JPS62209856A - Field-effect transistor using silicon carbide - Google Patents

Field-effect transistor using silicon carbide

Info

Publication number
JPS62209856A
JPS62209856A JP5232186A JP5232186A JPS62209856A JP S62209856 A JPS62209856 A JP S62209856A JP 5232186 A JP5232186 A JP 5232186A JP 5232186 A JP5232186 A JP 5232186A JP S62209856 A JPS62209856 A JP S62209856A
Authority
JP
Japan
Prior art keywords
electrode
type
gate electrode
effect transistor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5232186A
Other languages
Japanese (ja)
Other versions
JP2675994B2 (en
Inventor
Sadaji Yoshida
吉田 貞史
Eiichiro Sakuma
作間 栄一郎
Kazuhiro Endo
和弘 遠藤
Shunji Misawa
俊司 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61052321A priority Critical patent/JP2675994B2/en
Publication of JPS62209856A publication Critical patent/JPS62209856A/en
Application granted granted Critical
Publication of JP2675994B2 publication Critical patent/JP2675994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide an ohmic electrode having excellent heat resistance by composing a source electrode and a drain electrode of an aluminum material and composing a gate electrode of an Au material. CONSTITUTION:A p-type 3C-SiC single crystal film 2 is obtained on a p-type silicon substrate 1, and a non-doped n-type 3C-SiC single crystal layer 3 is then epitaxially grown. Then, after the surface of the layer 3 is sequentially etched with 5%-HF, 20%-K2CO3, HCl, 5%-HF, aluminum is deposited in vacuum to form a source electrode 4 and a drain electrode 5, Au is further deposited in vacuum to form a gate electrode 6. A separating region 7 is eventually formed by etching as an MESFET. Thus, a preferably ohmic contact is obtained without annealing by high temperature treating to eliminate the damage of the gate electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、炭化けい素を用いた耐熱性に優れた電界効
果トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor using silicon carbide and having excellent heat resistance.

〔従来の技術〕[Conventional technology]

従来、n型3C炭化けい素(S i C)のオーミック
電極としてはニッケル(Ni)を真空蒸着し、真空巾約
1000℃で焼鈍する方法が行われてきた。
Conventionally, as an ohmic electrode of n-type 3C silicon carbide (S i C), a method has been used in which nickel (Ni) is vacuum-deposited and annealed at a vacuum width of about 1000°C.

また金(Au)はS i C’に対して良好なショット
キー電極となることが知られているじ5chottky
barrier diodes on 3C−3iC″
吉田貞史他AppliedPhysics Lette
rs旦、 766 (1985)参照)。
Furthermore, gold (Au) is known to be a good Schottky electrode for SiC'.
barrier diodes on 3C-3iC''
Sadafumi Yoshida et al. Applied Physics Lette
RS Dan, 766 (1985)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、Auf4極はN1T4極の焼鈍温度である10
00℃の高温には耐えられないという問題点があった。
However, the Auf4 pole has an annealing temperature of 10, which is the annealing temperature of the N1T4 pole.
There was a problem that it could not withstand high temperatures of 00°C.

この発明は、上記の問題点を解決するためになされたも
ので、耐熱性に優れたオーミック電極を有する炭化けい
素を用いた電界効果トランジスタを得ることを目的とす
る。
The present invention was made to solve the above problems, and an object of the present invention is to obtain a field effect transistor using silicon carbide having an ohmic electrode with excellent heat resistance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる炭化けい素を用いた電界効果トランジ
スタは、ソース電極およびドレイン電極をAz材料で構
成し、ゲート電極をAu材料で構成したものである。
A field effect transistor using silicon carbide according to the present invention has a source electrode and a drain electrode made of an Az material, and a gate electrode made of an Au material.

〔作用〕[Effect]

この発明は、ソース電極およびドレイン電極をA2材料
で構成してオーミック電極としたので、高温の熱処理を
必要とせず良好なオーミック接触が得られる。
In this invention, since the source electrode and the drain electrode are made of A2 material to form ohmic electrodes, good ohmic contact can be obtained without requiring high-temperature heat treatment.

