JP2000150417A - Method for heat-treating silicon carbide semiconductor and manufacture thereof - Google Patents

Method for heat-treating silicon carbide semiconductor and manufacture thereof

Info

Publication number
JP2000150417A
JP2000150417A JP32025798A JP32025798A JP2000150417A JP 2000150417 A JP2000150417 A JP 2000150417A JP 32025798 A JP32025798 A JP 32025798A JP 32025798 A JP32025798 A JP 32025798A JP 2000150417 A JP2000150417 A JP 2000150417A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon carbide
epitaxial layer
gas
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32025798A
Other languages
Japanese (ja)
Other versions
JP3996282B2 (en
Inventor
Kiyoshi Ota
潔 太田
Tadao Toda
忠夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32025798A priority Critical patent/JP3996282B2/en
Publication of JP2000150417A publication Critical patent/JP2000150417A/en
Application granted granted Critical
Publication of JP3996282B2 publication Critical patent/JP3996282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form stable ohmic electrodes by heat-treating a silicon carbide semiconductor in nitrogen gas or mixed gas containing nitrogen gas as the main ingredient. SOLUTION: A p-type SiC epitaxial layer 2 and an n-type SiC epitaxial layer 3 are provided on an n-type SiC(silicon carbide) semiconductor substrate 1 and an Ni film is vapor-deposited on the layer 3 with an electron beam. Then Ni electrodes 4 are formed by patterning the Ni film by chemical etching and the product is heat-treated for 5 minutes at 900 deg.C in nitrogen gas or mixed gas containing nitrogen gas as the main ingredient. After heat treatment, probes 5 are attached to both Ni electrodes 4 and the current-voltage characteristic of the product is measured by making an electric current to flow. Therefore, ohmic electrodes can be formed stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炭化珪素(Si
C)半導体の熱処理方法、特に、炭化珪素(SiC)半
導体への電極形成方法に用いて好適な炭化珪素(Si
C)半導体の熱処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a silicon carbide (Si)
C) Silicon carbide (Si) suitable for use in a heat treatment method for a semiconductor, particularly a method for forming an electrode on a silicon carbide (SiC) semiconductor.
C) The present invention relates to a heat treatment method for a semiconductor.

【0002】[0002]

【従来の技術】発光ダイオードや半導体レーザ等の光半
導体素子材料として開発が進んでいる炭化珪素(Si
C)半導体は、熱的、科学的に安定であり、耐放射線性
に優れていることから、耐環境デバイスや高出力デバイ
スの材料として注目を集めている。
2. Description of the Related Art Silicon carbide (Si), which is being developed as a material for optical semiconductor devices such as light emitting diodes and semiconductor lasers, is being developed.
C) Semiconductors are attracting attention as materials for environment-resistant devices and high-output devices because semiconductors are thermally and scientifically stable and have excellent radiation resistance.

【0003】また、SiC半導体はGaAs半導体に比
べて、電子移動度が約2倍から3倍大きいことから、高
周波半導体素子材料としても開発が行われている。
[0003] SiC semiconductors are being developed as high-frequency semiconductor device materials because their electron mobility is about two to three times greater than that of GaAs semiconductors.

【0004】従来、SiC半導体へのオーミック電極
は、オーミック電極となる金属膜をSiC半導体層上に
形成した後、高温の熱処理を施して、オーミック性を取
るようにしている。例えば、n型SiCのオーミック電
極としてNi(ニッケル)電極を形成する場合、Ni膜
を電子ビーム技術によって蒸着した後、フォトリソグラ
フィ技術及びNi膜のケミカルエッチング技術によって
パターンニングする。そして、その後に、例えば、Ar
ガスを用いて1000℃で10分の熱処理(アニール)
を行って、Niオーミック電極を形成する方法が用いら
れている。
Conventionally, an ohmic electrode for a SiC semiconductor is formed by forming a metal film to be an ohmic electrode on the SiC semiconductor layer and then performing a high-temperature heat treatment to obtain an ohmic property. For example, when a Ni (nickel) electrode is formed as an n-type SiC ohmic electrode, a Ni film is deposited by an electron beam technique, and then patterned by a photolithography technique and a chemical etching technique of the Ni film. Then, for example, Ar
Heat treatment at 1000 ° C for 10 minutes using gas (annealing)
To form a Ni ohmic electrode.

【0005】かかる従来のオーミック電極の形成方法に
よると、不純物濃度が5×1017cm-3程度のn型Si
C半導体に安定してNiオーミック電極を形成する場
合、Arガス中で1100℃で5分程度の熱処理を施す
ことが必要となる。
[0005] according According to a conventional method of forming ohmic electrode, an impurity concentration of about 5 × 10 17 cm -3 of n-type Si
In order to stably form a Ni ohmic electrode on a C semiconductor, it is necessary to perform a heat treatment at 1100 ° C. for about 5 minutes in Ar gas.

【0006】このような場合、NiのSiC半導体中へ
の拡散深さが約1μm程度となるため、例えば、pn接
合深さが0.2μm程度からなる、n型SiCエピタキ
シャル層とp型SiCエピタキシャル層とn型SiC型
基板からなるデバイスにおいては、n型SiCエピタキ
シャル層へオーミック電極を形成することが不可能にな
る等の問題が生じる。
In such a case, since the diffusion depth of Ni into the SiC semiconductor is about 1 μm, for example, an n-type SiC epitaxial layer and a p-type SiC epitaxial layer having a pn junction depth of about 0.2 μm. In a device consisting of a layer and an n-type SiC substrate, there arise problems such as the inability to form an ohmic electrode on the n-type SiC epitaxial layer.

【0007】また、従来の熱処理方法では、オーミック
特性の再現性が得られないこともしばしば発生してい
た。
Further, in the conventional heat treatment method, reproducibility of ohmic characteristics cannot often be obtained.

【0008】一方、前述したように、SiC半導体は、
電子移動度がGaAs半導体に比べて大きい。しかしな
がら、結晶欠陥はGaAs半導体に比べて2桁ほど多
く、半導体特性を考えると更なる結晶性の向上が望まれ
ている。
On the other hand, as described above, the SiC semiconductor is
The electron mobility is higher than that of a GaAs semiconductor. However, crystal defects are about two orders of magnitude larger than GaAs semiconductors, and further improvement in crystallinity is desired in view of semiconductor characteristics.

