JPS63274625A - Production of fine zirconia powder having uniform particle size to be used as material for sintering - Google Patents
Production of fine zirconia powder having uniform particle size to be used as material for sinteringInfo
- Publication number
- JPS63274625A JPS63274625A JP10757887A JP10757887A JPS63274625A JP S63274625 A JPS63274625 A JP S63274625A JP 10757887 A JP10757887 A JP 10757887A JP 10757887 A JP10757887 A JP 10757887A JP S63274625 A JPS63274625 A JP S63274625A
- Authority
- JP
- Japan
- Prior art keywords
- zirconyl chloride
- zirconia
- product
- particle size
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000000843 powder Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 title abstract description 32
- 239000000463 material Substances 0.000 title abstract description 5
- 238000005245 sintering Methods 0.000 title description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 238000001354 calcination Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000008247 solid mixture Substances 0.000 claims abstract description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 4
- 150000003839 salts Chemical class 0.000 claims abstract description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 3
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract 2
- 239000002184 metal Substances 0.000 claims abstract 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 150000004679 hydroxides Chemical class 0.000 claims description 4
- 229910001510 metal chloride Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 2
- 150000004692 metal hydroxides Chemical class 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 238000009283 thermal hydrolysis Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010987 cubic zirconia Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- DEXZEPDUSNRVTN-UHFFFAOYSA-K yttrium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Y+3] DEXZEPDUSNRVTN-UHFFFAOYSA-K 0.000 description 2
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は、工業生産に適した高効率で経済的な。[Detailed description of the invention] The invention is highly efficient and economical, suitable for industrial production.
焼結体用のジルコニア整粒微粉末の製造方法に関するも
のである。The present invention relates to a method for producing sized zirconia fine powder for sintered bodies.
一般に焼結体用、特に酸化物の焼結に用いる原料粉末は
、比較的低温での緻密化達成のために。The raw material powder used for sintering in general, especially for sintering oxides, is used to achieve densification at relatively low temperatures.
各粉末粒子は高純度、微粒子、均一粒径1球状形。Each powder particle has high purity, fine particles, uniform particle size and spherical shape.
及び粉末粒子間が無強固凝集であることが望まれる。し
かし微粒子に過ぎると、焼結活性は増すが反面粒子間の
強固凝集を生じ易く、成形密度も上がらない等の欠点が
増大する。本発明者らの実験によれば、ジルコニアセラ
ミックス及びジルコニア分散強化セラミックスなどの焼
結体用として使用される単斜ジルコニア微粉末やY、0
.などを固溶した正方または立方ジルコニア微粉末では
、0.1μm以下の超微粒子はむしろ有害であり、Q、
371m程度以上の比較的粗大な均一粒径の微粒子粉末
が適している。しかし現在行われている焼結体用ジルコ
ニア微粉末の工業的製造方法は、単斜ジルコニア微粉末
、及びY20a 、 CaO、MgOなどで安定化した
正方乃至立方ジルコニア微粉末とも、ジルコニウムの水
酸化物や共沈水酸化物の仮焼、もしくはジルコニウム化
合物の加水分解生成物やそれとの共沈物の仮焼によるも
ので、水酸化物からのものは粒子が不規則に粗大化し、
また加水分解生成物は超微粒子過ぎて仮焼で局部的な焼
結や強固凝集粗大化が起こり、いずれも不規則形状の2
粒径分子5 (7)広いジルコニア粉末となり、焼結体
用として必ずしも満足できるものではなかった。It is also desired that there is no solid aggregation between the powder particles. However, if the particles are too fine, the sintering activity increases, but on the other hand, strong agglomeration between particles tends to occur, and disadvantages such as the inability to increase compaction density increase. According to experiments conducted by the present inventors, monoclinic zirconia fine powder used for sintered bodies such as zirconia ceramics and zirconia dispersion-strengthened ceramics and Y, 0
.. In the case of square or cubic zirconia fine powder in which Q,
Fine particle powder with a relatively coarse uniform particle size of about 371 m or more is suitable. However, the current industrial manufacturing method of zirconia fine powder for sintered bodies uses monoclinic zirconia fine powder, tetragonal to cubic zirconia fine powder stabilized with Y20a, CaO, MgO, etc., and zirconium hydroxide. This is due to the calcination of hydroxide or co-precipitated hydroxide, or the calcination of hydrolysis products of zirconium compounds or co-precipitates with them.For those made from hydroxide, the particles become coarse and irregular.
