JPS63276273A - Silicon carbide semiconductor element - Google Patents

Silicon carbide semiconductor element

Info

Publication number
JPS63276273A
JPS63276273A JP11315287A JP11315287A JPS63276273A JP S63276273 A JPS63276273 A JP S63276273A JP 11315287 A JP11315287 A JP 11315287A JP 11315287 A JP11315287 A JP 11315287A JP S63276273 A JPS63276273 A JP S63276273A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
substrate
silicon
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11315287A
Other languages
Japanese (ja)
Other versions
JP2539427B2 (en
Inventor
Masaki Furukawa
勝紀 古川
Akira Suzuki
彰 鈴木
Mitsuhiro Shigeta
光浩 繁田
Yoshihisa Fujii
藤井 良久
Atsuko Uemoto
植本 敦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62113152A priority Critical patent/JP2539427B2/en
Publication of JPS63276273A publication Critical patent/JPS63276273A/en
Application granted granted Critical
Publication of JP2539427B2 publication Critical patent/JP2539427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a substantially improved silicon carbide semiconductor element, by forming the element from a single-crystal silicon carbide film of good quality having internal stress being decreased. CONSTITUTION:An aluminum mask 16 is formed selectively on the crystal growing surface of a single-crystal silicon substrate 15 used as a supporting substrate having a crystal face (111) on which crystals are to be grown. The surface of the substrate 15 not covered with the mask 16 is etched by the RIE process to form recesses. The mask is removed to provide a substrate 14 for growing single crystals of silicon carbide. After silicon carbide semiconductor films 17 and 18 are formed by the CVD process. Al for providing source and drain electrodes 119 and 20 and Au for providing a gate Schottky electrode 21 are deposited by vacuum vapor deposition. In this manner, a plurality of field effect transistors of Schottky junction type can be juxtaposed on the flat bottoms of the recesses as well as on the flat tops of the projected sections.

Description

【発明の詳細な説明】 く技術分野〉 本発明は炭化珪素単結晶の成長用基板として独特の珪素
単結晶基板を用いて得られた炭化珪素単結晶を利用して
形成した半導体素子構造に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a semiconductor device structure formed using a silicon carbide single crystal obtained by using a unique silicon single crystal substrate as a substrate for growing a silicon carbide single crystal. It is.

〈従来技術〉 炭化珪素半導体は広い禁制帯幅(2,2〜3JeV)を
もちまた熱的、化学的および機械的に極めて安定で放射
線損傷にも強いという特徴をもっている。
<Prior Art> Silicon carbide semiconductors have a wide forbidden band width (2.2 to 3 JeV), are extremely stable thermally, chemically and mechanically, and are resistant to radiation damage.

従って、炭化珪素を用いた半導体素子は従来珪素(Si
)等の他の半導体では使用が困難な高温下。
Therefore, semiconductor devices using silicon carbide are conventionally made from silicon (Si).
) and other semiconductors are difficult to use under high temperatures.

高出力駆動、放射線照射下等の苛酷な条件下で使用でき
る素子材料として広範な分野での応用が期待される。し
かしながら、炭化珪素半導体はこのような多くの利点、
可能性を有する材料であるにもかかわらず、実用化が阻
まれているのは、生産性を考慮した工業的規模での量産
に必要な寸法・形状を制御性良く規定した大面積かつ高
品質の単結晶を安定に供給し得る結晶成長技術が確立さ
れていなかったところに原因がある。
It is expected to be applied in a wide range of fields as an element material that can be used under harsh conditions such as high-power drive and radiation irradiation. However, silicon carbide semiconductors have many advantages such as
Despite being a material with great potential, practical application has been hindered by the need for large-area, high-quality materials with well-controlled dimensions and shapes required for mass production on an industrial scale with productivity in mind. The reason for this is that crystal growth technology that could stably supply single crystals had not been established.