【0009】[0009]

【発明が解決しようとする課題】この発明は、かかる従
来のオーミック電極形成条件の高温熱処理から生じる問
題やオーミック特性の再現性が得られない等の問題点を
解決することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems caused by the conventional high-temperature heat treatment of the ohmic electrode forming conditions and the problem that the reproducibility of the ohmic characteristics cannot be obtained. is there.

【0010】[0010]

【課題を解決するための手段】この発明は、炭化珪素半
導体を窒素ガス中若しくは窒素ガスを主成分とする混合
ガス中で熱処理を施すことを特徴とする。
The present invention is characterized in that a silicon carbide semiconductor is heat-treated in nitrogen gas or a mixed gas containing nitrogen gas as a main component.

【0011】上記熱処理は200℃以上の温度で行えば
よい。
The heat treatment may be performed at a temperature of 200 ° C. or higher.

【0012】SiCのフォトルミネッセンス(PL)信
号強度から、N2 ガス中で熱処理を施すと、結晶性の向
上もしくは不純物の活性化(キャリア化)の向上が図れ
ることがわかる。
From the photoluminescence (PL) signal intensity of SiC, it can be seen that when heat treatment is performed in N 2 gas, the crystallinity can be improved or the activation of impurities (transformation into carriers) can be improved.

【0013】また、この発明は、炭化珪素半導体上にオ
ーミック電極用金属を形成した後、窒素ガス中若しくは
窒素ガスを主成分とする混合ガス中で熱処理を施し、オ
ーミック接触をとることを特徴とする。
Further, the present invention is characterized in that after forming a metal for an ohmic electrode on a silicon carbide semiconductor, a heat treatment is performed in a nitrogen gas or a mixed gas containing nitrogen gas as a main component to make ohmic contact. I do.

【0014】更に、この発明は、炭化珪素半導体上にソ
ース、ドレイン用金属膜を形成し、窒素ガス中若しくは
窒素ガスを主成分とする混合ガス中で熱処理を施して、
オーミック接触を形成後、炭化珪素半導体上にショット
キー電極を形成することを特徴とする。
Further, according to the present invention, a metal film for source and drain is formed on a silicon carbide semiconductor, and is subjected to a heat treatment in a nitrogen gas or a mixed gas containing nitrogen gas as a main component.
After forming the ohmic contact, a Schottky electrode is formed on the silicon carbide semiconductor.

【0015】SiCのフォトルミネッセンス(PL)信
号強度から、N2 ガス中で熱処理を施すと、結晶性の向
上もしくは不純物の活性化(キャリア化)の向上のよう
な現象が確認され、これらのことが作用することで、オ
ーミック電極の形成条件の低温化や特性の再現性向上等
が図れる。
From the photoluminescence (PL) signal intensity of SiC, when heat treatment is performed in N 2 gas, phenomena such as improvement of crystallinity or improvement of impurity activation (carrier conversion) are confirmed. Acts to lower the ohmic electrode formation conditions and improve the reproducibility of characteristics.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。図1は、オーミック電極の
特性を測定するために用いた試料構造を示す断面図であ
る。また、図2及び図3は、この発明による熱処理方法
によって得られたオーミック電極の特性と従来方法によ
って得られたオーミック電極の特性とを比較した電圧−
電流特性図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a sample structure used for measuring characteristics of an ohmic electrode. FIGS. 2 and 3 show a voltage-comparison between the characteristics of the ohmic electrode obtained by the heat treatment method according to the present invention and the characteristics of the ohmic electrode obtained by the conventional method.
It is a current characteristic diagram.

【0017】図1に示すように、n型SiC半導体基板
1上にp型SiCエピタキシャル層2及びn型SiCエ
ピタキシャル層3が設けられ、このn型SiCエピタキ
シャル層3上にNi膜を電子ビーム技術によって蒸着し
た後、フォトリソグラフィ技術及びNi膜のケミカルエ
ッチング技術によってパターンニングして、Ni電極
4、4を形成する。その後熱処理を施して、測定針5を
両電極につけ、電流を流して、電流−電圧特性を測定し
た。
As shown in FIG. 1, a p-type SiC epitaxial layer 2 and an n-type SiC epitaxial layer 3 are provided on an n-type SiC semiconductor substrate 1, and a Ni film is formed on the n-type SiC epitaxial layer 3 by an electron beam technique. After that, Ni electrodes 4 and 4 are formed by patterning using a photolithography technique and a chemical etching technique for the Ni film. After that, a heat treatment was performed, the measuring needle 5 was attached to both electrodes, a current was passed, and current-voltage characteristics were measured.

【0018】図2は、キャリア濃度が5×1017cm-3
のn型SiCエピタキシャル層3上に電子ビーム蒸着に
よって膜厚4000オングストロームのNi膜を形成し
た後、1000℃で5分間の熱処理をそれぞれN2 (窒
素)ガス中及びAr(アルゴン)ガス中で行い、オーミ
ック特性を測定した結果を示す。なお、ガス流量はいず
れも1.0L/分である。
FIG. 2 shows that the carrier concentration is 5 × 10 17 cm -3.
After forming a 4000 Å thick Ni film on the n-type SiC epitaxial layer 3 by electron beam evaporation, heat treatment is performed at 1000 ° C. for 5 minutes in N 2 (nitrogen) gas and Ar (argon) gas, respectively. And the results of measurement of ohmic characteristics. The gas flow rate was 1.0 L / min.

【0019】図2において、aはN2 ガス中で熱処理し
たものであり、bはArガス中で熱処理したものであ
る。
In FIG. 2, a is a result of heat treatment in N 2 gas, and b is a result of heat treatment in Ar gas.

【0020】この図2から明らかなように、Arガス中
で熱処理した場合には非オーミック特性を示しているの
に対して、N2 ガス中で熱処理した場合には完全なオー
ミック特性を示していることが分かる。
As is clear from FIG. 2, when heat treatment is performed in Ar gas, non-ohmic characteristics are exhibited, whereas when heat treatment is performed in N 2 gas, complete ohmic characteristics are exhibited. You can see that there is.