In addition, the hydrolysis products are extremely fine particles, and local sintering and strong agglomeration occur during calcination, both of which result in irregularly shaped 2
Particle size molecule: 5 (7) The zirconia powder was wide, and was not necessarily satisfactory for use in sintered bodies.
本発明は、これらの欠点のない、肚較的粒径分布の揃っ
た。0.3μm程度以上の比較的粗大な微粒子を生成す
ることのできる。極めて経済的な改良型加熱加水分解と
その後の処理からなる焼結体用のジルコニア整粒微粉末
の新しい製造方法を提供するものである。本発明者は、
結晶性含水塩化ジルコニルを直接密閉容器中で150〜
300℃の温度に加熱して長時間保持すると、自らの結
晶水によって徐々に加水分解し、白色のペースト状混合
物となることを初めて見いだした。このペースト状混合
物は、これを水に分散させて電子顕微鏡で観察すると、
約0°1ノ1m程度以下の極めて微細な超微粒子からな
り、また乾燥物をX線で調べろと単斜型のジルコニア超
微結晶である。しかし1本発明者は更に、このペースト
状混合物を、生成した後で密閉を解きそのまま常温まで
冷却することなく直接加熱脱水固化乾燥して走査電子顕
微鏡で観察することにより、これが2〜Q、7zrm位
の比較的粗大な、比較的均一な球状の凝集粒子を形成し
ていることを見いだしf:oI、かも注目すべきことに
。The present invention does not have these drawbacks and has a relatively uniform particle size distribution. Relatively coarse particles of about 0.3 μm or more can be produced. The present invention provides a new method for producing sized fine zirconia powder for sintered bodies, which comprises extremely economical improved thermal hydrolysis and subsequent treatment. The inventor is
Crystalline hydrated zirconyl chloride is directly heated to 150~
It was discovered for the first time that when heated to a temperature of 300°C and held for a long time, it gradually hydrolyzed by its own water of crystallization, forming a white paste-like mixture. When this paste-like mixture is dispersed in water and observed under an electron microscope, it shows that
It is composed of extremely fine ultrafine particles of about 0° 1 m or less, and when examined with X-rays when dried, it is a monoclinic zirconia ultrafine crystal. However, the present inventor further discovered that after the paste mixture was produced, it was directly heated, dehydrated, and solidified without being cooled to room temperature without being unsealed, and then observed with a scanning electron microscope. It is noteworthy that f:oI was found to form relatively coarse and relatively uniform spherical agglomerated particles.
一度充分に乾燥した後では再び水もしくは塩酸などの酸
を加えて懸濁液としても、この球状凝集粒子はもはや0
.01μm程度以下の超微粒子には分散し食いで1球状
の凝集した形状を保つことが分かった。本発明はこれら
の発見に基づくものである。Once sufficiently dried, even if water or an acid such as hydrochloric acid is added again to create a suspension, these spherical aggregated particles will no longer be 0.
.. It was found that ultrafine particles of about 0.01 μm or less were dispersed and kept in a single spherical agglomerated shape. The present invention is based on these discoveries.
従って本発明方法は、結晶性含水塩化ジルコニルを直接
密閉容器中で150〜300″Cの温度に加熱処理する
ことを第1の特徴とし、またジルコニアの結晶が生成後
能の処理を加える前にそのまま加熱脱水同化乾燥するこ
とを第2の特徴とする。すなわら1本発明は、結晶性含
水塩化ジルコニルlli独、または結晶性含水塩化ジル
コニア微粉末としてこれにZ「02に固溶可能な金属酸
化物となる金舅塩または水酸化物の1種以上をジルコニ
ウムに対するモル比で0.2以下の割合で含む固体混合
物を、密閉容器中で150〜300℃の温度に加熱して
ジルコニアが生成結晶化するに充分な時間保持し。Therefore, the first feature of the method of the present invention is that crystalline hydrated zirconyl chloride is directly heat-treated at a temperature of 150 to 300''C in a closed container, and also before the zirconia crystals are formed and subjected to a The second feature is that it is heated, dehydrated, assimilated and dried as it is.In other words, the present invention provides crystalline hydrated zirconyl chloride or crystalline hydrated zirconia chloride fine powder which can be solid-dissolved in Z'02. A solid mixture containing one or more types of metal oxides such as Kinbo salt or hydroxide in a molar ratio of 0.2 or less to zirconium is heated in a closed container to a temperature of 150 to 300°C to form zirconia. Hold for sufficient time for crystallization to form.