従来、研究室規模では昇華再結晶法(レーリー法とも称
される)等で炭化珪素単結晶を成長させたり、このレー
リー法で得られた単結晶片上に気相成長法や液相成長法
で、より大きな炭化珪素単結晶をエピタキシャル成長さ
せることによって最小限実用可能なサイズの炭化珪素単
結晶を得ている。し力・しながら、これらの単結晶は小
面積であり、寸法や形状を高精度に制御することは困難
である。また炭化珪素に存在する結晶多形(ポリタイプ
)および不純物濃度の制御も容易でない。
Conventionally, on a laboratory scale, silicon carbide single crystals have been grown by sublimation recrystallization method (also known as Rayleigh method), and on single crystal pieces obtained by Rayleigh method, vapor phase growth method or liquid phase growth method has been used. By epitaxially growing a larger silicon carbide single crystal, we have obtained a silicon carbide single crystal of minimum practical size. However, these single crystals have a small area, and it is difficult to control their size and shape with high precision. Furthermore, it is not easy to control the crystal polytypes and impurity concentrations present in silicon carbide.

一方、最近本発明者らによって珪素単結晶基板上に気相
成長法(CVD法)で良質かつ大面積の3C型炭化珪素
単結晶を成長させる方法が提案されている(特願昭58
−76842号)。この方法は安価で入手の容易な珪素
単結晶基板上に結晶多形、不純物濃度1寸法・形状等を
制御した大面積で高品質の炭化珪素単結晶を成長形成で
きる方法である。また珪素単結晶基板の表面を炭化水素
ガス雰囲気下で加熱し炭化することで炭化珪素の薄膜を
表面に形成し、この薄膜上にCVD法により炭化珪素単
結晶を成長させる方法も開発されている。しかしながら
、これらの方法を用いても、珪素単結晶基板と得られた
炭化珪素単結晶の間の格子定数の相違にともなう内部応
力は完全には除去することができず、反り、クラックを
生じ、素子作製段階では問題が生じる。
On the other hand, the present inventors have recently proposed a method of growing a high-quality, large-area 3C-type silicon carbide single crystal on a silicon single-crystal substrate by vapor phase growth (CVD) (Patent Application No. 58).
-76842). This method is a method by which a large-area, high-quality silicon carbide single crystal can be grown on a silicon single-crystal substrate, which is inexpensive and easily available, with controlled crystal polymorphism, impurity concentration, size, shape, etc. A method has also been developed in which the surface of a silicon single crystal substrate is heated and carbonized in a hydrocarbon gas atmosphere to form a thin film of silicon carbide on the surface, and a silicon carbide single crystal is grown on this thin film by CVD. . However, even if these methods are used, the internal stress due to the difference in lattice constant between the silicon single crystal substrate and the obtained silicon carbide single crystal cannot be completely removed, causing warping, cracking, and Problems arise at the element fabrication stage.

〈発明の目的〉 本発明は上述の問題点に鑑み、平坦な表面を有しかつこ
の面に段差又は凹凸を形成した珪素単結晶基板を成長用
基板として用いることで炭化珪素単結晶成長領域を分割
し、成長層内で内部応力の低減された結晶性の良い炭化
珪素単結晶を形成しこの炭化珪素単結晶にpn接合ダイ
オードあるいはショットキーバリア接合型電界効果トラ
ンジスタ等種々の半導体素子や集積回路等を得る技術を
提供することを目的とする。
<Purpose of the Invention> In view of the above-mentioned problems, the present invention provides a method for growing a silicon carbide single crystal growth region by using a silicon single crystal substrate having a flat surface with steps or irregularities formed thereon as a growth substrate. The silicon carbide single crystal with reduced internal stress and good crystallinity is formed in the growth layer, and various semiconductor devices and integrated circuits such as pn junction diodes or Schottky barrier junction field effect transistors are formed on this silicon carbide single crystal. The purpose is to provide technology to obtain the following.

〈実施例1〉 第1図、第2図、第3図はそれぞれ本発明の詳細な説明
に供する炭化珪素単結晶半導体素子の製作工程図であり
、ダイオードとMES−FETの製作工程を例示してい
る。第4図は結晶成長に用いる成長装置の一例を示す構
成図である。
<Example 1> FIG. 1, FIG. 2, and FIG. 3 are manufacturing process diagrams of a silicon carbide single-crystal semiconductor device, respectively, to provide a detailed explanation of the present invention, and illustrate the manufacturing process of a diode and a MES-FET. ing. FIG. 4 is a configuration diagram showing an example of a growth apparatus used for crystal growth.