【0021】図3は、キャリア濃度が1×1018cm-3
のn型SiCエピタキシャル層3上に電子ビーム蒸着に
よって膜厚4000オングストロームのNi膜を形成し
た後、900℃で5分間の熱処理をそれぞれN2 ガス中
及びArガス中で行い、オーミック特性を測定した結果
を示す。なお、ガス流量はいずれも1.0L/分であ
る。
FIG. 3 shows that the carrier concentration is 1 × 10 18 cm −3.
After forming a 4000 Å thick Ni film on the n-type SiC epitaxial layer 3 by electron beam evaporation, heat treatment was performed at 900 ° C. for 5 minutes in N 2 gas and Ar gas, respectively, to measure ohmic characteristics. The results are shown. The gas flow rate was 1.0 L / min.

【0022】図3において、aはN2 ガス中で熱処理し
たものであり、bはArガス中で熱処理したものであ
る。
In FIG. 3, a is the result of heat treatment in N 2 gas, and b is the result of heat treatment in Ar gas.

【0023】この図3から明らかなように、Arガス中
で熱処理した場合には非オーミック特性を示しているの
に対して、N2 ガス中で熱処理した場合には完全なオー
ミック特性を示していることが分かる。
As is apparent from FIG. 3, when heat treatment is performed in Ar gas, non-ohmic characteristics are exhibited, whereas when heat treatment is performed in N 2 gas, complete ohmic characteristics are exhibited. You can see that there is.

【0024】上記したこの発明の実施の形態から明らか
なように、オーミック電極形成の熱処理をN2 ガス中で
行うことにより、安定してオーミック電極を形成できる
とともに、熱処理温度の低下が可能になる。
As is apparent from the above embodiment of the present invention, by performing the heat treatment for forming the ohmic electrode in N 2 gas, the ohmic electrode can be formed stably and the heat treatment temperature can be lowered. .

【0025】また、熱処理時間の短縮も可能になること
から、浅いpn接合を有するSiC半導体素子でのオー
ミック電極形成が極めて容易となる。
Further, since the heat treatment time can be shortened, it is extremely easy to form an ohmic electrode in a SiC semiconductor device having a shallow pn junction.

【0026】次に、上記した熱処理によりSiC半導体
の結晶性の向上、不純物の活性化(キャリア化)の向上
をもたらしていることを確認するために、フォトルミネ
ッセンス(PL)強度を測定した。
Next, the photoluminescence (PL) intensity was measured in order to confirm that the above-mentioned heat treatment improved the crystallinity of the SiC semiconductor and improved the activation (carrier conversion) of the impurities.

【0027】測定は、エピタキシャル成長層を形成した
SiC半導体ウェハをN2 ガス中で700℃、5分間の
熱処理を施したサンプルと、熱処理を施していないサン
プルとを用意し、それぞれのフォトルミネッセンス(P
L)強度を測定した。その結果を図4に示す。
In the measurement, a sample obtained by subjecting a SiC semiconductor wafer on which an epitaxial growth layer is formed to a heat treatment at 700 ° C. for 5 minutes in an N 2 gas and a sample not subjected to a heat treatment are prepared, and the respective photoluminescence (P
L) The strength was measured. FIG. 4 shows the results.

【0028】図4より、ディープレベルからの発光と思
われる570nm付近の信号強度は熱処理を施したもの
と施していないものとは殆ど変化が見られないのに対し
て、バンド端発光と思われる425nm付近の信号強度
は熱処理を施したものが非常に強くなっていることが分
かる。この結果、N2 ガス中で700℃、5分間の熱処
理を施したものが、SiC半導体の結晶性の向上、不純
物の活性化(キャリア化)の向上をもたらしていること
が分かる。
FIG. 4 shows that the signal intensity around 570 nm, which is considered to be light emission from the deep level, hardly changes between the signal after heat treatment and the signal without heat treatment, whereas the signal intensity seems to be band edge light emission. It can be seen that the signal intensity around 425 nm is very strong after heat treatment. As a result, it can be seen that the heat treatment performed at 700 ° C. for 5 minutes in N 2 gas improves the crystallinity of the SiC semiconductor and the activation (carrier conversion) of impurities.

【0029】次に、熱処理条件によって、PL信号強度
がどのように変化しているかを調べた。その結果を表1
に示す。ディープレベルからの発光と思われる570n
m付近の信号強度に対するバンド端発光と思われる42
5nm付近の信号強度の比率で表したのがPL強度比で
ある。
Next, it was examined how the PL signal intensity changed depending on the heat treatment conditions. Table 1 shows the results.
Shown in 570n which seems to be light emission from deep level
It is considered to be band edge emission for a signal intensity around m42.
The PL intensity ratio is represented by the ratio of the signal intensity around 5 nm.

【0030】[0030]

【表1】 [Table 1]

【0031】表1からN2 ガス中で熱処理した場合は、
200℃からPL強度比が大きくなり、800℃程度で
平衡になる。これに対して、Arガス中での熱処理の場
合は、1100℃でも熱処理無しのサンプルと殆ど変わ
らないことが分かる。
From Table 1, when heat-treated in N 2 gas,
The PL intensity ratio increases from 200 ° C. and becomes equilibrium at about 800 ° C. On the other hand, it can be seen that the heat treatment in Ar gas is almost the same as the sample without heat treatment even at 1100 ° C.

【0032】表1から、SiC半導体の結晶性の向上並
びに不純物の活性化(キャリア化)の向上させるために
は、N2 ガス中で200℃以上の熱処理を行えばよいこ
とが分かる。
From Table 1, it can be seen that in order to improve the crystallinity of the SiC semiconductor and the activation of impurities (to form a carrier), a heat treatment at 200 ° C. or more in N 2 gas may be performed.

【0033】以上の結果から、N2 ガス中で熱処理によ
って、結晶性の向上やドーピング不純物の活性化率の向
上などをもたらすことができると考えることができる。
From the above results, it can be considered that the heat treatment in the N 2 gas can improve the crystallinity and the activation rate of the doping impurities.