次いで容器の密閉を解き生成物をそのまま加熱脱水し1
乾燥または仮焼することを特徴とする方法。Next, the container was unsealed and the product was heated and dehydrated.
A method characterized by drying or calcining.
また、結晶性含水塩化ジルコニル単独、またこれに可溶
性の金属塩化物もしくは水酸化物の1種以上を含有する
固体混合物を、密閉容器中で150〜300℃の温度に
加熱してジルコニアが生成結晶化するに充分な時間保持
し1次いで容器の密閉を解き生成物をそのまま加熱脱水
し、一度充分に固化乾燥させた後再び水または酸を加え
て懸濁状態とし、可溶性成分の除去や追加成分の添加共
沈など化学組成の調節を行った後、600℃以上の温度
に仮焼することを特徴とする方法によって8比較的粒径
分布の揃った。0.3pm程度以上の比較的粗大な微粒
子を得ることを可能にするものである。In addition, crystalline hydrous zirconyl chloride alone and a solid mixture containing one or more metal chlorides or hydroxides soluble therein are heated to a temperature of 150 to 300°C in a closed container to form zirconia crystals. 1. Next, the container is unsealed, and the product is heated and dehydrated as it is. Once sufficiently solidified and dried, water or acid is added again to make it into a suspended state, and soluble components are removed and additional components are removed. A relatively uniform particle size distribution of 8 was achieved by a method characterized by adjusting the chemical composition, such as adding coprecipitation, and then calcining at a temperature of 600° C. or higher. This makes it possible to obtain relatively coarse particles of about 0.3 pm or more.
本発明方法では、結晶性含水塩化ジルコニルを直接密閉
容器中で加熱処理することを特徴とするが、付n水や少
量の自由水の混在はジルコニアに対するモル比で5まで
は許されろ。また添加物としての含水塩の結晶水は差し
支えないだけでなく。The method of the present invention is characterized in that the crystalline hydrous zirconyl chloride is directly heat-treated in a closed container, but the presence of mixed water and a small amount of free water is allowed at a molar ratio of up to 5 to zirconia. In addition, crystallization water of hydrated salt as an additive is not only acceptable.
ある場合には高温で加水分解に役立ち低温で水を固定す
るのでむしろ好ましく、まt:この場合には凝集粒子径
はいくらか小さくなることがある。故に本発明において
添加物として用いられる可溶性の金属塩化物または水酸
化物は粒径調節とプロセスの安定化の両面に役立つもの
である。しかし最終焼結体中に残留しても害のないもの
が望ましい。In some cases, high temperatures may be preferable since they aid in hydrolysis and low temperatures may fix water; in other cases, the aggregate particle size may be somewhat smaller. Therefore, the soluble metal chlorides or hydroxides used as additives in the present invention are useful for both particle size control and process stabilization. However, it is desirable to use a substance that does not cause any harm even if it remains in the final sintered body.
この意味で使用されろ金属イオンとしてはCa”。The metal ion used in this sense is Ca''.
Mg2+1.A11+などが適当である。本発明により
直接密閉容器中で加熱処理して生成する比較的粗大な凝
集微粒子は、はぼ球状をしており、 1000℃以上
の比較的高温の仮焼でも、凝集粒子内部で焼結して緻密
化するが、凝集粒子間での焼結による強固凝集は起こり
難(1粒径の比較的揃った。優れた焼結体用均一粒径の
ジルコニア微粉末となるのである。Mg2+1. A11+ etc. are suitable. The relatively coarse agglomerated fine particles produced by direct heat treatment in a closed container according to the present invention have a spherical shape, and even when calcined at a relatively high temperature of 1000°C or higher, the particles do not sinter inside the agglomerated particles. Although it is densified, strong agglomeration due to sintering between the aggregated particles is difficult to occur (the particle size is relatively uniform. This results in a fine zirconia powder with a uniform particle size for excellent sintered bodies).
