の水位HTとサージタンク4
の水位HSとの差に応じて、ゲイン1/R、時定数 L/Rの1次遅れで圧力導水路3の流量Q2が変化す ることを示す圧力導水路3の伝達関数要素であ
る。
B 5 and B 6 are the water level H T of regulating reservoir 2 and surge tank 4
This is a transfer function element of the pressure conduit 3 that indicates that the flow rate Q2 of the pressure conduit 3 changes with a gain of 1/R and a first-order lag of the time constant L/R according to the difference from the water level H S of .

B7は水車7のガイドベーン6の開度ηに応じ
て、ゲインQR、時定数TGの1次遅れで水車流量
Q3が変化することを示す水車7の伝達関数要素
である。ここで、ゲインQRは水車定格流量を示
すものとする。
B 7 is the flow rate of the water turbine according to the opening degree η of the guide vane 6 of the water turbine 7, with the gain Q R and the first-order lag of the time constant T G.
This is a transfer function element of the water turbine 7 indicating that Q 3 changes. Here, the gain Q R indicates the rated flow rate of the water turbine.

図の構成で、サージタンク水位が変動していな
い即ち安定した状態にある場合は、回路C2,C3
C4,C7,C8は不動作で、ガイドベーン6は調整
池水位HTに応じて制御され、第3図に示す関係
で水車流量Q3が調整される。
In the configuration shown in the figure, if the surge tank water level is not fluctuating, that is, in a stable state, circuits C 2 , C 3 ,
C 4 , C 7 , and C 8 are inactive, and the guide vane 6 is controlled according to the regulating pond water level H T , and the water turbine flow rate Q 3 is adjusted according to the relationship shown in FIG. 3.

即ち、調整池水位HTは加算器A1で基準水位
Hrefと比較され、その偏差出力はゲイン回路C1
水位垂下率HRの逆数1/HRが乗算され、加算器A2 に加えられる。加算器A2ではそれにガイドベー
ン開度バイアスηFが加算され、実ベーン開度ηと
偏差が算出される。算出された偏差即ち操作信号
はその極性に応じて増指令出力回路C5あるいは
減指令出力回路C6より閉じられている接点S1
るいはS2を介して総合伝達関数B0へ出力され、
ガイドベーン開度ηが調節される。
In other words, the regulating pond water level H T is set to the reference water level by adder A 1 .
It is compared with H ref , and its deviation output is multiplied by the reciprocal 1/HR of the water level droop rate HR in a gain circuit C 1 and added to an adder A 2 . The adder A 2 adds the guide vane opening bias η F to this to calculate the actual vane opening η and the deviation. The calculated deviation, that is, the operation signal is output from the increase command output circuit C 5 or the decrease command output circuit C 6 to the overall transfer function B 0 via the closed contact S 1 or S 2 depending on its polarity,
The guide vane opening degree η is adjusted.

この結果、調整池水位HTが基準水位Hrefにあ
れば、水車流量Q3は定格流量QRとなり、調整池
水位TTが基準水位Hrefより水位垂下率HRだけ低
い水位にあれば、ガイドベーン6は全閉され、水
車流量Q3は0に調節される。
As a result, if the regulating pond water level H T is at the reference water level H ref , the turbine flow rate Q 3 becomes the rated flow Q R , and if the regulating pond water level T T is lower than the reference water level H ref by the water level droop rate HR, The guide vane 6 is fully closed and the water turbine flow rate Q 3 is adjusted to zero.

一方、サージタンク4に接続される非水調号機
が起動、停止、出力変化したり、水調号機を除外
から使用とした直後の流量外乱発生時には、サー
ジタンク水位HSは大幅に変動することとなる。
このときの調整池水位HTとサージタンク水位HS
との差に基づく調整池2とサージタンク4間の水
のやりとりの減衰を早め、調整池水位HT及びサ
ージタンク水位HSの安定化を計るのが不完全微
分回路C2の機能である。
On the other hand, when a non-water controller connected to the surge tank 4 starts, stops, or changes its output, or when a flow rate disturbance occurs immediately after the water controller is used from exclusion, the surge tank water level H S may fluctuate significantly. becomes.
Regulation pond water level H T and surge tank water level H S at this time
The function of the incomplete differential circuit C2 is to accelerate the attenuation of the water exchange between the regulating reservoir 2 and the surge tank 4 based on the difference between the two, and to stabilize the regulating reservoir water level H T and the surge tank water level H S. .