【0034】次に、SiC半導体装置において、N2
スの熱処理を行って好適な例につき図5以下に従い説明
する。
Next, a preferred example of performing heat treatment with N 2 gas in the SiC semiconductor device will be described with reference to FIG.

【0035】まず、SiC電界効果型トランジスタ(S
iCMESFET)の製造にこの発明を適用した場合を
図5の工程図に従い説明する。
First, a SiC field effect transistor (S
A case in which the present invention is applied to the manufacture of (iCMESFET) will be described with reference to the process chart of FIG.

【0036】まず、図5(a)に示すように、n型Si
C基板10の主面に膜厚5.0μm程度のp型SiCエ
ピタキシャル層11、膜厚0.2μm程度のn型SiC
エピタキシャル層12が順次形成される。このウェハの
主面にRIE選択用マスクを形成し、RIE法によりp
型SiCエピタキシャル層11に到達する用にメサエッ
チングを施す。
First, as shown in FIG.
A p-type SiC epitaxial layer 11 having a thickness of about 5.0 μm on the main surface of a C substrate 10, and an n-type SiC having a thickness of about 0.2 μm
Epitaxial layers 12 are sequentially formed. An RIE selection mask is formed on the main surface of this wafer, and p is formed by RIE.
Mesa etching is performed to reach the type SiC epitaxial layer 11.

【0037】次いで、図5(b)に示すように、RIE
選択用マスクを除去し、n型SiCエピタキシャル層1
2上に3000オングストロームの厚さでNi膜を蒸着
して、パターニングした後、N2 ガス雰囲気中で、10
00℃、5分間の熱処理を施す。この熱処理により、N
i膜はオーミック接触が得られ、Niオーミック電極か
らなるソース、ドレイン電極13、13が形成される。
また、このN2 ガス雰囲気中での熱処理により、SiC
半導体は結晶性及び不純物の活性率が向上される。
Next, as shown in FIG.
After removing the selection mask, the n-type SiC epitaxial layer 1 is removed.
2 by depositing a Ni film with a thickness of 3000 angstroms on, after patterning, in an N 2 gas atmosphere, 10
Heat treatment is performed at 00 ° C. for 5 minutes. By this heat treatment, N
Ohmic contact is obtained with the i film, and source and drain electrodes 13 and 13 composed of a Ni ohmic electrode are formed.
The heat treatment in the N 2 gas atmosphere causes SiC
Semiconductors have improved crystallinity and impurity activation rates.

【0038】尚、結晶性等向上のための熱処理は、上記
オーミック電極形成の際の熱処理と兼用しても、或いは
ウェハ状態で行っても良い。結晶性等向上のためのN2
ガス雰囲気中における熱処理は、前述したように、80
0℃で平衡するので、結晶性等向上だけを目的とする場
合には、800℃以下の温度で熱処理を行えばよい。た
だ、オーミック性を得るためには、やはり1000℃前
後の温度で熱処理を行う方が好ましい。
The heat treatment for improving the crystallinity and the like may be used together with the heat treatment for forming the ohmic electrode, or may be performed in a wafer state. N 2 for improving crystallinity etc.
The heat treatment in the gas atmosphere is performed at 80
Since the equilibrium is achieved at 0 ° C., the heat treatment may be performed at a temperature of 800 ° C. or less in order to improve the crystallinity only. However, in order to obtain ohmic properties, it is preferable to perform the heat treatment at a temperature of about 1000 ° C.

【0039】続いて、図5(c)に示すように、リフト
オフ技術を用いてPtからなるショットキ接合を有する
ゲート電極14が形成される。このゲート電極は、N2
ガス雰囲気中での熱処理により、SiC半導体表面が結
晶性及び不純物の活性率が向上されているので、安定に
形成され、FET特性が向上する。
Subsequently, as shown in FIG. 5C, a gate electrode 14 having a Schottky junction made of Pt is formed by using a lift-off technique. This gate electrode is N 2
The heat treatment in a gas atmosphere improves the crystallinity and impurity activity of the SiC semiconductor surface, so that the surface is formed stably and FET characteristics are improved.

【0040】尚、ウェハ状態での熱処理とオーミック電
極形成時の熱処理を重ねて行っても同様の効果が得られ
る。
The same effect can be obtained by repeating the heat treatment in the wafer state and the heat treatment for forming the ohmic electrode.

【0041】次に、FET特性の向上につき図6に従い
説明する。例えば、図6に示すように、n型SiC基板
10の主面にp型SiCエピタキシャル層11、n型S
iCエピタキシャル層12が順次形成されたウェハに、
FETのソース、ドレイン領域を形成するために、窒素
(N)をイオン注入し、イオン注入領域15を形成す
る。そして、イオン注入領域15を活性化するために、
2 ガス雰囲気中で200℃以上の温度で熱処理を施
す。このN2 ガス雰囲気中で熱処理により、イオン注入
領域の結晶性の回復が良くなり、また、不純物の活性化
が向上するために、FET特性の向上が図れる。
Next, the improvement of the FET characteristics will be described with reference to FIG. For example, as shown in FIG. 6, a p-type SiC epitaxial layer 11 and an n-type S
On the wafer on which the iC epitaxial layer 12 is sequentially formed,
In order to form source and drain regions of the FET, nitrogen (N) is ion-implanted to form an ion-implanted region 15. Then, in order to activate the ion implantation region 15,
Heat treatment is performed at a temperature of 200 ° C. or higher in an N 2 gas atmosphere. By the heat treatment in the N 2 gas atmosphere, the recovery of the crystallinity of the ion-implanted region is improved, and the activation of impurities is improved, so that the FET characteristics can be improved.