本発明方法に於ては、加熱加水分解によって得られるペ
ースト状混合物を先ず加熱脱水固化乾燥することが極め
て重要である。このペースト状混合物に先に少しでも水
を加えt:す、あるいはまた常温まで冷却し、長時間放
置してから加熱脱水固化した場合には、凝集粒子の破壊
や不規則な粗大化が起こり、再び水もしくは塩酸を加え
て懸濁液としても懸濁粒子は、均一に凝集したものとな
らない。しかし、加水分解時に塩化カルシュラムなどの
強電解質が充分量、少なくともジルコニウムに対するモ
ル比で0.5以上共存すると、冷却時に結晶水として水
をとるためか、または電離したイオンが水を配位してジ
ルコニア超微結晶の分散を妨げろためか、常温に冷却し
た後でも比較的粗大な均一凝集粒子はそのまま残り、加
熱脱水固化乾燥によって安定化し、再び水もしくは塩酸
を加えることによって比較的粗大な均一凝集微粒子の懸
濁液を得ることができる。しかし加水分解生成物に、水
もしくは塩酸を加えて懸濁液とする前に一度充分加熱脱
水固化乾燥することは2本発明に於て不可欠の条件であ
る。また本発明に於て、塩素イオンの効果は必ずしも明
らかでないが、塩素・イオンは加熱加水分解と粒子粗大
化に必要であり。In the method of the present invention, it is extremely important to first dehydrate and solidify and dry the paste-like mixture obtained by thermal hydrolysis. If even a small amount of water is added to this paste-like mixture first, or if it is cooled to room temperature and left to stand for a long time before being heated and solidified, the agglomerated particles may be broken or irregularly coarsened. Even if water or hydrochloric acid is added again to form a suspension, the suspended particles will not be uniformly aggregated. However, if a sufficient amount of a strong electrolyte such as calcium chloride coexists during hydrolysis, with a molar ratio of at least 0.5 or more to zirconium, water may be taken as crystal water during cooling, or ionized ions may coordinate water. Perhaps because it prevents the dispersion of the zirconia ultrafine crystals, relatively coarse, uniform agglomerated particles remain even after cooling to room temperature, and are stabilized by heating, dehydration, solidification, and drying. A suspension of aggregated fine particles can be obtained. However, before adding water or hydrochloric acid to the hydrolyzed product to form a suspension, it is an essential condition for the present invention that the product be sufficiently heated to dehydrate and solidify and dry. Further, in the present invention, although the effect of chlorine ions is not necessarily clear, chlorine ions are necessary for thermal hydrolysis and particle coarsening.
可溶性金属塩化物は比較的粗大な均一凝集微粒子の安定
化に役立つものと思われる。The soluble metal chloride appears to be useful in stabilizing relatively coarse, uniformly aggregated particles.
本発明方法は1以上によって明らかなように。The method of the invention is as evidenced by one or more of the following.
結晶性含水塩化ジルコニルを直接密閉容器中で加熱処理
するので作業が極めて簡単となり、最も濃厚なジルコニ
ウム含有状態に於て大ち1の処理が効率的に行われ、簡
単なプロセスによって比較的均一に凝集粗大化しt:焼
結体用に適するジルコニア微粉末微粒子を得ることを可
能にするもので、ジルコニアセラミックスまたはジルコ
ニア分散強化セラミックス用の微粉末の工業生産のみな
らず。Since the crystalline hydrous zirconyl chloride is heat-treated directly in a sealed container, the work is extremely simple, and most of the treatment is carried out efficiently in the most concentrated zirconium-containing state, and the process is relatively uniform through a simple process. Agglomeration and coarsening: This makes it possible to obtain zirconia fine powder particles suitable for sintered bodies, and is not only used in the industrial production of fine powders for zirconia ceramics or zirconia dispersion-strengthened ceramics.