即ち、流量外乱によりサージタンク水位HS
低下方向の場合には低下率に比例した負極性の信
号を加算器A2へ入力してガイドベーン6を閉方
向に動作させて、水車流量Q3を減少させてサー
ジタンク水位HSの低下を抑制し、サージタンク
水位HSを一定化させる。これにより、調整池水
位HTも安定化し、後は調整池流入量Q1の変化即
ち調整池水位HTの変化に応じて、サージタンク
水位HSの安定化を計りつつ水車流量Q3を調整で
きることになる。
That is, when the surge tank water level H S is decreasing due to a flow rate disturbance, a negative polarity signal proportional to the rate of decrease is input to the adder A 2 to operate the guide vane 6 in the closing direction, thereby reducing the turbine flow rate Q 3 , thereby suppressing the drop in the surge tank water level H S and keeping the surge tank water level H S constant. As a result, the water level H T in the regulating pond is also stabilized, and the turbine flow Q 3 is then adjusted according to the change in the inflow quantity Q 1 of the regulating pond, that is, the change in the water level H T in the regulating pond, while stabilizing the water level H S in the surge tank. This can be adjusted.

また、流量外乱により、サージタンク水位HS
が上昇した場合も同様な動作が行なわれる。
In addition, due to flow disturbance, the surge tank water level H S
A similar operation is performed when the value increases.

しかし、この不完全微分回路C2の不完全微分
時定数TD、不完全微分ゲインKDの値は、微小の
流量変化による調整池2とサージタンク4との間
の水のやりとりに抑制に最適なように設定されて
いる。このため、流量外乱発生時には、水特有の
慣性により、サージタンク水位HSが上下限値HH
HLを大きく逸脱しようとする。これを防止する
のが、回路C3,C4,C7,C8の機能である。
However, the values of the incomplete differential time constant T D and the incomplete differential gain K D of the incomplete differential circuit C 2 are limited to suppress the exchange of water between the regulating pond 2 and the surge tank 4 due to minute changes in flow rate. It is set optimally. Therefore, when a flow disturbance occurs, the surge tank water level H S reaches the upper and lower limits H H , due to the inertia peculiar to water.
Attempting to deviate significantly from H L. The function of circuits C 3 , C 4 , C 7 and C 8 is to prevent this.

即ち、流量外乱によりサージタンク水位HS
下限水位HLより低下すれば、直ちに下限検出回
路C7が動作し、その接点S1を開きモータ11へ
のベーン開度指令をブロツクする。これと同時
に、低域補正回路C3はHS−HLに比例したガイド
ベーン閉信号を出力し加算器A2に加える。この
ガイドベーン閉信号が減指令出力回路C3、接点
S2を介してモータ11に加わる結果、ガイドベー
ン6は強制的に閉じる方向に動作させられる。こ
れにより、サージタンク水位HSの回復を早める
と共に、サージタンク水位HSの過度の低下を防
止することができる。
That is, when the surge tank water level H S falls below the lower limit water level H L due to a flow rate disturbance, the lower limit detection circuit C 7 immediately operates, opens its contact S 1 and blocks the vane opening command to the motor 11 . At the same time, the low frequency correction circuit C3 outputs a guide vane closing signal proportional to H S - H L and adds it to the adder A2 . This guide vane closing signal decreases command output circuit C3 , contact
As a result of the application to the motor 11 via S 2 , the guide vane 6 is forced to move in the closing direction. This speeds up the recovery of the surge tank water level H S and prevents the surge tank water level H S from decreasing excessively.

また、流量外乱により、サージタンク水位HS
が上限水位HHを大きく逸脱しようとする場合も
同様な動作が行なわれる。
In addition, due to flow disturbance, the surge tank water level H S
A similar operation is performed when water is about to deviate significantly from the upper limit water level H H.