【0042】次に、SiC発光ダイオードにつき図7に
従い説明する。図7(a)に示すように、n型SiC半
導体基板20の一主面に膜厚1.0μm程度のn型Si
Cエピタキシャル層21、膜厚0.3μm程度のp型エ
ピタキシャル層22を順次形成する。このウェハ状態で
2 ガス雰囲気中の熱処理を行う。結晶性等向上のため
の熱処理は、前述したように、800℃で平衡するの
で、結晶性等向上だけを目的とする場合には、800℃
以下の温度で熱処理を行なえばよい。
Next, the SiC light emitting diode will be described with reference to FIG. As shown in FIG. 7A, an n-type SiC semiconductor substrate 20 having a thickness of about 1.0 μm is formed on one main surface thereof.
A C epitaxial layer 21 and a p-type epitaxial layer 22 having a thickness of about 0.3 μm are sequentially formed. Heat treatment in an N 2 gas atmosphere is performed in this wafer state. As described above, the heat treatment for improving the crystallinity and the like equilibrates at 800 ° C.
The heat treatment may be performed at the following temperature.

【0043】続いて、図7(b)に示すように、p型電
極として、p型エピタキシャル層22上に、Al電極2
3を設け、n型SiC半導体基板1の他主面にNi電極
24設け、熱処理(アロイ)して発光ダイオードを得
る。
Subsequently, as shown in FIG. 7B, an Al electrode 2 is formed on the p-type epitaxial layer 22 as a p-type electrode.
3, a Ni electrode 24 is provided on the other main surface of the n-type SiC semiconductor substrate 1, and a heat treatment (alloy) is performed to obtain a light emitting diode.

【0044】上記したように、この発明により製造した
SiC発光ダイオードは、FETの場合と同様に、N2
ガス雰囲気中の熱処理の効果により、LEDの発光効率
が改善されて、高輝度化が図れる。
As described above, the SiC light-emitting diode manufactured according to the present invention has N 2
Due to the effect of the heat treatment in the gas atmosphere, the luminous efficiency of the LED is improved, and higher luminance can be achieved.

【0045】次に、SiCバイポーラトランジスタにつ
き図8に従い説明する。図8に示すように、n型SiC
半導体基板30をN2 ガス雰囲気中の熱処理を行う。結
晶性等向上のための熱処理は、前述したように、800
℃で平衡するので、結晶性等向上だけを目的とする場合
には、800℃以下の温度で熱処理を行なえばよい。
Next, the SiC bipolar transistor will be described with reference to FIG. As shown in FIG. 8, n-type SiC
The semiconductor substrate 30 is subjected to a heat treatment in an N 2 gas atmosphere. The heat treatment for improving the crystallinity and the like is performed at 800
Since it equilibrates at ℃, if only the improvement of the crystallinity etc. is intended, the heat treatment may be performed at a temperature of 800 ℃ or less.

【0046】その後n型SiC半導体基板30一主面に
膜厚1.0μm程度のベース層となるp型SiCエピタ
キシャル層31を形成し、N2 ガス雰囲気中の熱処理を
行う。続いて、p型SiCエピタキシャル層31上に膜
厚0.3μm程度のエミッタ層となるn+ 型エピタキシ
ャル層32を形成し、N2 ガス雰囲気中の熱処理を行
う。このN2 ガス雰囲気中の熱処理は、基板の熱処理と
同様に800℃以下の温度で行なえばよい。
Thereafter, a p-type SiC epitaxial layer 31 serving as a base layer having a thickness of about 1.0 μm is formed on one main surface of the n-type SiC semiconductor substrate 30, and heat treatment is performed in an N 2 gas atmosphere. Subsequently, an n + -type epitaxial layer 32 serving as an emitter layer having a thickness of about 0.3 μm is formed on the p-type SiC epitaxial layer 31, and a heat treatment is performed in an N 2 gas atmosphere. This heat treatment in the N 2 gas atmosphere may be performed at a temperature of 800 ° C. or less, similarly to the heat treatment of the substrate.

【0047】続いて、ベース層まで届くメサエッチング
を施した後、SiO2 からなる絶縁層33を設け、この
絶縁層33のベース領域とエミッタ領域にそれぞれ窓部
を形成し、p型SiCエピタキシャル層31にAlから
なるベース電極34を、n+型エピタキシャル層上にN
iからなるエミッタ電極35を、n型SiC半導体基板
30の他主面側にNiからなるコレクタ電極36を形成
する。その後、アロイすることによりSiCバイポーラ
トランジスタを得る。
Subsequently, after performing mesa etching reaching the base layer, an insulating layer 33 made of SiO 2 is provided, windows are formed in the base region and the emitter region of the insulating layer 33, and the p-type SiC epitaxial layer is formed. the base electrode 34 made of Al in 31, n on the n + -type epitaxial layer
An emitter electrode 35 made of i is formed on the other main surface side of the n-type SiC semiconductor substrate 30, and a collector electrode 36 made of Ni is formed. Thereafter, alloying is performed to obtain a SiC bipolar transistor.

【0048】上記したように、n型SiC半導体基板3
0をN2 ガス雰囲気中で熱処理を行った後に、p型Si
Cエピタキシャル層31形成し、この層を成形してN2
ガス雰囲気中で熱処理を行った後に、n+ 型エピタキシ
ャル層32を形成し、N2 ガス雰囲気中で熱処理を行っ
た後に、SiO2 膜及び電極形成を行う。このように製
造することで、各層間の結晶欠陥の低減や表面準位の低
減が可能となり、トランジスタ特性の向上が図れる。
As described above, the n-type SiC semiconductor substrate 3
0 is heat-treated in an N 2 gas atmosphere, and then p-type Si
A C epitaxial layer 31 is formed, and this layer is shaped into N 2
After performing the heat treatment in a gas atmosphere, the n + -type epitaxial layer 32 is formed, and after performing the heat treatment in an N 2 gas atmosphere, an SiO 2 film and an electrode are formed. By manufacturing in this way, it is possible to reduce crystal defects between the layers and to reduce the surface state, thereby improving the transistor characteristics.

【0049】SiCMOSFETの製造にこの発明を適
用した場合を示す図9に従い説明する。
FIG. 9 shows a case where the present invention is applied to the manufacture of a SiCMOSFET.