〔実施例〕〔Example〕

第1図〜第4図はこの発明の一実施例の工程を示す断面
略図である。
1 to 4 are schematic cross-sectional views showing the steps of an embodiment of the present invention.

まず、第1図に示すように、p型シリコン基板1の上に
ンランとプロパン反応ガスを用いる化学気相成長法によ
り3C−3iC単結晶層をエピタキシャル成長させる。
First, as shown in FIG. 1, a 3C-3iC single crystal layer is epitaxially grown on a p-type silicon substrate 1 by chemical vapor deposition using nitrogen and a propane reaction gas.

成長中)・リエチルアルミニウム(TEA)を導入して
厚さ約1μmのp型3C−3iC単結晶層を得る。
During growth) ethyl aluminum (TEA) is introduced to obtain a p-type 3C-3iC single crystal layer with a thickness of about 1 μm.

次に、第2図に示すように、TEAの導入をやめ、ノン
ドープのn型3C−8iC単結晶層3を厚さ約3000
人エピタキシャル成長させる。
Next, as shown in FIG. 2, the introduction of TEA was stopped, and a non-doped n-type 3C-8iC single crystal layer 3 was formed to a thickness of approximately 3000 mm.
who grow epitaxially.

次いで、第3図に示すように、n型3C−3iC単結晶
層3の表面を5%HF、20%K 2CO、。
Next, as shown in FIG. 3, the surface of the n-type 3C-3iC single crystal layer 3 was treated with 5% HF and 20% K2CO.

HC乏、5%HFで順次エツチングした後、A!を真空
蒸着してソース電極4.ドレイン電極5を形成し、さら
に、Auを真空蒸着してゲート電極6を形成する。
After sequentially etching with HC-poor and 5% HF, A! Vacuum evaporate the source electrode 4. A drain electrode 5 is formed, and then Au is vacuum deposited to form a gate electrode 6.

最後に、第4図に示すようにエツチングにより分離領域
7を形成しMESFE栄とする。
Finally, as shown in FIG. 4, isolation regions 7 are formed by etching to form the MESFE layer.

ところで、A乏はSiCのp型不純物であり、Ae−3
i合金がp型SiCに対するオーミック電極として用い
られてきた。一方、n型3C−3iCの電極には上述し
たようにオーミック電極にはN1材料が、ゲート電極6
にはAu材料が用いられてきた。
By the way, A deficiency is a p-type impurity of SiC, and Ae-3
i-alloys have been used as ohmic electrodes for p-type SiC. On the other hand, in the n-type 3C-3iC electrode, as mentioned above, the ohmic electrode is made of N1 material, and the gate electrode 6 is made of N1 material.
Au material has been used.