第1図tAlに示す如く結晶成長される面(111)に
設定された結晶成長用支持基板として用いる珪素単結晶
基板15の結晶成長用面にアルミニウム(A))のマス
ク16を選択的に形成した後、この面をフロンガス(C
F4 )と酸素ガス(02)を用いたりアクティブイオ
ンエツチング(RIE)法により、第1図B)に示す如
くマスク16の被覆されていない部分に約3μmの深さ
で底面が平坦になるようにエツチングされた凹陥部を形
成し、次にマスク16を除去して炭化珪素単結晶成長用
基板14とする。15分間のエツチングで凹凸の高底差
は5μm程度となる。またAノのマスク16は1鵡径で
あり相互の配置間隔は1馴に設定されている。この平坦
な表面をもち73.つ凹凸形状が形成された珪素単結晶
基板IQ−第4図に示す成長装置の試料台2上に載置す
る。次に第4図の成長装置について説明する。水冷式横
型二重石英管l内に黒鉛製試料台2が載置された石英製
支持台8を設置し、反応管lの外胴邪に巻回されたワー
クコイル4に高周波電流を流してこの試料台2を誘導加
熱する。試料台2は水平に設置してもよく、適当に傾斜
させてもよい。反応管1の片端にはガス流入口となる枝
管5が設けられ、二重石英管1の外側の石英管には枝管
6.7を介して冷却水が供給される。反応管1の曲端は
ステンレス製フランジ8で閉塞され力1つフランジ周縁
に配設された止め板9.ボルト10.ナツト11.0−
リング12にてシールされている。フランジ8の中央に
はガス出口となる枝管13が設けられている。この成長
装置を用いて以下の如く結晶成長を行なう。
As shown in FIG. 1 tAl, a mask 16 of aluminum (A) is selectively formed on the crystal growth surface of the silicon single crystal substrate 15 used as a support substrate for crystal growth, which is set on the crystal growth surface (111). After that, clean this side with chlorofluorocarbon gas (C
Using F4) and oxygen gas (02) or active ion etching (RIE), the uncovered portion of the mask 16 is etched to a depth of approximately 3 μm so that the bottom surface is flat, as shown in Figure 1B). An etched recess is formed, and then mask 16 is removed to provide silicon carbide single crystal growth substrate 14. After 15 minutes of etching, the height difference between the concave and convex portions becomes approximately 5 μm. Further, the masks 16 of A No. are 1 inch in diameter, and the mutual spacing between them is set to 1 inch. With this flat surface73. A silicon single crystal substrate IQ having an uneven shape formed thereon is placed on the sample stage 2 of the growth apparatus shown in FIG. Next, the growth apparatus shown in FIG. 4 will be explained. A quartz support 8 on which a graphite sample holder 2 is mounted is installed inside a water-cooled horizontal double quartz tube 1, and a high-frequency current is passed through a work coil 4 wound around the outer body of the reaction tube 1. This sample stage 2 is heated by induction. The sample stage 2 may be installed horizontally or may be appropriately inclined. A branch pipe 5 serving as a gas inlet is provided at one end of the reaction tube 1, and cooling water is supplied to the quartz tube outside the double quartz tube 1 via a branch pipe 6.7. The bent end of the reaction tube 1 is closed with a stainless steel flange 8, and a stop plate 9 is placed around the periphery of the flange. Bolt 10. Nut 11.0-
It is sealed with a ring 12. A branch pipe 13 serving as a gas outlet is provided at the center of the flange 8. Using this growth apparatus, crystal growth is performed as follows.