【0050】図9に示すように、n型SiC基板40の
主面に膜厚5.0μm程度のp型SiCエピタキシャル
層41が形成される。そして、FETのソース、ドレイ
ン領域を形成するために、窒素(N)をイオン注入し、
ソース、ドレイン領域42、42を形成する。
As shown in FIG. 9, a p-type SiC epitaxial layer 41 having a thickness of about 5.0 μm is formed on the main surface of n-type SiC substrate 40. Then, nitrogen (N) is ion-implanted to form source and drain regions of the FET.
Source and drain regions 42 are formed.

【0051】次いで、p型SiCエピタキシャル層41
上に3000オングストロームの厚さでNi膜を蒸着し
て、パターニングし、ソース、ドレイン領域42、42
上にソース、ドレイン電極43、43を形成した後、N
2 ガス雰囲気中で、1000℃、5分間の熱処理を施
す。この熱処理により、Ni膜はオーミック接触が得ら
れ、Niオーミック電極からなるソース、ドレイン電極
43、43が形成される。また、このN2 ガス雰囲気中
での熱処理により、イオン注入領域の結晶性の回復がさ
れ、SiC半導体は結晶性の向上や不純物の活性率が向
上される。
Next, the p-type SiC epitaxial layer 41
A Ni film having a thickness of 3000 angstroms is deposited thereon and patterned, and the source and drain regions 42 and 42 are formed.
After the source and drain electrodes 43 and 43 are formed thereon,
Heat treatment is performed at 1000 ° C. for 5 minutes in a 2 gas atmosphere. By this heat treatment, an ohmic contact is obtained with the Ni film, and the source and drain electrodes 43, 43 made of a Ni ohmic electrode are formed. In addition, the heat treatment in the N 2 gas atmosphere restores the crystallinity of the ion-implanted region, thereby improving the crystallinity and the impurity activity of the SiC semiconductor.

【0052】尚、イオン注入領域の結晶性の回復のため
の熱処理は、上記したように、オーミック電極形成の際
の熱処理に兼用しても、或いはイオン注入後、電極形成
前にN2 ガス雰囲気中の熱処理を行っても良い。結晶性
の回復及び結晶性の向上等のための熱処理は、前述した
ように、800℃で平衡するので、結晶性等の向上だけ
を目的とする場合には、800℃以下の温度で熱処理を
行っても良い。ただ、オーミック性を得るためには、や
はり1000℃前後の温度で熱処理を行う方が好まし
い。
[0052] Note that heat treatment for recovery of crystallinity of the ion-implanted region, as described above, be used also to heat treatment in the ohmic electrode formation, or after ion implantation, N 2 gas atmosphere before electrode formation A middle heat treatment may be performed. As described above, the heat treatment for recovering the crystallinity and improving the crystallinity is equilibrated at 800 ° C. As described above, the heat treatment is performed at a temperature of 800 ° C. or less for the purpose of improving the crystallinity only. You may go. However, in order to obtain ohmic properties, it is preferable to perform the heat treatment at a temperature of about 1000 ° C.

【0053】続いて、SiO2 膜からなるゲート絶縁膜
44を形成し、このゲート絶縁膜44上にAlからなる
ゲート電極45が形成される。
Subsequently, a gate insulating film 44 made of a SiO 2 film is formed, and a gate electrode 45 made of Al is formed on the gate insulating film 44.

【0054】尚、結晶性等向上のために、p型SiCエ
ピタキシャル層41形成後に、N2ガス雰囲気中の熱処
理を行っていてもよい。
In order to improve the crystallinity and the like, a heat treatment in an N 2 gas atmosphere may be performed after the formation of the p-type SiC epitaxial layer 41.

【0055】上記したように、p型SiCエピタキシャ
ル層41形成後、或いはイオン注入後及び、ソース・ド
レイン電極43、43形成時の熱処理によりトランジス
タ特性の向上が図れる。
As described above, the transistor characteristics can be improved by the heat treatment after the formation of the p-type SiC epitaxial layer 41 or after the ion implantation and when the source / drain electrodes 43 and 43 are formed.

【0056】次に、SiC光センサーにつき図10に従
い説明する。
Next, the SiC optical sensor will be described with reference to FIG.

【0057】図10に示すように、p型SiC半導体基
板50の一主面に膜厚1.0μm程度のp型SiCエピ
タキシャル層51、膜厚2000オングストローム以下
のn + 型エピタキシャル層52を順次形成する。このウ
ェハ状態でN2 ガス雰囲気中の熱処理を行っても良い。
結晶性等向上のための熱処理は、前述したように、80
0℃で平衡するので、結晶性向上だけを目的とする場合
には、800℃以下の温度で熱処理を行なえばよい。
As shown in FIG. 10, a p-type SiC semiconductor
A p-type SiC epitaxial layer having a thickness of about 1.0 μm is formed on one main surface of the plate 50.
Taxi layer 51, thickness less than 2000 Å
N +The type epitaxial layer 52 is formed sequentially. This c
N in eha stateTwoHeat treatment in a gas atmosphere may be performed.
As described above, the heat treatment for improving the crystallinity and the like is performed at 80 ° C.
Equilibrium at 0 ° C, for the purpose of improving crystallinity only
In this case, the heat treatment may be performed at a temperature of 800 ° C. or less.

【0058】続いて、カソード電極として、n+ 型エピ
タキシャル層52上に、Ni電極53を設け、p型Si
C半導体基板50の他主面にアノード電極としてAl電
極54を設け、N2 ガス雰囲気中で熱処理してSiC光
センサーを得る。
Subsequently, a Ni electrode 53 is provided on the n + -type epitaxial layer 52 as a cathode electrode, and a p-type Si
An Al electrode 54 is provided as an anode electrode on the other main surface of the C semiconductor substrate 50, and a heat treatment is performed in an N 2 gas atmosphere to obtain a SiC optical sensor.

【0059】上記したように、n+ 型エピタキシャル層
52を形成後の熱処理や電極形成時の熱処理でセンサー
感度の向上が図れる。特に、n+ 型エピタキシャル層5
2が2000オングストローム以下と薄膜であるため、
電極金属であるNiが熱処理によっって拡散する深さを
できる限り浅くしなければならない。この点では、N 2
ガスによる熱処理の場合、Arガスでの熱処理の場合に
比べて熱処理温度を100℃程度低温化できることが有
効になる。
As described above, n+Type epitaxial layer
Heat treatment after forming 52 and heat treatment when forming electrodes
The sensitivity can be improved. In particular, n+Type epitaxial layer 5
2 is 2000 Å or less, which is a thin film,
The depth to which the electrode metal Ni diffuses due to the heat treatment
Must be as shallow as possible. In this respect, N Two
In the case of heat treatment with gas, in the case of heat treatment with Ar gas
In some cases, the heat treatment temperature can be reduced by about 100 ° C.
It works.