次に、以上の水位調整装置10の動作を第4図
のタイムチヤートを参照して具体的に説明する。
Next, the operation of the water level adjusting device 10 described above will be specifically explained with reference to the time chart of FIG. 4.

図において、時刻T0以前、調整池水位HT
Href−HRより僅か少し高い水位にあり、水車流
量Q3はほぼ0の状態にあるものとする。一方、
調整池2への流入量Q1は時刻T0から図示せぬ上
流のゲート開操作時により、徐々に増加させ、最
終的に2×QRまで増加させたものとする。更に、
その途中における時刻T2で非水調号機を起動さ
せ、その水車流量QXが時刻T4で定格流量QRに達
したものとする。
In the figure, before time T 0 , the water level H T of the regulating pond is
It is assumed that the water level is slightly higher than H ref −HR, and the water turbine flow rate Q 3 is approximately 0. on the other hand,
It is assumed that the amount of inflow Q 1 into the regulating reservoir 2 is gradually increased from time T 0 by opening an upstream gate (not shown), and is finally increased to 2×Q R . Furthermore,
It is assumed that the non-water controller is started at time T 2 on the way, and its water turbine flow rate Q X reaches the rated flow rate Q R at time T 4 .

以上の仮定の下に調整池水位HT、サージタン
ク水位HS、水車流量Q3の変化を追うと、時刻T0
以前の状態においてはサージタンク水位HS
Href−HRより圧力導水路3の損失分だけ低い水
位にある。
Under the above assumptions, if we follow the changes in the regulating pond water level H T , surge tank water level H S , and turbine flow rate Q 3 , at time T 0
In the previous state, the surge tank water level H S was
The water level is lower than H ref −HR by the amount of loss in pressure conduit 3.

時刻T0〜T1にかけて、調整池水位HTが徐々に
上昇するに従つて、水調号機の水車流量Q3は増
加させられる。すると、特に圧力導水路3の長い
場合には、調整池水位HTの上昇によるサージタ
ンク4への流入量Q2よりもサージタンク4から
の流出量Q3の方が時間的に早く変化するため、
サージタンク水位HSは低下方向となる。この低
下方向を抑制するよう不完全微分回路C2の出力
が変化するが、前述したように過渡的なサージタ
ンク水位HSの低下はこの不完全微分回路C2では
抑制しきれない。従つて、時刻T1からサージタ
ンク水位HSは下限水位HLを下まわることになる
が、サージタンク水位HSが下限水位HL以下にな
ると、直ちに下限検出回路C7が動作し、接点S1
を用いてモータ11への増指令をブロツクする。
これと同時に、低域補正回路C3よりHS−HLに比
例したガイドベーン閉信号が出力し、この信号が
加算器A2から減指令出力回路C6、接点S2を介し
てモータ11に加わり、水車流量Q3は減少し始
める。この結果、サージタンク水位HSの回復が
早まると共に、その間、サージタンク水位HS
下限水位HLより僅か下まわつた水位に止まる。
As the regulating pond water level H T gradually rises from time T 0 to T 1 , the water turbine flow rate Q 3 of the water controller is increased. Then, especially when the pressure conduit 3 is long, the outflow amount Q 3 from the surge tank 4 changes faster than the inflow amount Q 2 to the surge tank 4 due to the increase in the water level H T of the regulating pond. For,
The surge tank water level H S is decreasing. The output of the incomplete differentiator C 2 changes to suppress this downward direction, but as described above, the transient decrease in the surge tank water level H S cannot be suppressed by the incomplete differentiator C 2 . Therefore, the surge tank water level H S will fall below the lower limit water level H L from time T 1 , but as soon as the surge tank water level H S falls below the lower limit water level H L , the lower limit detection circuit C 7 will operate, and the contact will close. S 1
is used to block the increase command to the motor 11.
At the same time, a guide vane closing signal proportional to H S -H L is output from the low frequency correction circuit C 3 , and this signal is transmitted from the adder A 2 to the reduction command output circuit C 6 and the motor 11 via the contact S 2 . , the turbine flow rate Q 3 begins to decrease. As a result, the surge tank water level H S recovers quickly, and during this period, the surge tank water level H S remains at a level slightly below the lower limit water level H L.