高性能セラミックスの工業生産にとっても極めて価値の
高いものである。It is also extremely valuable for industrial production of high-performance ceramics.
実施例1
試薬塩化ジルコニル(ZrOCl2・8H2o)約25
1ヲ。Example 1 Reagent zirconyl chloride (ZrOCl2.8H2o) approx. 25
1 wo.
そのままステンレス製容器の中に納めt:テフロン容器
中に入れ、全体を密閉し、 200″Cに保持された恒
温器中に入れて加熱し、5日間保持し、生成した白色の
ペースト状物を直ちに150℃の乾燥型中に入れて乾燥
固化させた。これを乳鉢で粉砕し。Place it in a stainless steel container as it is: Place it in a Teflon container, seal the whole thing, heat it in a thermostat kept at 200″C, and keep it for 5 days. Immediately, it was placed in a drying mold at 150°C to dry and solidify.This was ground in a mortar.
蒸留水を加えて可溶性の成分を抽出し、遠心分離を繰り
返して水洗し、乾燥して粉末とした。X線回折によれば
、この粉末は見掛けの結晶子径は約50人の))1斜ジ
ルコニアからなっているが、走査型電子顕微鏡によれば
各粉末粒子は比較的均一な径約1μmの凝集粒子となっ
ていた。Distilled water was added to extract the soluble components, followed by repeated centrifugation, washing with water, and drying to form a powder. According to X-ray diffraction, this powder consists of diagonal zirconia with an apparent crystallite size of about 50 particles, but scanning electron microscopy shows that each powder particle has a relatively uniform diameter of about 1 μm. The particles were agglomerated.
実施例2
試薬塩化ジルコニル(ZrOC1□−8H20)約23
9と。Example 2 Reagent zirconyl chloride (ZrOC1□-8H20) approx. 23
9 and.
塩化カルシウム(CaC1・6H20)約0.8yを秤
取して混合し、これを直接ステンレス製容器の中に納め
たテフロン容器中に入れ、全体を密閉し、200゛にに
保持された恒温器中に入れて加熱し55日間保持して水
熱処理を行い、生成した白色のペースト状物を直ちに1
50℃の乾燥型中に入れて乾燥固化させた。これを乳鉢
で粉砕した後900℃で仮焼したものは容易にほぐれて
粉末となり、この粉末は約5mo1%のCaOを固溶し
た正方ジルコニアで。Weigh out about 0.8y of calcium chloride (CaC1.6H20), mix it, put it directly into a Teflon container placed inside a stainless steel container, seal the whole thing, and place it in a constant temperature chamber kept at 200°. The white paste-like material produced was heated and held for 55 days for hydrothermal treatment.
It was placed in a drying mold at 50°C and dried and solidified. After pulverizing this in a mortar and calcining it at 900°C, it is easily loosened into a powder, and this powder is made of square zirconia with about 5 mo1% of CaO dissolved in it.
走査型電子顕微鏡によれば比較的均一な径約0.5μm
の微粒子からなっていた。According to a scanning electron microscope, the diameter is relatively uniform, approximately 0.5 μm.
It consisted of fine particles.
実施例3
試薬塩化ジルコニル(ZrOCl2−8H20)約25
ダを。Example 3 Reagent zirconyl chloride (ZrOCl2-8H20) approx. 25
Da.
そのままステンレス製容器の1月こ納めたテフロン容器
中に入れ、全体を密閉し、200℃に保持された恒温器
中に入れて加熱し、5日間保持し、生成した白色のペー
スト状物を直ちに150 ’Cの乾燥型中に入れて乾燥
固化させた。これを乳鉢で粉砕し。Place the container as it is in a Teflon container that has been stored in a stainless steel container for a month, seal the whole thing, heat it in a thermostat kept at 200℃, keep it for 5 days, and immediately remove the white paste-like material that is formed. It was placed in a drying mold at 150'C to dry and solidify. Grind this in a mortar.