ところが、n型3CSiCにAJ2材料を室温で蒸着す
ると良好なオーミック性を保つことが判明し、上述した
ようにこの発明は完成したものである。
However, it was found that good ohmic properties were maintained when AJ2 material was deposited on n-type 3CSiC at room temperature, and the present invention was completed as described above.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、n型3C−3ICを用
いた電界効果トランジスタにおいて、ソース電極および
ドレイン電極をAβ材料で構成し、ゲート電極をAu材
料で構成したので、ソース電極およびドし・イン電極は
従来のように高温処理により焼鈍することなく良好なオ
ーミック接触が得られるので、ゲート電極を損傷するこ
とがなく、製造工程上非常に有利である。このようにn
型3C−3iCを用いた電界効果トランジスタを焼鈍プ
ロセスなしに簡便に作製できるので集積化への利用が大
きく期待されるものである。
As explained above, in a field effect transistor using an n-type 3C-3IC, this invention has a source electrode and a drain electrode made of an Aβ material, and a gate electrode made of an Au material. Since the in-electrode can obtain good ohmic contact without being annealed by high-temperature treatment as in the conventional method, the gate electrode is not damaged, which is very advantageous in terms of the manufacturing process. Like this n
Since a field effect transistor using type 3C-3iC can be easily manufactured without an annealing process, it is highly expected to be used for integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明の一実施例の製造工程を示す
断面略図である。 図中、1はp型シリコン基板、2はp型3C−3iC単
結晶層、3はn型3C−8iC単結晶層、4はソース電
極、5はドレイン電極、6はゲート第1図 第2図 第3図 第4図
1 to 4 are schematic cross-sectional views showing the manufacturing process of an embodiment of the present invention. In the figure, 1 is a p-type silicon substrate, 2 is a p-type 3C-3iC single crystal layer, 3 is an n-type 3C-8iC single crystal layer, 4 is a source electrode, 5 is a drain electrode, 6 is a gate. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] n型3C炭化けい素を用いた電界効果トランジスタにお
いて、ソース電極およびドレイン電極をアルミニウム材
料で構成し、ゲート電極を金材料で構成したことを特徴
とする炭化けい素を用いた電界効果トランジスタ。
A field effect transistor using n-type 3C silicon carbide, characterized in that a source electrode and a drain electrode are made of an aluminum material, and a gate electrode is made of a gold material.
JP61052321A 1986-03-10 1986-03-10 Field effect transistor using silicon carbide Expired - Lifetime JP2675994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052321A JP2675994B2 (en) 1986-03-10 1986-03-10 Field effect transistor using silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052321A JP2675994B2 (en) 1986-03-10 1986-03-10 Field effect transistor using silicon carbide

Publications (2)

Publication Number Publication Date
JPS62209856A true JPS62209856A (en) 1987-09-16
JP2675994B2 JP2675994B2 (en) 1997-11-12

Family

ID=12911526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052321A Expired - Lifetime JP2675994B2 (en) 1986-03-10 1986-03-10 Field effect transistor using silicon carbide

Country Status (1)

Country Link
JP (1) JP2675994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276273A (en) * 1987-05-07 1988-11-14 Sharp Corp Silicon carbide semiconductor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826067A (en) * 1971-08-06 1973-04-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826067A (en) * 1971-08-06 1973-04-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276273A (en) * 1987-05-07 1988-11-14 Sharp Corp Silicon carbide semiconductor element

Also Published As

Publication number Publication date
JP2675994B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP3760688B2 (en) Method for manufacturing silicon carbide semiconductor device
TWI310611B (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US4966860A (en) Process for producing a SiC semiconductor device
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US5229625A (en) Schottky barrier gate type field effect transistor
JP2002329670A (en) Semiconductor device and its manufacturing method
JP2000216407A (en) Longitudinal silicon carbide fet and manufacture method therefore
JPS60142568A (en) Manufacture of sic field effect transistor
JP4449814B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4026312B2 (en) Silicon carbide semiconductor Schottky diode and method for manufacturing the same
JPH01196873A (en) Silicon carbide semiconductor device
JP2612040B2 (en) MOS-FET using β-SiC and manufacturing method thereof
JP2005311028A (en) Nitride semiconductor device and manufacturing method therefor
JPH03173442A (en) Junction type fet and its manu- facture
US20130056752A1 (en) Silicon carbide substrate, silicon carbide substrate manufacturing method, and semiconductor device manufacturing method
JP4100070B2 (en) Manufacturing method of semiconductor device
JP2002525870A (en) Method of forming ohmic contact
JPS62209856A (en) Field-effect transistor using silicon carbide
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2003158267A (en) Silicon carbide semiconductor device and its manufacturing method
JP2000150417A (en) Method for heat-treating silicon carbide semiconductor and manufacture thereof
JPS62209855A (en) Semiconductor element using silicon carbide
JP2008227405A (en) Forming method of ohmic electrode on n-type 4h-sic substrate
JPS62171164A (en) Field-effect transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term