【0060】上記した熱処理は窒素ガスを主成分とする
混合ガスを用いても同様の効果が得られる。
The same effect can be obtained in the above-mentioned heat treatment by using a mixed gas containing nitrogen gas as a main component.

【0061】更に、上記した実施の形態では、n型Si
Cエピタキシャル層へのオーミック電極形成に関して述
べたが、n型SiC基板や、p型SiCエピタキシャル
層及びp型SiC基板へのオーミック電極形成に関して
も同様の効果を有する。
Further, in the above embodiment, the n-type Si
Although the description has been given of the formation of the ohmic electrode on the C epitaxial layer, the same effect can be obtained with respect to the formation of the ohmic electrode on the n-type SiC substrate, the p-type SiC epitaxial layer and the p-type SiC substrate.

【0062】[0062]

【発明の効果】以上説明したように、オーミック電極形
成の熱処理を窒素ガス若しくは窒素ガスを主成分とする
混合ガス中で行うことにより、安定してオーミック電極
を形成できるとともに、熱処理温度の低下が可能にな
る。また熱処理時間の短縮も可能になることから、浅い
pn接合を有するSiC半導体素子でのオーミック電極
形成が極めて容易になる。
As described above, by performing the heat treatment for forming the ohmic electrode in nitrogen gas or a mixed gas containing nitrogen gas as a main component, the ohmic electrode can be formed stably and the heat treatment temperature can be reduced. Will be possible. Further, since the heat treatment time can be shortened, it becomes extremely easy to form an ohmic electrode in a SiC semiconductor device having a shallow pn junction.

【0063】また、SiC半導体基板やSiCエピタキ
シャル層の熱処理を窒素ガス若しくは窒素ガスを主成分
とする混合ガス中で行うことにより基板の安定化やエピ
タキシャル層の安定化が可能になる。
The heat treatment of the SiC semiconductor substrate and the SiC epitaxial layer is performed in nitrogen gas or a mixed gas containing nitrogen gas as a main component, so that the substrate can be stabilized and the epitaxial layer can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オーミック電極の特性を測定するために用いた
試料構造を示す断面図である。
FIG. 1 is a sectional view showing a sample structure used for measuring characteristics of an ohmic electrode.

【図2】この発明による熱処理方法によって得られたオ
ーミック電極の特性と従来方法によって得られたオーミ
ック電極の特性とを比較した電圧−電流特性図である。
FIG. 2 is a voltage-current characteristic diagram comparing characteristics of an ohmic electrode obtained by a heat treatment method according to the present invention with characteristics of an ohmic electrode obtained by a conventional method.

【図3】この発明による熱処理方法によって得られたオ
ーミック電極の特性と従来方法によって得られたオーミ
ック電極の特性とを比較した電圧−電流特性図である。
FIG. 3 is a voltage-current characteristic diagram comparing characteristics of an ohmic electrode obtained by a heat treatment method according to the present invention with characteristics of an ohmic electrode obtained by a conventional method.

【図4】SiC半導体ウェハをN2 ガス中で熱処理を施
したサンプルと、熱処理を施していないサンプルとのフ
ォトルミネッセンス(PL)強度の特性図である。
FIG. 4 is a characteristic diagram of photoluminescence (PL) intensity of a sample obtained by performing a heat treatment on an SiC semiconductor wafer in N 2 gas and a sample not subjected to the heat treatment.

【図5】この発明をSiCMESFETの製造に適用し
た場合を示す断面図である。
FIG. 5 is a cross-sectional view showing a case where the present invention is applied to the manufacture of a SiC MESFET.

【図6】この発明をFETの製造に適用した場合を示す
断面図である。
FIG. 6 is a sectional view showing a case where the present invention is applied to the manufacture of an FET.

【図7】この発明をSiC発光ダイオードの製造に適用
した場合を示す断面図である。
FIG. 7 is a sectional view showing a case where the present invention is applied to the manufacture of a SiC light emitting diode.

【図8】この発明をSiCバイポーラトランジスタの製
造に適用した場合を示す断面図である。
FIG. 8 is a sectional view showing a case where the present invention is applied to the manufacture of a SiC bipolar transistor.

【図9】この発明をSiCMOSFETの製造に適用し
た場合を示す断面図である。
FIG. 9 is a sectional view showing a case where the present invention is applied to the manufacture of a SiCMOSFET.

【図10】この発明をSiC光センサーの製造に適用し
た場合を示す断面図である。
FIG. 10 is a sectional view showing a case where the present invention is applied to the manufacture of a SiC optical sensor.

【符号の説明】[Explanation of symbols]