AIマスク16を除去した凹凸を有する珪素単結晶基板
14にシランガス(SiH4)とプロパンガス(C3H
8) ?−原料ガスとして用いた化学的気相成長法(C
VD法)により炭化珪素単結晶膜を成長させる。この成
長工程は、まず珪素単結晶基板14上にキャリア形成用
ガスとしてジボランガス(BzHs)’!z付加するこ
とで約5μmのp型炭化珪素単結晶膜17を凹凸の各平
坦面毎に成長させ次に、B2H,ガスの供給を絶ち、連
続してノンドープn型珪素単結晶膜18を0.5μm成
長させる。炭化珪素半導体膜17.18形成後、炭化珪
素単結晶膜18上にソース電極19及びドレイン電極2
0としてAi、ゲート用ショットキー電極21として金
(Au)fjc真空蒸着で形成し、ショットキー接合形
の電界効果トランジスタ(FET)を凹凸の各平坦部分
に複数個並設して形成することができる。このように凹
凸を形成した珪素単結晶基板14上に炭化珪素単結晶1
7.18’i各凹凸の平坦面に沿って分割形成すること
で、内部応力が低減され、結晶性の良い炭化珪素単結晶
を用いてFETが形成できる。相互フンダクタンス(g
m )は凹凸を形成しない珪素単結晶基板を用いた場合
0.5mSであるが、上記実施例では2mSと大きくな
り、特性の向上が得られる。上記実施例において、n型
炭化珪素単結晶膜17はCVD法で成長させる以外に珪
素単結晶基板140表面を炭化させることにより形成し
てもよい。即ち、キャリアガスとして水素(B2)ガス
を毎分10ノ、また表面の炭化用としてプロパン(C3
Ha)ガスを毎分1.0cc程度流し、さらにキャリア
形成用としてB2 )1aガスを付加しワークコイル4
に高周波電流を供給して黒鉛試料台2を誘導加熱し、珪
素単結晶基板14の温度を約1350℃まで昇温する。
Silane gas (SiH4) and propane gas (C3H
8)? -Chemical vapor deposition method (C
A silicon carbide single crystal film is grown by VD method). In this growth step, diborane gas (BzHs)'! is first applied as a carrier forming gas onto the silicon single crystal substrate 14. By adding z, a p-type silicon carbide single crystal film 17 of approximately 5 μm is grown on each uneven flat surface. Next, the supply of B2H and gas is cut off, and a non-doped n-type silicon single crystal film 18 is continuously grown. Grow to .5 μm. After forming the silicon carbide semiconductor films 17 and 18, a source electrode 19 and a drain electrode 2 are formed on the silicon carbide single crystal film 18.
0 is Ai, the gate Schottky electrode 21 is formed by vacuum evaporation of gold (Au) FJC, and a plurality of Schottky junction field effect transistors (FETs) are formed in parallel on each flat part of the unevenness. can. A silicon carbide single crystal 1 is placed on a silicon single crystal substrate 14 having irregularities formed in this way.
7.18'i By dividing and forming each unevenness along the flat surface, internal stress is reduced and an FET can be formed using silicon carbide single crystal with good crystallinity. Mutual fundductance (g
m ) is 0.5 mS when a silicon single crystal substrate with no unevenness is used, but it increases to 2 mS in the above example, and the characteristics are improved. In the above embodiment, n-type silicon carbide single crystal film 17 may be formed by carbonizing the surface of silicon single crystal substrate 140 instead of growing by CVD. That is, hydrogen (B2) gas was used as a carrier gas at 10 rpm, and propane (C3) was used for surface carbonization.
Ha) Gas is flowed at a rate of about 1.0 cc per minute, and B2) 1a gas is added for carrier formation, and the work coil 4 is
A high frequency current is supplied to inductively heat the graphite sample stage 2, and the temperature of the silicon single crystal substrate 14 is raised to about 1350°C.

この温度で珪素単結晶基板14の表面は炭化され751
つ表面よりBが侵入してp型炭化珪素単結晶の薄い膜が
形成される。また必要があればこの炭化珪素単結晶薄膜
上に珪素原料のモノシラン(SiH4)ガスと炭素原料
のプロパン(C3Ha)ガスを共に毎分0.9ccの流
量で供給しさらにB、H,ガスを付加することによりC
VD法で充分な厚さのp型炭化珪素単結晶膜を成長させ
る。
At this temperature, the surface of the silicon single crystal substrate 14 is carbonized 751
B enters from the surface to form a thin film of p-type silicon carbide single crystal. If necessary, monosilane (SiH4) gas as a silicon raw material and propane (C3Ha) gas as a carbon raw material are both supplied onto this silicon carbide single crystal thin film at a flow rate of 0.9 cc/min, and further B, H, and gases are added. By doing C
A p-type silicon carbide single crystal film of sufficient thickness is grown using the VD method.

n型炭化珪素単結晶膜17上に重畳される炭化珪素の膜
は単結晶以外に多結晶やアモルファスの膜であってもF
ETとして動作させることは可能である。
The silicon carbide film superimposed on the n-type silicon carbide single crystal film 17 may be a polycrystalline or amorphous film in addition to single crystal.
It is possible to operate it as an ET.