蒸留水を加えて可溶性の成分を抽出し、遠心分離を繰り
返して水洗し、これに塩化イツトリウム約0.9yを加
え、アンモニア水で水酸化イツトリウムとして共沈させ
、この共沈物を乾燥後900″(:で仮焼したものは容
易にほぐれて粉末となり、この粉末は約3mol’、4
のY2O3を固溶した正方ジルコニアで、走査型電子顕
微鏡によれば比較的均一な径約0.5μmの球状の微粒
子からなっていた。Add distilled water to extract soluble components, repeat centrifugation and wash with water, add about 0.9 y of yttrium chloride, coprecipitate as yttrium hydroxide with aqueous ammonia, dry this coprecipitate and ``(:) The calcined material is easily loosened and becomes a powder, and this powder is approximately
According to a scanning electron microscope, it consisted of relatively uniform spherical fine particles with a diameter of about 0.5 μm.
実施例4
試薬塩化ジルコニル(ZrOCl2・8H20) 13
9と。Example 4 Reagent zirconyl chloride (ZrOCl2.8H20) 13
9 and.
試薬塩化マグネシュウム(MgC+2・6H20) 1
3 (J(J)混合物を、直接ステンレス製容器の中に
納めt:テフロン容器中に入れ、全体を密閉し、 20
0″Cに保持された恒温器中に入れて加熱し、5日間保
持し。Reagent Magnesium chloride (MgC+2・6H20) 1
3 (Put the J (J) mixture directly into a stainless steel container: Place it into a Teflon container and seal the whole thing, 20
Heat it in a thermostat kept at 0''C and keep it there for 5 days.
生成した白色のペースト状物を直ちに150℃の乾燥型
中に入れて乾燥固化させた。これを乳鉢で粉砕し、蒸留
水を加えて可溶性の成分を溶解し、遠心分離を繰り返し
て水洗し、乾燥して粉末とした。The resulting white paste was immediately put into a drying mold at 150°C and dried and solidified. This was ground in a mortar, distilled water was added to dissolve the soluble components, centrifuged repeatedly, washed with water, and dried to form a powder.
この粉末は見掛けの結晶子径は約40人の単斜ジルコニ
アであるが、走査型電子顕微鏡によれば比較的均一な径
約0.67zmの球状の微粒子からなっていr:。また
この乾燥前の水@濁液に塩化イツトリウム約0461を
加えて溶解し、これにアンモニア水を加えジルコニアと
水酸化イツトリウムを共沈させ、共沈物を乾燥後100
0℃で仮焼し、軽く摩砕した粉末は約3mol’、′o
のY2O3を固溶した正方ジルコニアで、走査型電子顕
微鏡によれば比較的均一な径約0.2〜0.3μmの球
状の微粒子からなっていtこ。This powder has an apparent crystallite size of about 40 monoclinic zirconia, but according to a scanning electron microscope, it consists of relatively uniform spherical fine particles with a diameter of about 0.67 zm. In addition, approximately 0.461 ythtrium chloride was added to this water @ suspension before drying to dissolve it, and ammonia water was added to this to coprecipitate zirconia and yttrium hydroxide. After drying the coprecipitate, 100%
The powder calcined at 0°C and lightly ground is approximately 3 mol','o
According to a scanning electron microscope, it consists of relatively uniform spherical fine particles with a diameter of about 0.2 to 0.3 μm.
Claims (2)
水塩化ジルコニルを主成分としてこれにZrO_2に固
溶可能な金属酸化物となる金属塩または水酸化物の1種
以上をジルコニウムに対するモル比で0.2以下の割合
で含む固体混合物を、密閉容器中で150〜300℃の
温度に加熱してジルコニアが生成結晶化するに充分な時
間保持し、次いで容器の密閉を解き生成物をそのまま加
熱脱水し、乾燥または仮焼することを特徴とする焼結体
用のジルコニア整粒微粉末の製造方法。(1) Crystalline hydrated zirconyl chloride alone, or crystalline hydrated zirconyl chloride as the main component, and one or more metal salts or hydroxides that form metal oxides that can be dissolved in ZrO_2 in a molar ratio of 0 to zirconium. A solid mixture containing a ratio of .2 or less is heated to a temperature of 150 to 300 °C in a closed container and held for a sufficient time to generate and crystallize zirconia, and then the container is unsealed and the product is heated and dehydrated as it is. A method for producing a sized zirconia fine powder for a sintered body, which comprises drying or calcining the zirconia powder.