1 n型SiC半導体基板 2 p型SiCエピタキシャル層 3 n型SiCエピタキシャル層 4 Ni電極 Reference Signs List 1 n-type SiC semiconductor substrate 2 p-type SiC epitaxial layer 3 n-type SiC epitaxial layer 4 Ni electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 H01L 29/72 21/338 29/78 301B 29/812 301F 33/00 29/80 M Fターム(参考) 4M104 AA03 BB02 BB05 BB06 CC01 CC03 DD78 DD79 GG04 GG05 GG06 GG09 GG12 HH15 5F003 BH00 BM01 BP42 5F040 DA10 DC02 EC10 EH00 EH02 5F041 CA33 CA73 CA98 CA99 5F102 FA00 GC01 GD01 GL02 GT01 HC11 HC21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 29/78 H01L 29/72 21/338 29/78 301B 29/812 301F 33/00 29/80 MF Term (reference) 4M104 AA03 BB02 BB05 BB06 CC01 CC03 DD78 DD79 GG04 GG05 GG06 GG09 GG12 HH15 5F003 BH00 BM01 BP42 5F040 DA10 DC02 EC10 EH00 EH02 5F041 CA33 CA73 CA98 CA99 5F102 FA00 GC01 GD01 GL01 GL01 HC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素半導体を窒素ガス中若しくは窒
素ガスを主成分とする混合ガス中で熱処理を施すことを
特徴とする炭化珪素半導体の熱処理方法。
1. A heat treatment method for a silicon carbide semiconductor, wherein the heat treatment is performed on the silicon carbide semiconductor in nitrogen gas or a mixed gas containing nitrogen gas as a main component.
【請求項2】 200℃以上の温度で熱処理を施すこと
を特徴とする請求項1に記載の炭化珪素半導体の熱処理
方法。
2. The heat treatment method for a silicon carbide semiconductor according to claim 1, wherein the heat treatment is performed at a temperature of 200 ° C. or higher.
【請求項3】 炭化珪素半導体上にオーミック電極用金
属を形成した後、窒素ガス中若しくは窒素ガスを主成分
とする混合ガス中で熱処理を施し、オーミック接触をと
ることを特徴とする炭化珪素半導体装置の製造方法。
3. A silicon carbide semiconductor, comprising: forming a metal for an ohmic electrode on a silicon carbide semiconductor; and performing a heat treatment in a nitrogen gas or a mixed gas containing a nitrogen gas as a main component to form an ohmic contact. Device manufacturing method.
【請求項4】 炭化珪素半導体上にソース、ドレイン用
金属膜を形成し、窒素ガス中若しくは窒素ガスを主成分
とする混合ガス中で熱処理を施して、オーミック接触を
形成後、炭化珪素半導体上にショットキー電極を形成す
ることを特徴とする炭化珪素半導体装置の製造方法。
4. A metal film for source and drain is formed on a silicon carbide semiconductor, and heat treatment is performed in a nitrogen gas or a mixed gas containing nitrogen gas as a main component to form an ohmic contact. Forming a Schottky electrode on a silicon carbide semiconductor device.
JP32025798A 1998-11-11 1998-11-11 Method for manufacturing silicon carbide semiconductor device Expired - Lifetime JP3996282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32025798A JP3996282B2 (en) 1998-11-11 1998-11-11 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32025798A JP3996282B2 (en) 1998-11-11 1998-11-11 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2000150417A true JP2000150417A (en) 2000-05-30
JP3996282B2 JP3996282B2 (en) 2007-10-24

Family

ID=18119492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32025798A Expired - Lifetime JP3996282B2 (en) 1998-11-11 1998-11-11 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3996282B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627964B2 (en) 2000-08-10 2003-09-30 Ngk Spark Plug Co., Ltd. Gas sensor
JP2006524016A (en) * 2003-03-03 2006-10-19 クリー インコーポレイテッド Nitride-based integrated acoustic wave device and method for manufacturing nitride-based integrated acoustic wave device
JP2007173841A (en) * 2005-12-22 2007-07-05 Cree Inc Silicon carbide bipolar junction transistor having silicon carbide passivation layer on base region and method of fabricating thereof
US7898047B2 (en) 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP4690485B2 (en) * 2007-10-24 2011-06-01 パナソニック株式会社 Manufacturing method of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627964B2 (en) 2000-08-10 2003-09-30 Ngk Spark Plug Co., Ltd. Gas sensor
JP2006524016A (en) * 2003-03-03 2006-10-19 クリー インコーポレイテッド Nitride-based integrated acoustic wave device and method for manufacturing nitride-based integrated acoustic wave device
US7875910B2 (en) 2003-03-03 2011-01-25 Cree, Inc. Integrated nitride and silicon carbide-based devices
US7898047B2 (en) 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
JP4740836B2 (en) * 2003-03-03 2011-08-03 クリー インコーポレイテッド Nitride-based integrated acoustic wave device and method for manufacturing nitride-based integrated acoustic wave device
US8035111B2 (en) 2003-03-03 2011-10-11 Cree, Inc. Integrated nitride and silicon carbide-based devices
US8502235B2 (en) 2003-03-03 2013-08-06 Cree, Inc. Integrated nitride and silicon carbide-based devices
JP2007173841A (en) * 2005-12-22 2007-07-05 Cree Inc Silicon carbide bipolar junction transistor having silicon carbide passivation layer on base region and method of fabricating thereof
JP4690485B2 (en) * 2007-10-24 2011-06-01 パナソニック株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3996282B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP5150802B2 (en) Low doped layers for nitride based semiconductor devices
JP2786952B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP5565895B2 (en) Semiconductor device
Haydl et al. Ytterbium‐doped InP light‐emitting diode at 1.0 μm
US5229625A (en) Schottky barrier gate type field effect transistor
US20160190276A1 (en) Method and system for in-situ etch and regrowth in gallium nitride based devices
US7964425B2 (en) Method for manufacturing p type gallium nitride based device
JPH1022494A (en) Ohmic electrode and forming method therefor
JPH09301799A (en) Formation of high-resistance silicon carbide layer and silicon carbide semiconductor device
JP3812366B2 (en) Method for producing group III nitride compound semiconductor device
JP3996282B2 (en) Method for manufacturing silicon carbide semiconductor device
Nikolaev et al. GaN pn-structures grown by hydride vapor phase epitaxy
JPH0661475A (en) Group iv semiconductor element containing carbon and its manufacture
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3924628B2 (en) Method for manufacturing SiC Schottky diode
JPH08107223A (en) Manufacture of silicon carbide semiconductor element
Dreifus et al. ZnSe field‐effect transistors
KR101615304B1 (en) Fabrication Methods Of Schottky Barrier Diodes
JP4175157B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20060169985A1 (en) Electrode for p-type SiC
CN113921600A (en) Low-resistance ohmic electrode structure on n-type AlGaN and preparation method thereof
JPS62209855A (en) Semiconductor element using silicon carbide
JPH06326051A (en) Ohmic electrode and formation thereof
JPS62204519A (en) Substrate structure for silicon carbide device
Watanabe et al. Effect of oxygen‐implant isolation on the recombination leakage current of n‐p+ AlGaAs graded heterojunction diodes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term