〈実施例2〉 上記実施例1においては凹凸を形成した珪素単結晶基板
14上に成長させた炭化珪素単結晶上に電界効果トラン
ジスタのみを形成したが、本実施例では凸部平坦面にF
ET、凹部平坦面にダイオードを形成している。第1図
tc)に示す如く凹凸を形成した珪素単結晶基板14上
に成長させた炭化珪素単結晶膜17.18上にエツチン
グ用マスクとして八!を被覆した後第2図(Alに示す
如<CF*と02ガスを用い−たリアクティブイオンエ
ツチングにより凹部平坦面の周縁部のみを部分的にエツ
チングしてn型炭化珪素単結晶膜18を除去し、n型炭
化珪素単結晶膜17を露呈させる。凹部には露呈された
p型炭化珪素結晶膜17表面とn型炭化珪素単結晶膜1
8表面の各々にダイオード用電極221に形成してこの
領域をp−n接合ダイオードとする。凸部平坦面には上
記実施例1と同様にA)のソース電極19.ドレイン電
極20及びAuのゲート用ショットキー電極21を形成
し、FETとして利用する。以上により第2図の)に示
す如くダイオードとMES−FET’を複数個同一基板
上に配列形成することができる。
<Example 2> In the above Example 1, only a field effect transistor was formed on a silicon carbide single crystal grown on a silicon single crystal substrate 14 on which an uneven surface was formed, but in this example, an F transistor was formed on a flat surface of a convex part.
ET, a diode is formed on the flat surface of the recess. As shown in FIG. 1 (tc), a silicon carbide single crystal film 17. As shown in FIG. 2 (Al), only the peripheral edge of the flat surface of the recess is partially etched by reactive ion etching using CF* and 02 gas to form an n-type silicon carbide single crystal film 18. The n-type silicon carbide single crystal film 17 is removed to expose the n-type silicon carbide single crystal film 17.The exposed p-type silicon carbide crystal film 17 surface and the n-type silicon carbide single crystal film 1 are removed in the recess.
A diode electrode 221 is formed on each of the 8 surfaces, and this region is used as a pn junction diode. The source electrode 19 of A) is provided on the flat surface of the convex portion as in the first embodiment. A drain electrode 20 and an Au Schottky electrode 21 for the gate are formed and used as an FET. With the above, a plurality of diodes and MES-FET's can be arrayed and formed on the same substrate as shown in FIG. 2).

上記実施例24Cおいて凹部又は凸部の平坦面の1つに
複数の異種素子を形成してもよい。
In Example 24C above, a plurality of different types of elements may be formed on one of the flat surfaces of the concave portion or the convex portion.

〈実施例3〉 上記実施例1.2においては凹凸を有する珪素基板上全
面に成長させた炭化珪素単結晶膜の略々全域に素子形成
を行なっているが、本実施例では凹凸を有する珪素基板
上の一部の炭化珪素単結晶1を除去して素子を形成して
いる。
<Example 3> In Example 1.2 above, elements are formed over almost the entire area of a silicon carbide single crystal film grown on the entire surface of a silicon substrate having irregularities, but in this example, a silicon carbide film having irregularities is formed. A part of silicon carbide single crystal 1 on the substrate is removed to form an element.