サージタンク水位HSが時刻T′1で下限位置HL
で回復すると、低域補正回路C3の出力は0とな
り、その時の水調号機の水車流量Q3はT1時刻の
ものと同じになる。その後、時刻T2において、
調整池水位HTが基準水位Href近くまで上昇した
とき、非水調号機が起動し、水車流量QXを流し
始めるが、サージタンク水位HSは水特有の慣性
により、上昇を継続し、やがて時刻T3でサージ
タンク水位HSがHL+αまで回復すると、下限検
出回路C7が不動作となり、再び接点S1が閉じて、
第3図に示したように、調整池水位HTに基づく
水車流量となるよう水調号機流量Q3が調整され
る。
When the surge tank water level H S recovers to the lower limit position H L at time T' 1 , the output of the low-frequency correction circuit C 3 becomes 0, and the water turbine flow rate Q 3 of the water controller at that time is the same as that at time T 1 . Become. Then, at time T 2 ,
When the water level H T in the regulating pond rises to near the reference water level H ref , the non-water regulator is started and the turbine flow rate Q X begins to flow, but the surge tank water level H S continues to rise due to the inertia unique to water. Eventually, at time T 3 , when the surge tank water level H S recovers to H L +α, the lower limit detection circuit C 7 becomes inoperable, and the contact S 1 closes again.
As shown in Fig. 3, the water controller flow rate Q3 is adjusted so that the water turbine flow rate is based on the regulating pond water level H T.

一方、非水調号機流量QXが増加し、時刻T4
定格流量QRに達するところには、水特有の慣性
により再びサージタンク水位HSが減少し始め、
時刻T5で再び下限水位HL以下となる。しかし、
このときにも水位調整装置10は時刻T1〜T′1
場合と同様に動作し、非水調号機流量QXの急激
な変化にも拘わらず、低域補正回路C3による積
極的なガイドベーン閉制御により、サージタンク
水位HSの過度の低下を防ぐと共にサージタンク
水位HSの許容値内への回復を早める。
On the other hand, when the non- water controller flow rate Q
At time T 5 , the water level becomes lower than the lower limit water level H L again. but,
At this time, the water level adjustment device 10 operates in the same manner as in the case of time T 1 to T' 1 , and despite the sudden change in the non-water controller flow rate Q Guide vane closing control prevents the surge tank water level H S from dropping excessively and speeds up the recovery of the surge tank water level H S to within the allowable value.

このようにして、時刻T5から従来より短い時
間経過した時刻T′5において、サージタンク水位
HSは下限水位HL以上となり低域補正回路C3出力
は0となる一方、時刻T6までは下限検出回路C7
が動作して水車流量Q3を一定に保ち、サージタ
ンク水位HSの上昇を促す。やがて、サージタン
ク水位HSがHL+αまで回復する時刻T6におい
て、下限検出回路C7は不動作となり、上述同様、
水車流量Q3は定格流量QRに向つて増加し、時刻
T7にて水車流量Q3は定格流量QRに達する。
In this way, the surge tank water level is adjusted at time T′ 5 , which is a shorter time than before from time T 5 .
H S becomes higher than the lower limit water level H L and the output of the low frequency correction circuit C 3 becomes 0, while the output of the lower limit detection circuit C 7 becomes 0 until time T 6 .
operates to keep the turbine flow rate Q 3 constant and encourage the surge tank water level H S to rise. Eventually, at time T 6 when the surge tank water level H S recovers to H L +α, the lower limit detection circuit C 7 becomes inactive, and as described above,
The turbine flow rate Q 3 increases toward the rated flow rate Q R , and the time
At T 7 , the turbine flow rate Q 3 reaches the rated flow rate Q R.

時刻T7以降は、調整池2への流量Q1は2QR水調
号機の水車流量Q3、非水調号機の水車流量QX
共にQR、調整池水位HTはHref、サージタンク水
位HSは流量2QRに基づく損失落差分だけ、調整池
水位HTより低いところで安定することになる。
After time T 7 , the flow rate Q 1 to the regulating pond 2 is Q 3 , the water turbine flow rate Q 3 of the non-water regulating machine is Q R , the regulating pond water level H T is H ref , and the surge The tank water level H S becomes stable at a level lower than the regulating pond water level H T by the difference in head loss based on the flow rate 2Q R.