溶性の金属塩化物もしくは水酸化物の1種以上を含有す
る固体混合物を、密閉容器中で150〜300℃の温度
に加熱してジルコニアが生成結晶化するに充分な時間保
持し、次いで容器の密閉を解き生成物をそのまま加熱脱
水し、一度充分に固化乾燥させた後再び水または酸を加
えて懸濁状態とし、可溶性成分の除去や追加成分の添加
共沈など化学組成の調節を行った後、600℃以上の温
度に仮焼することを特徴とする焼結体用のジルコニア整
粒微粉末の製造方法。(2) Zirconia is produced by heating crystalline hydrous zirconyl chloride alone or a solid mixture containing one or more metal chlorides or hydroxides soluble therein to a temperature of 150 to 300°C in a closed container. Hold for a sufficient time to crystallize, then unseal the container and heat and dehydrate the product as it is. Once sufficiently solidified and dried, water or acid is added again to make it into a suspended state, and soluble components are removed or added. A method for producing a sized zirconia fine powder for use in a sintered body, which comprises adjusting the chemical composition by adding and co-precipitating components, and then calcining it to a temperature of 600°C or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10757887A JPS63274625A (en) | 1987-04-30 | 1987-04-30 | Production of fine zirconia powder having uniform particle size to be used as material for sintering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10757887A JPS63274625A (en) | 1987-04-30 | 1987-04-30 | Production of fine zirconia powder having uniform particle size to be used as material for sintering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63274625A true JPS63274625A (en) | 1988-11-11 |
Family
ID=14462722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10757887A Pending JPS63274625A (en) | 1987-04-30 | 1987-04-30 | Production of fine zirconia powder having uniform particle size to be used as material for sintering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63274625A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0337472A2 (en) * | 1988-04-14 | 1989-10-18 | ISTITUTO GUIDO DONEGANI S.p.A. | Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide |
-
1987
- 1987-04-30 JP JP10757887A patent/JPS63274625A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0337472A2 (en) * | 1988-04-14 | 1989-10-18 | ISTITUTO GUIDO DONEGANI S.p.A. | Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62260718A (en) | Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process | |
Bogicevic et al. | Morphogenesis mechanisms in the solvothermal synthesis of BaTiO 3 from titanate nanorods and nanotubes | |
JPS61201623A (en) | Production of spherical flocculated particle of zirconia ultrafine crystal | |
JPH0214823A (en) | Production of submicron powder of zirconium oxide stabilized by yttrium oxide | |
RU2549945C2 (en) | Method of production of ceramic composite material based on aluminium and zirconium oxides | |
JPH0346407B2 (en) | ||
JPS63274625A (en) | Production of fine zirconia powder having uniform particle size to be used as material for sintering | |
JPH0472772B2 (en) | ||
JPH03141115A (en) | Production of fine yttrium oxide powder | |
JPH01122964A (en) | Zirconia stabilized by yttrium and its production | |
JPS5939367B2 (en) | Manufacturing method of zirconium oxide fine powder | |
JP3190060B2 (en) | Method for producing fine ceria solid solution tetragonal zirconia powder | |
JPH04930B2 (en) | ||
JPH06321541A (en) | Production of zirconia singly dispersed spherical ultrafine particle powder | |
JPH10114522A (en) | Production of powdery zirconium dioxide | |
JPH07118016A (en) | Uniform-composition zirconia solid solution monodisperse fine globular powder and its production | |
JP2593883B2 (en) | Method for producing alumina-zirconia composite powder and sintered body thereof | |
KR0146983B1 (en) | Process for preparing zirconia using microwave | |
RU2625388C2 (en) | Method of producing fillers for building materials | |
JPH0232216B2 (en) | ||
US2898193A (en) | Method for making titanium nitride | |
JP2952349B2 (en) | Monoclinic zirconia dense sintered body and method for producing the same | |
JPH09110420A (en) | Production of easily sinterable aluminum oxide powder and yttrium-aluminum garnet powder | |
JPH01301520A (en) | Production of alumina-zirconia multiple powder | |
Zhen et al. | Preparation of (K, Na) NbO3 powders with wide grain size distribution |