まず、実施例1と同様に凹凸を有する珪素基板14に第
1図1c)に示す如く炭化珪素単結晶膜17.1gを形
成する。次に、素子形成領域にのみAノマスク28を形
成する。次にCF、と02を用いたりアクティブイオン
エツチングによりAノマスク23の被覆されていない部
分の炭化珪素単結晶をエツチング除去し、第3図人)に
示す如く部分的に炭化珪素単結晶膜17.18を残在さ
せる。次に残在する炭化珪素単結晶@17,18上にM
ESFETのソース、ドレイン用電極19.20として
Aiを、ゲート電極21としてAu’i−蒸着し、第3
図β)に示す如<MES−FETを形成する。
First, as in Example 1, a silicon carbide single crystal film 17.1g is formed on a silicon substrate 14 having irregularities as shown in FIG. 1c). Next, an A mask 28 is formed only in the element formation region. Next, the silicon carbide single crystal in the uncovered portion of the A mask 23 is etched away using CF, 02 or active ion etching, and the silicon carbide single crystal film 17 is partially etched as shown in FIG. 18 remain. Next, M on the remaining silicon carbide single crystal @17,18
Ai was deposited as the source and drain electrodes 19 and 20 of the ESFET, and Au'i was deposited as the gate electrode 21.
A MES-FET is formed as shown in Figure β).

本実施例では凸部平坦面にMES−FETを形成してい
るが凹部平坦面に形成しても良い。また炭化珪素単結晶
膜17.18の除去された珪素基板表面に不純物を気相
拡散させて、この部分にSiベースのダイオード等半導
体素子を形成した複合半導体基板とすることもできる。
In this embodiment, the MES-FET is formed on the flat surface of the convex portion, but it may be formed on the flat surface of the concave portion. Alternatively, impurities can be vapor-phase diffused onto the surface of the silicon substrate from which the silicon carbide single crystal films 17 and 18 have been removed, and a composite semiconductor substrate can be obtained in which a semiconductor element such as a Si-based diode is formed in this region.

さらに上記各実施例ではダイオードとM E S・FE
Tの作製について説明したが、MOS−FETやpnp
)ランジスタあるいは論理回路や集積回路を形成するこ
とも容易である。
Furthermore, in each of the above embodiments, the diode and MES・FE
Although we have explained the fabrication of T, MOS-FET and pnp
) It is also easy to form transistors, logic circuits, and integrated circuits.

珪素基板のエツチングとしてけりアクティブイオンエツ
チングを用いたが他のエツチング法ヲ用いてもよい。ま
た珪素単結晶基板14の成長面は凹凸形状に加工する以
外に階段状に加工して段差を形成しても良く双方を混合
した加工状態としても良い。この場合、段差又は凹凸の
高低差は0.5μ錦以上にすることが炭化珪素単結晶膜
の成長厚さとの関係から望ましい。分断された個々の炭
化珪素単結晶膜は素子を形成するためのウェハーとして
は充分な面積を有するように成長されるので素子形成上
問題は生じない。
Although active ion etching was used to etch the silicon substrate, other etching methods may be used. In addition to processing the growth surface of the silicon single crystal substrate 14 into an uneven shape, it may be processed into a step shape to form a step difference, or a processing state that is a mixture of both methods may be used. In this case, it is desirable that the difference in height between the steps or irregularities be 0.5 μm or more from the viewpoint of the growth thickness of the silicon carbide single crystal film. Since each divided silicon carbide single crystal film is grown to have a sufficient area as a wafer for forming an element, no problem occurs in forming the element.

〈発明の効果〉 本発明によれば、内部応力の低減され念良質の炭化珪素
単結晶膜を用いて素子を形成することによシ、素子の特
性を大幅に改善するこ七ができ、炭化珪素半導体の利点
を活かした広範な応用分野を開拓することが可能となる
<Effects of the Invention> According to the present invention, by forming an element using a high quality silicon carbide single crystal film with reduced internal stress, it is possible to significantly improve the characteristics of the element. It becomes possible to develop a wide range of application fields that take advantage of the advantages of silicon semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第8図はそれぞれ本発明の詳細な説
明する炭化珪素半導体素子の製作工程断面図である。第
4図は炭化珪素成長装置の断面図である。 14・・・珪素単結晶基板、16.28・・・アルミニ
ウムマスク、17・・・p復炭化珪素単結晶膜、18・
・・n型炭化珪素単結晶膜、19・・・ソース電極、2
0・・・ドレイン電極、21・・・ショットキーゲート
電極、22・・・ダイオード用電極。 代理人 弁理士 杉 山 毅 至(他1名)11図 第21!2 第3図 第4銭
FIG. 1, FIG. 2, and FIG. 8 are sectional views showing the manufacturing process of a silicon carbide semiconductor device, each of which explains the present invention in detail. FIG. 4 is a cross-sectional view of the silicon carbide growth apparatus. 14...Silicon single crystal substrate, 16.28...Aluminum mask, 17...P silicon carbide single crystal film, 18.
...N-type silicon carbide single crystal film, 19...Source electrode, 2
0...Drain electrode, 21...Schottky gate electrode, 22...Diode electrode. Agent Patent Attorney Takeshi Sugiyama (1 other person) Figure 11 Figure 21! 2 Figure 3 Figure 4 Sen