以上は、サージタンク水位HSが低下方向の場
合について説明したが、上昇方向の場合も同様に
して、高域補正回路C4の動作により、サージタ
ンク水位HSが上限水位HH以上になると、HS−HH
に比例するガイドベーン開指令を制御モータ11
へ、サージタンク水位HSの過度の上昇を防止す
ると共にサージタンク水位HSの回復を早める。
The above has been explained for the case where the surge tank water level H S is in the decreasing direction, but in the same way when the surge tank water level H S is in the rising direction, when the surge tank water level H S becomes equal to or higher than the upper limit water level H H due to the operation of the high frequency correction circuit C 4 . , H S −H H
The motor 11 controls the guide vane opening command proportional to
To prevent the surge tank water level H S from rising excessively and to speed up the recovery of the surge tank water level H S.

従つて、流量外乱発生時、サージタンク水位
HSは上限水位を大きく逸脱することがなく、そ
の逸脱量を最小限に抑えることができると共に、
制限値内への復帰時間を大幅に短縮することがで
きるようになる。
Therefore, when a flow disturbance occurs, the surge tank water level
H S does not deviate significantly from the upper limit water level, and the amount of deviation can be minimized.
It becomes possible to significantly shorten the time it takes to return to within the limit value.

この結果、サージタンク周辺の生活区域に生活
用水を最適状態に供給することができ、水資源を
より一層有効に活用することが可能となる。
As a result, domestic water can be optimally supplied to the living area around the surge tank, making it possible to utilize water resources even more effectively.

これと同時に、発電プラントにおいては、上下
限水位をサージタンクの許容限界近くまで広げて
設定することができ、上下限幅HH−HLの値を大
きくとることができるようになる。この結果、給
電上必要となる水車発電機の起動、停止を急速に
しかも高い頻度で繰り返すことが可能となる。ま
た、他号機の出力変動幅を大きくし、起動、停止
頻度を多くとることができ、系統運用にも大きく
貢献することができる。更には、サージタンク水
位HSの過度の上昇、下降が防止できる結果、上
下振幅を大きくしたにも拘わらず、溢水、渇水の
危険つまりキヤビテーシヨン等による土木、水車
発電機等の破壊のおそれもなく、発電プラントを
完全に運用することができるようになる。
At the same time, in the power generation plant, the upper and lower limit water levels can be set close to the permissible limit of the surge tank, and the value of the upper and lower limit width H H - H L can be set to a large value. As a result, it becomes possible to rapidly and frequently repeat starting and stopping of the water turbine generator, which is necessary for power supply. In addition, it is possible to widen the output fluctuation range of other units, increase the frequency of startup and shutdown, and greatly contribute to system operation. Furthermore, as the surge tank water level H S can be prevented from rising or falling excessively, there is no risk of overflow or drought, or damage to civil engineering works, water turbine generators, etc. due to cavitation, etc., even though the vertical amplitude is increased. , the power plant will be fully operational.

尚、上記実施例における低域補正回路C3、高
域補正回路C4はまとめて1つの不感帯回路で実
現することもできる。また、低域補正回路C3
高域補正回路C4を省略し、下限検出回路C7、上
限検出回路C8のON出力で一定の閉信号バイア
ス、開信号バイアスを加算器A2に加えるように
しても良い。
Note that the low-frequency correction circuit C 3 and the high-frequency correction circuit C 4 in the above embodiment can also be realized together as a single dead band circuit. In addition, the low frequency correction circuit C3 ,
The high frequency correction circuit C 4 may be omitted, and constant close signal bias and open signal bias may be applied to the adder A 2 by the ON outputs of the lower limit detection circuit C 7 and the upper limit detection circuit C 8 .

以上のように本発明によれば、流量外乱発生
時、サージタンクの水位を過度に上昇、下降させ
ることなく、水資源の有効利用を計り、水路式発
電プラントを安全に運転することのできる水位調
整装置が得られる。
As described above, according to the present invention, when a flow disturbance occurs, the water level in the surge tank can be effectively used without excessively raising or lowering the water level, and the water level can be used to safely operate a canal power plant. A regulating device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る水路式発電プ
ラントの概念構成図、第2図はその制御系のブロ
ツクダイヤグラム図、第3図はその調整池の水位
管理図、第4図はその動作を説明するためのタイ
ムチヤートである。 1…導水管、2…調整池、3…圧力導水路、4
…サージタンク、5…圧力鉄管、6…ガイドベー
ン、7…水車、8…発電機、9…下池、10…水
位調整装置、11…制御モータ、12…ガイドベ
ーン駆動機構、A1,A2…加算器、B0…総合伝達
関数、B1,B2…調整池の伝達関数要素、B3,B4
…サージタンクの伝達関数要素、B5,B6…圧力
導水路の伝達関数要素、B7…水車の伝達関数要
素、C1…ゲイン回路、C2…不完全微分回路、C3
…低域補正回路、C4…高域補正回路、C5…増指
令出力回路、C6…減指令出力回路、C7…下限検
出回路、C8…上限検出回路、S…ラプラス演算
子、S1,S2…接点、Q1…流入量、Q2…流出量、
Q3,QX…水車流量、HT…調整池水位、HS…サー
ジタンク水位、η…ガイドベーン開度、ηF…ガイ
ドベーン開度バイアス、Href…基準水位、HR…
水位垂下率、TD…不完全微分時定数、KD…不完
全微分ゲイン、HH…サージタンク上限水位、HL
…サージタンク下限水位、THT…積分時定数、QR
…ゲイン(水車定格流量)、T0〜T7…時刻。
Fig. 1 is a conceptual configuration diagram of a waterway power generation plant according to an embodiment of the present invention, Fig. 2 is a block diagram of its control system, Fig. 3 is a water level control diagram of its regulating pond, and Fig. 4 is its control system. This is a time chart to explain the operation. 1... Water conduit, 2... Regulating pond, 3... Pressure conduit, 4
... surge tank, 5 ... pressure iron pipe, 6 ... guide vane, 7 ... water turbine, 8 ... generator, 9 ... lower pond, 10 ... water level adjustment device, 11 ... control motor, 12 ... guide vane drive mechanism, A 1 , A 2 ... Adder, B 0 ... Overall transfer function, B 1 , B 2 ... Transfer function element of regulating pond, B 3 , B 4
… Transfer function element of surge tank, B 5 , B 6 … Transfer function element of pressure conduit, B 7 … Transfer function element of water turbine, C 1 … Gain circuit, C 2 … Incomplete differential circuit, C 3
...Low range correction circuit, C4 ...High range correction circuit, C5 ...Increase command output circuit, C6 ...Decrease command output circuit, C7 ...Lower limit detection circuit, C8 ...Upper limit detection circuit, S...Laplace operator, S 1 , S 2 ... Contact, Q 1 ... Inflow amount, Q 2 ... Outflow amount,
Q 3 , Q _ _
Water level droop rate, T D ... Imperfect differential time constant, K D ... Imperfect differential gain, H H ... Surge tank upper limit water level, H L
… Surge tank lower limit water level, T HT … Integral time constant, Q R
…gain (water turbine rated flow rate), T 0 to T 7 … time.

Claims (1)

【特許請求の範囲】[Claims] 1 調整池の実水位と基準水位の差に応じた水車
のガイドベーン開度信号と、調節池から水車に至
る間の水路系に設けられたサージタンクの水位信
号を不完全微分した信号と、水車のガイドベーン
開度バイアス信号と、ガイドベーン実開度帰還信
号とを加算する加算手段を備え、この加算手段か
ら出力される増減信号に応じてガイドベーン開度
を制御する水力発電プラントの水位調整装置にお
いて、サージタンクの水位が下限値以下となつた
とき、その水位と下限値との差に比例するガイド
ベーンを閉じる方向の信号を前記加算手段に加え
る低域補正手段と、サージタンクの水位が上限値
以上となつたとき、その水位と上限値との差に比
例するガイドベーンを開く方向の信号を前記加算
手段に加える高域補正手段と、サージタンクの水
位が下限値以下となつたとき、前記加算手段から
出力されるガイドベーン開方向増信号の出力をブ
ロツクし、その水位が下限値を所定値上まわつた
とき、そのブロツクを解く手段と、サージタンク
の水位が上限値以上となつたとき、前記加算手段
から出力されるガイドベーン閉方向減信号の出力
をブロツクし、その水位が上限値を所定量下まわ
つたとき、そのブロツクを解く手段とを備えるこ
とを特徴とする水位調整装置。
1. A guide vane opening signal of the water turbine according to the difference between the actual water level of the regulating pond and the reference water level, and a signal obtained by incompletely differentiating the water level signal of the surge tank installed in the waterway system between the regulating pond and the water turbine. Water level of a hydroelectric power plant that is equipped with an addition means for adding a guide vane opening bias signal of a water turbine and an actual guide vane opening feedback signal, and controls the guide vane opening according to an increase/decrease signal output from the addition means. In the adjusting device, when the water level of the surge tank becomes equal to or lower than the lower limit value, a low-frequency correction means applies to the adding means a signal in a direction to close the guide vane, which is proportional to the difference between the water level and the lower limit value; a high-frequency correction means that applies, to the adding means, a signal in the direction of opening the guide vane that is proportional to the difference between the water level and the upper limit when the water level exceeds the upper limit; means for blocking the output of the guide vane opening direction increase signal outputted from the addition means and for unblocking the output when the water level exceeds the lower limit value by a predetermined value; The invention is characterized by comprising means for blocking the output of the guide vane closing direction reduction signal outputted from the adding means, and unblocking when the water level falls below the upper limit value by a predetermined amount. Water level adjustment device.
JP14542781A 1981-09-17 1981-09-17 Water level regulator Granted JPS5848108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14542781A JPS5848108A (en) 1981-09-17 1981-09-17 Water level regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14542781A JPS5848108A (en) 1981-09-17 1981-09-17 Water level regulator

Publications (2)

Publication Number Publication Date
JPS5848108A JPS5848108A (en) 1983-03-22
JPH023205B2 true JPH023205B2 (en) 1990-01-22

Family

ID=15384990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14542781A Granted JPS5848108A (en) 1981-09-17 1981-09-17 Water level regulator

Country Status (1)

Country Link
JP (1) JPS5848108A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985519A (en) * 1972-12-22 1974-08-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985519A (en) * 1972-12-22 1974-08-16

Also Published As

Publication number Publication date
JPS5848108A (en) 1983-03-22

Similar Documents

Publication Publication Date Title
CN104595885A (en) Control method of minimum-flow recirculation valve of water supply pump of power station boiler
JPH023205B2 (en)
JPS585409A (en) Method of controlling regulating valve for pressure- change operation
JPS5946373A (en) Controller for speed of water wheel
JPS6153559B2 (en)
JP2000161194A (en) Speed governing control device for hydraulic turbine or reversible pump-turbine
JPH03267512A (en) Steam turbine controller
JP3670780B2 (en) Pump flow control method
JP3018767B2 (en) Water level adjustment device
JP2695813B2 (en) Operation control device of variable speed hydraulic machine
JPS6239657B2 (en)
JPH036753B2 (en)
JPH03241206A (en) Water supplying control device
JPH0119172B2 (en)
JPS6329082B2 (en)
JP2752075B2 (en) Control devices for hydraulic machines
JP2004044944A (en) Device for controlling recirculation flow rate of feed-water pump
JPS60119382A (en) Operation of multinozzle type pelton water wheel
JPH0241720B2 (en)
JPH0393498A (en) Control of speed of water wheel
JPS5857061B2 (en) Renzokuyousuihatsuden System Nounten Seigiyohouhou
JPS59145309A (en) Afc controller of turbine bypass thermal power plant
JPH01269093A (en) Feed water controller for nuclear reactor
JPS58198602A (en) Controller for feed pump of boiler
JPS6044482B2 (en) Turbine control device