Claims (1)

【特許請求の範囲】 1、珪素単結晶基板面に形成された段差又は凹凸に対応
して分断された各平坦面上に成長された炭化珪素膜と該
炭化珪素膜への給電手段とを具備して成ることを特徴と
する炭化珪素半導体素子。 2、珪素単結晶基板面に形成された段差又は凹凸の高低
差が0.5μm以上である特許請求の範囲第1項記載の
炭化珪素半導体素子。 3、珪素単結晶基板面として(111)面を用いた特許
請求の範囲第1項又は第2項記載の炭化珪素半導体素子
[Claims] 1. A silicon carbide film grown on each flat surface divided in correspondence with steps or irregularities formed on a silicon single crystal substrate surface, and a means for feeding power to the silicon carbide film. A silicon carbide semiconductor device characterized by comprising: 2. The silicon carbide semiconductor device according to claim 1, wherein the height difference of the steps or irregularities formed on the surface of the silicon single crystal substrate is 0.5 μm or more. 3. A silicon carbide semiconductor device according to claim 1 or 2, in which a (111) plane is used as a silicon single crystal substrate surface.
JP62113152A 1987-05-07 1987-05-07 Method for manufacturing silicon carbide semiconductor device Expired - Fee Related JP2539427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113152A JP2539427B2 (en) 1987-05-07 1987-05-07 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113152A JP2539427B2 (en) 1987-05-07 1987-05-07 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPS63276273A true JPS63276273A (en) 1988-11-14
JP2539427B2 JP2539427B2 (en) 1996-10-02

Family

ID=14604885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113152A Expired - Fee Related JP2539427B2 (en) 1987-05-07 1987-05-07 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP2539427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270252A (en) * 1988-10-25 1993-12-14 United States Of America As Represented By The Secretary Of The Navy Method of forming platinum and platinum silicide schottky contacts on beta-silicon carbide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209856A (en) * 1986-03-10 1987-09-16 Agency Of Ind Science & Technol Field-effect transistor using silicon carbide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209856A (en) * 1986-03-10 1987-09-16 Agency Of Ind Science & Technol Field-effect transistor using silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270252A (en) * 1988-10-25 1993-12-14 United States Of America As Represented By The Secretary Of The Navy Method of forming platinum and platinum silicide schottky contacts on beta-silicon carbide

Also Published As

Publication number Publication date
JP2539427B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US4966860A (en) Process for producing a SiC semiconductor device
ATE115334T1 (en) POLYCRYSTALLINE CVD DIAMOND SUBSTRATE FOR EPITACTIC GROWTH OF MONOCRYSTAL SEMICONDUCTORS.
JPH11268989A (en) Production of single crystal
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
JP2539427B2 (en) Method for manufacturing silicon carbide semiconductor device
JPS63319294A (en) Production of silicon carbide single crystal substrate
JPH02180796A (en) Production of silicon carbide single crystal
JPH0443878B2 (en)
JPH0977595A (en) Production of silicon carbide single crystal
JPS6120514B2 (en)
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
JPH0443879B2 (en)
JP2002299277A (en) Manufacturing method for thin-film structural unit
JPH0641400B2 (en) Method for producing silicon carbide single crystal
JPH0458691B2 (en)
KR20010062215A (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JPS6152119B2 (en)
JPS60255697A (en) Method for controlling impurity concentration in silicon carbide single crystal
JPS60264399A (en) Production of single crystal of silicon carbide
JPS60165714A (en) Vapor growth method and apparatus thereof
JPS63139096A (en) Production of silicon carbide single crystal
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JP3112796B2 (en) Chemical vapor deposition method
JPS609658B2 (en) Method for manufacturing silicon carbide substrate
JPH0364480B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees