JPS63271956A - Formation of element isolation of semiconductor device - Google Patents

Formation of element isolation of semiconductor device

Info

Publication number
JPS63271956A
JPS63271956A JP10537287A JP10537287A JPS63271956A JP S63271956 A JPS63271956 A JP S63271956A JP 10537287 A JP10537287 A JP 10537287A JP 10537287 A JP10537287 A JP 10537287A JP S63271956 A JPS63271956 A JP S63271956A
Authority
JP
Japan
Prior art keywords
film
silicon
silicon nitride
nitride film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10537287A
Other languages
Japanese (ja)
Inventor
Takashi Hosaka
俊 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP10537287A priority Critical patent/JPS63271956A/en
Publication of JPS63271956A publication Critical patent/JPS63271956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize element isolation excellent in characteristics by a method wherein a polycrystalline silicon film covered by a silicon nitride film on its surface and sides serves as a mask in a selective oxidation process. CONSTITUTION:A silicon oxide film 2, polycrystalline silicon film 3, and silicon nitride film 4 are formed on a silicon semiconductor substrate 1, and are locally subjected to selective etching, together with the silicon semiconductor substrate 1, for an element isolating region 9 to be created in a later process. A silicon nitride film 6 is formed and then removed by anisotropic etching, with a portion thereof retained on the sides and top of the polycrystalline silicon film 3. The polycrystalline silicon film 3 covered by a silicon nitride film 6 serves as a mask in a process for the oxidation of the region free of the polycrystalline silicon film 3 into an element isolating region 9. Isolation realizes containing less defects.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の素子分離形成方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming element isolation in a semiconductor device.

〔発明の概要〕[Summary of the invention]

この発明は、バーズビークが小さく欠陥の少ない素子分
離形成方法に関するもので、半導体表面に薄い酸化膜を
形成した後、多結晶シリコン膜を成長させ、さらにシリ
コン窒化膜を積層させる。
This invention relates to a device isolation formation method with small bird's beaks and few defects, in which a thin oxide film is formed on a semiconductor surface, a polycrystalline silicon film is grown, and a silicon nitride film is further laminated.

次に将来素子骨lTi1lWl域となる部分のシリコン
窒化膜、多結晶シリコン膜、シリコン酸化膜および半導
体基板を選択的にエツチングする。
Next, the silicon nitride film, the polycrystalline silicon film, the silicon oxide film, and the semiconductor substrate are selectively etched in a portion that will become the device bone lTi1lwl region in the future.

次に、シリコン窒化膜を積層し、反応性ドライエツチン
グ等の異方性エツチング法を用い、このシリコン窒化膜
を異方性エツチングし、多結晶シリコン膜の側壁と上部
とにシリコン窒化膜を残し、他の領域のシリコン窒化膜
を完全に除去する。このシリコン窒化膜で被れた多結晶
シリコン膜をマスクにして、多結晶シリコン膜のない領
域を酸化し素子分離領域を形成する。次に活性領域とな
る部分に存在する窒化膜、多結晶シリコン膜および酸化
膜を順次除去する。
Next, a silicon nitride film is laminated, and this silicon nitride film is anisotropically etched using an anisotropic etching method such as reactive dry etching, leaving a silicon nitride film on the sidewalls and top of the polycrystalline silicon film. , the silicon nitride film in other areas is completely removed. Using the polycrystalline silicon film covered with this silicon nitride film as a mask, regions where the polycrystalline silicon film is not present are oxidized to form element isolation regions. Next, the nitride film, polycrystalline silicon film, and oxide film existing in the portion that will become the active region are sequentially removed.

以上により厚い酸化膜で被れた素子分離3M域と半導体
表面が露出している活性領域が形成される。
Through the above steps, an element isolation region 3M covered with a thick oxide film and an active region in which the semiconductor surface is exposed are formed.

この後、活性領域には半導体素子が作成される。After this, a semiconductor element is created in the active region.

〔従来の技術〕[Conventional technology]

半導体素子の素子分離とて従来から選択酸化法(LOC
O3法)が使用されている。このり。
Selective oxidation (LOC) has traditionally been used to isolate semiconductor devices.
O3 method) is used. This is it.

CO8法は次の様なものである。第2図falに示す様
にシリコンなどの半導体表面1)を酸化し選択酸化時に
発生する応力を緩和するための緩衝用シリコン酸化膜1
2を形成し、さらに選択酸化時の酸化マスク用材料とし
てのシリコン窒化膜13をCVD法にて積層する0次に
第2図(blに示す様に写真食刻法を用いレジスト14
を所望の形状に形成し、このレジス14をマスクとして
シリコン窒化膜13をエツチングする。さらに第2図(
C1に示す様に酸化を行うとシリコン窒化膜のない領域
は酸化され厚い素子分離用の酸化膜15が形成され、一
方シリコン窒化膜13で被れていない領域は殆ど酸化さ
れない。
The CO8 method is as follows. As shown in Figure 2 fal, a silicon oxide film 1 for buffering is used to oxidize a semiconductor surface 1) such as silicon and relieve stress generated during selective oxidation.
A silicon nitride film 13 is formed using the CVD method as a material for an oxidation mask during selective oxidation.As shown in FIG.
is formed into a desired shape, and the silicon nitride film 13 is etched using the resist 14 as a mask. Furthermore, Figure 2 (
When oxidation is performed as shown in C1, the region without the silicon nitride film is oxidized and a thick oxide film 15 for element isolation is formed, while the region not covered with the silicon nitride film 13 is hardly oxidized.

次に第2図fdlに示す様にシリコン窒化膜および緩衝
用シリコン酸化膜を順次エツチング除去する事により、
素子分離領域16と活性領域17が完成する。
Next, as shown in FIG.
Element isolation region 16 and active region 17 are completed.

この後、活性領域17には半導体素子が形成される。After this, a semiconductor element is formed in the active region 17.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のLOCO3法では第2図(dlに示す様に素子分
離領域の境界から活性領域へ長さlの酸化膜が細長く伸
び、活性領域を狭くしてしまう。(これをバーズ・ピー
クという)このバーズ・ピークの長さlは酸化条件等に
よっても異なるが、通常は0.5μm以上あり、素子分
子領域も狭くする事ができない、こめバーズ・ピークを
小さくする方法として、緩衝用シリコン酸化膜を薄くす
るかあるいはシリコン窒化膜を厚くする方法があるが、
どちらの場合もLOGO3酸化工程で半導体基板に大き
な応力を及ぼし多数の結晶欠陥を誘起してしまい、素子
、分離特性を劣化させる。従って良好な素子分離特性を
保持しながら、上記のバーズ・ピークを小さくする事は
、従来のLOCO3法を用いて不可能である。
In the conventional LOCO3 method, as shown in Figure 2 (dl), an oxide film with a length l extends from the boundary of the element isolation region to the active region, narrowing the active region. (This is called a bird's peak.) The length l of the bird's peak varies depending on the oxidation conditions, etc., but it is usually 0.5 μm or more, and the device molecular area cannot be narrowed.As a method to reduce the bird's peak, a silicon oxide film for buffering is used. There are ways to make the silicon nitride film thinner or thicker.
In either case, large stress is applied to the semiconductor substrate in the LOGO3 oxidation step, inducing a large number of crystal defects, which deteriorates the device and isolation characteristics. Therefore, it is impossible to reduce the above-mentioned bird's peak while maintaining good element isolation characteristics using the conventional LOCO3 method.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためにこの発明は、半導体基板(
シリコン)と同程度の熱膨張係数を持つ多結晶シリコン
膜の側面と表面をシリコン窒化膜で被い、この多結晶シ
リコン膜を酸化マスクとして、多結晶シリコン膜で被れ
ていない領域を酸化する。また、多結晶シリコン膜で被
れていない領域の半導体基板を酸化前に、ある程度つま
り厚いLOGO3酸化膜の概ね半分の厚みに相当する量
をエツチングしておく。
In order to solve the above problems, this invention provides a semiconductor substrate (
The sides and surface of a polycrystalline silicon film, which has a thermal expansion coefficient similar to that of silicon (silicon), are covered with a silicon nitride film, and the areas not covered with the polycrystalline silicon film are oxidized using this polycrystalline silicon film as an oxidation mask. . Further, before oxidizing the semiconductor substrate in the area not covered with the polycrystalline silicon film, a certain amount, that is, an amount corresponding to approximately half the thickness of the thick LOGO3 oxide film, is etched.

〔作用〕[Effect]

シリコン基板と熱膨張係数の等しい多結晶シリコン膜を
側壁シリコン窒化膜を酸化マスクとして使用しているか
ら、バーズ・ピークが小さく欠陥の少ない素子分離が可
能となる。またLOGO3酸化前に半導体基板を相当量
エツチングしているため、素子分離領域と活性領域の段
差を小さくする事ができる。
Since a polycrystalline silicon film having the same coefficient of thermal expansion as the silicon substrate is used and a sidewall silicon nitride film is used as an oxidation mask, element isolation with small bird peaks and fewer defects is possible. Furthermore, since the semiconductor substrate is etched to a considerable extent before LOGO3 oxidation, the step difference between the element isolation region and the active region can be reduced.

〔実施例〕〔Example〕

本発明の実施例を第1図+al〜(aに示す。第1図t
a+に示す様にシリコン(St)などの半導体基板lの
上に絶縁膜2を積層する。この半導体基板1はもちろん
シリコン以外の半導体基板でもよい0例えば、砒化ガリ
ウム(GaAs)インジウムリン(1,P)等の化合物
半導体でもよい、また絶縁膜2は一般にはシリコン酸化
膜であり、酸化法でも化学気相成長(CVD)法でも物
理成長法(PVD)でも成長できる。このシリコン酸化
膜2は緩衝(パッド)酸化膜とも言われ、後工程のフィ
ールド酸化の時に半導体基板中に誘発する応力を緩和す
る働きを持っている0選択酸化(LOGO3)法におい
てこのシリコン酸化膜2が厚いほどバーズビークは長く
なる傾向にある。逆にシリコン酸化膜2が薄いほどバー
ズビークは短くなるが、一方で半導体基板中に欠陥密度
が多くなる0次にシリコン酸化膜2の上に多結晶シリコ
ン膜3を成長させる。この多結晶シリコン膜3の上にさ
らにシリコン窒化膜4を積層する。多結晶シリコン膜3
はCVD法でもPVD法でも積層する事ができる。CV
D法の場合多結晶シリコンll!3はシランガス(Si
Ht)またはジシランガス(Sites)またはトリシ
ラン(SiJs)等のシラン系ガス(Si+mHn)を
用いた化学気相成長で形成される。またシリコン窒化膜
4もCVD法でもPVD法でも積層する事ができる。C
VD法の場合、シリコン窒化膜4はジクロルシランガス
(SiHzClg)とアンモニアガス(NHs)との反
応により、またはシランガス(SiHt)とアンモニア
ガス(NH;)との反応により形成される0次に第1回
申)に示す様に、上記のシリコン窒化膜4と多結晶シリ
コン膜3とシリコン酸化膜2を写真食刻法等の方法を用
いて選択的にエツチング除去する。すなわち、素子分離
領域となる部分のシリコン窒化膜4および多結晶シリコ
ンW143およびシリコン酸化膜2をエツチング除去す
る。このエツチングは湿式法でも良いがサイドエツチン
グの少ない乾式法がより良い、乾式法の中で特に異方性
の大きい反応性イオンエツチング(通称RrE)やプラ
ズマエツチング(通称PPE)が好ましい、3ミクロン
以下の微細なパターンを作成するにはこの異方性エツチ
ングが特に必要となる。また、シリコン酸化膜2は一般
には500Å以下と薄いので湿式法でエツチングしても
特に問題はない、シリコン窒化膜4と多結晶シリコンI
t!3とシリコン酸化1l12とを別々のエツチング装
置でエツチングしても良いし、同一のエツチング装置を
用いて連続的にエツチングしても良い。シリコン窒化膜
4と多結晶シリコン[3をエツチング除去しない部分は
将来活性領域となる0次に第1図(C1に示す様にシリ
コン窒化[4等の薄膜が除去され、シリコン等の半導体
基板1の露出した部分の半導体基板をエツチングする。
Embodiments of the present invention are shown in Fig. 1+al to (a).
As shown at a+, an insulating film 2 is laminated on a semiconductor substrate l made of silicon (St) or the like. Of course, this semiconductor substrate 1 may be a semiconductor substrate other than silicon.For example, it may be a compound semiconductor such as gallium arsenide (GaAs) or indium phosphide (1,P).The insulating film 2 is generally a silicon oxide film, and the oxidation method However, it can be grown using either chemical vapor deposition (CVD) or physical growth (PVD). This silicon oxide film 2 is also called a buffer (pad) oxide film, and this silicon oxide film is used in the zero selective oxidation (LOGO3) method, which has the function of relieving stress induced in the semiconductor substrate during field oxidation in the later process. The thicker the number 2, the longer the bird's beak tends to be. Conversely, the thinner the silicon oxide film 2, the shorter the bird's beak, but on the other hand, the polycrystalline silicon film 3 is grown on the zero-order silicon oxide film 2, which increases the defect density in the semiconductor substrate. A silicon nitride film 4 is further laminated on this polycrystalline silicon film 3. Polycrystalline silicon film 3
can be laminated by CVD or PVD. CV
In case of method D, polycrystalline silicon ll! 3 is silane gas (Si
It is formed by chemical vapor deposition using a silane-based gas (Si+mHn) such as Ht) or disilane gas (Sites) or trisilane (SiJs). Further, the silicon nitride film 4 can also be deposited by CVD or PVD. C
In the case of the VD method, the silicon nitride film 4 is formed by a reaction between dichlorosilane gas (SiHzClg) and ammonia gas (NHs) or a reaction between silane gas (SiHt) and ammonia gas (NH). As shown in step 1), the silicon nitride film 4, polycrystalline silicon film 3, and silicon oxide film 2 are selectively etched away using a method such as photolithography. That is, the silicon nitride film 4, polycrystalline silicon W143, and silicon oxide film 2 in portions that will become element isolation regions are removed by etching. This etching can be done by a wet method, but a dry method with less side etching is better.Among the dry methods, reactive ion etching (commonly known as RrE) and plasma etching (commonly known as PPE), which have a large anisotropy, are particularly preferable. This anisotropic etching is especially necessary to create fine patterns. Furthermore, since the silicon oxide film 2 is generally thin, 500 Å or less, there is no particular problem even if it is etched by a wet method.
T! 3 and silicon oxide 1l12 may be etched using separate etching apparatuses, or may be etched continuously using the same etching apparatus. The area where the silicon nitride film 4 and the polycrystalline silicon film 4 are not removed by etching will become an active region in the future. Next, as shown in FIG. The exposed portion of the semiconductor substrate is etched.

この半導体基板のエツチングの目的は選択酸化を行った
後に発生する活性領域と素子分離領域との段差を小さく
する事とバーズビークを少なくする事および半導体基板
中の欠陥を低減する事である。この半導体基板lのエツ
チングに際し、活性領域となるべき部分のシリコン窒化
[4の上に存在するレジスト等のマスク材料はあっても
良い事はもちろんである。
The purpose of this etching of the semiconductor substrate is to reduce the step difference between the active region and the element isolation region that occurs after selective oxidation, to reduce bird's beaks, and to reduce defects in the semiconductor substrate. Of course, when etching the semiconductor substrate 1, there may be a mask material such as a resist present on the silicon nitride [4] in the portion that is to become the active region.

ただ、第1開山)と(C1との間に酸化等の熱処理工程
が入る場合はレジスト等のマスク材料は除去されねばな
らない、第1図(C)におけるシリコンエツチングの方
法として、湿式法と乾式法がある。湿式法の場合、シリ
コン等の半導体基板を異方的にエツチングするエツチン
グ液が望ましい、たとえば、水酸化カリウム等のアルカ
リ液でエツチングする事により異方的にエツチングでき
る。
However, if a heat treatment process such as oxidation is performed between C1 and C1, the mask material such as resist must be removed. In the case of the wet method, an etching solution that etches a semiconductor substrate such as silicon anisotropically is preferable. For example, etching can be performed anisotropically by etching with an alkaline solution such as potassium hydroxide.

また、乾式法の場合、特に異方性エツチング可能なRr
EやPPEが用いられる。シリコン等の半導体基板中を
エツチングする量は、将来選択酸化した時に活性領域と
素子分離領域とが平坦になる様に選ばれた量である0例
えは半導体基板1がシリコンの場合、素子骨MeH域の
フィールド酸化膜の厚みが6000人ならば、シリコン
基板をエツチングする量は約3000人となる。
In addition, in the case of the dry method, especially Rr, which can be anisotropically etched,
E and PPE are used. The amount of etching in the semiconductor substrate such as silicon is selected so that the active region and the element isolation region will be flat when selectively oxidized in the future.For example, if the semiconductor substrate 1 is silicon, the element bone MeH If the thickness of the field oxide film in the area is 6000 mm, the amount of silicon substrate to be etched will be approximately 3000 mm.

次に第1図(d+に示す様に、第2のシリコン窒化I!
*6を積層する。この窒化膜6も窒化膜4と同様にCV
D法またはPVD法等の方法により形成できる。次に異
方性の強いドライエツチング法(RIEまたはPPEま
たはイオンシリング、またはスパックエツチング等の方
法)を用いて第2のシリコン窒化[6を全面エツチング
する。この時素子分M fil域となる部分の窒化膜は
完全にエツチング除去する事が望ましい、この異方性エ
ツチングより平坦部のシリコン窒化膜6はすべてエツチ
ングされるが、多結晶シリコン膜3の側壁部分のシリコ
ン窒化膜6の厚みは厚いので、多結晶シリコン膜3の側
壁にシリコン窒化膜6はスペーサーとして残っている。
Next, as shown in FIG. 1 (d+), a second silicon nitride I!
Layer *6. This nitride film 6 also has a CV similar to the nitride film 4.
It can be formed by a method such as the D method or the PVD method. Next, the second silicon nitride [6] is etched over the entire surface using a highly anisotropic dry etching method (such as RIE, PPE, ion silling, or spack etching). At this time, it is desirable to completely remove the nitride film in the M fil region of the device by etching.Through this anisotropic etching, all of the silicon nitride film 6 in the flat area is etched away, but the sidewalls of the polycrystalline silicon film 3 are completely etched away. Since the silicon nitride film 6 is partially thick, the silicon nitride film 6 remains on the side wall of the polycrystalline silicon film 3 as a spacer.

この様子は第1図telに示されている。This situation is shown in FIG.

次に酸化雰囲気の中で酸化を行うと第1図(f)に示す
様に、窒化膜で被れた多結晶シリコン膜3がある部分以
外の領域には厚い酸化膜7が成長するが、窒化膜で被れ
た多結晶シリコン膜のある領域は窒化膜が酸化マスクと
なる為、酸化膜は成長しない。特にスペーサーとして残
っている第2の窒化膜6は横方向への酸化を防止する。
Next, when oxidation is performed in an oxidizing atmosphere, as shown in FIG. 1(f), a thick oxide film 7 grows in the area other than the area where the polycrystalline silicon film 3 covered with the nitride film is located. Since the nitride film serves as an oxidation mask in a certain region of the polycrystalline silicon film covered with the nitride film, the oxide film does not grow. In particular, the second nitride film 6 remaining as a spacer prevents oxidation in the lateral direction.

これにより横方向酸化であるバーズビークは非常に小さ
くなる。その後、酸化時に窒化膜上に薄く成長した酸化
膜、シリコン窒化膜6および4、多結晶シリコン膜3お
よび緩衝用酸化膜2を順次除去し、第1図+g+に示す
様に活性(素子) SJ域8と素子分離領域9が形成さ
れる。その後、活性領域8にはトランジスタなどの能動
素子が形成され、ICが作成される。
As a result, the bird's beak caused by lateral oxidation becomes very small. Thereafter, the oxide film thinly grown on the nitride film during oxidation, the silicon nitride films 6 and 4, the polycrystalline silicon film 3, and the buffer oxide film 2 are sequentially removed to form an active (device) SJ as shown in FIG. A region 8 and an isolation region 9 are formed. Thereafter, active elements such as transistors are formed in the active region 8, and an IC is manufactured.

第1図(al〜(幻に示さなかったが、第1図fclで
示す工程または第1図(dlで示す工程または第1図f
e+で示す工程の後にフィールド領域反転防止用のイオ
ン注入を行ってもよい。
Figure 1 (al ~ (Although not shown in the illusion, the process shown in Figure 1 fcl or the process shown in Figure 1 (dl) or the process shown in Figure 1 f
Ion implantation for preventing field region inversion may be performed after the step indicated by e+.

多結晶シリコン膜3は半導体基板であるシリコンと同一
の組成である為、物理的性質が類似している。第1図[
flに示す選択酸化の時に、酸化マスク材料と基板材料
の熱膨張係数が大きく異なると半導体基板内に欠陥が誘
起されやすくなるが、本発明では酸化マスクの主材料に
多結晶シリコン膜を用いている為、熱歪が小さく半導体
基板1内に欠陥は発生しにくくなる。また側壁シリコン
窒化膜のために横方向酸化は殆ど起こらず、バーズビー
クの小さい素子分離が形成される。さらに緩衝用シリコ
ン酸化膜2も従来より薄くする事ができ、これによるバ
ーズビークの減少も期待できる。
Since the polycrystalline silicon film 3 has the same composition as the silicon that is the semiconductor substrate, it has similar physical properties. Figure 1 [
During the selective oxidation shown in fl, defects are likely to be induced in the semiconductor substrate if the thermal expansion coefficients of the oxidation mask material and the substrate material differ greatly; however, in the present invention, a polycrystalline silicon film is used as the main material of the oxidation mask. Therefore, thermal strain is small and defects are less likely to occur in the semiconductor substrate 1. Further, because of the sidewall silicon nitride film, lateral oxidation hardly occurs, and device isolation with small bird's beaks is formed. Furthermore, the buffer silicon oxide film 2 can be made thinner than before, and a reduction in bird's beak can be expected as a result.

通常のLOCO3法では緩衝用シリコン酸化膜2の厚み
は500〜1000人であるが、本発明を用いると30
〜1000人の厚みにできる。また多結晶シリコン膜3
の厚みは厚いほどバーズビークが小さくなるが、実用上
300〜6000人が好ましい。またシリコン窒化膜4
の厚みはシリコン窒化膜6のオーバーエツチングしても
充分残っているだけの厚みとかつフィールド酸化時に多
結晶シリコン膜3が酸化しないだけの厚みとを有してい
ればよい、さらにシリコン窒化膜6の厚みも厚いほど側
壁の厚みも厚くなりバーズビークを小さくする。しかし
実用的には300〜3000人が好ましい、−例として
、緩衝用シリコン酸化膜2を200人、多結晶シリコン
膜3を4000人、シリコン窒化膜4を1500人、シ
リコン窒化膜6を1500人、シリコンエツチングをK
OHで3000人行い、フィールド酸化膜7を6000
大成長させた時のバーズビークは0.2μ以下となり、
はぼパターン寸法通りの活性領域と素子分離領域ができ
る。また活性領域と素子骨MH域の段差は500Å以下
となり良好な平坦性も得られている。さらにこの時の欠
陥密度も非常に小さく1.従来のLOCO3法と同程度
の良好な素子分離特性を示した。
In the normal LOCO3 method, the thickness of the buffer silicon oxide film 2 is 500 to 1000 mm, but with the present invention, the thickness is 30 mm.
It can be made up to 1000 people deep. Also, polycrystalline silicon film 3
The thicker the bird's beak, the smaller the bird's beak, but for practical purposes it is preferably 300 to 6,000. Also, silicon nitride film 4
The thickness of the silicon nitride film 6 only needs to be thick enough to remain even after over-etching the silicon nitride film 6, and thick enough to prevent the polycrystalline silicon film 3 from being oxidized during field oxidation. The thicker the side wall is, the thicker the side wall becomes, making the bird's beak smaller. However, in practical terms, it is preferable to have 300 to 3,000 people; for example, 200 people for the buffer silicon oxide film 2, 4,000 people for the polycrystalline silicon film 3, 1,500 people for the silicon nitride film 4, and 1,500 people for the silicon nitride film 6. , silicone etching
3000 people conducted OH, 6000 people formed field oxide film 7
The bird's beak will be less than 0.2 μ when grown to a large size.
An active region and an element isolation region can be formed according to the dimensions of the dowel pattern. Further, the step difference between the active region and the element bone MH region is less than 500 Å, and good flatness is also obtained. Furthermore, the defect density at this time is also very small.1. It showed good element isolation characteristics comparable to the conventional LOCO3 method.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、シリコン窒化膜で表面
および側壁を破れた多結晶シリコン膜を酸化マスクとし
て選択酸化する事により、欠陥も少なく、バーズビーク
も非常に小さい良好な素子分離を実現できる。
As described above, this invention can achieve good element isolation with few defects and very small bird's beaks by selectively oxidizing a polycrystalline silicon film whose surface and sidewalls are broken with a silicon nitride film as an oxidation mask.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(幻はこの発明の製造方法の工程順を示
す断面図、第2図+al〜(d)は従来の製造方法の工
程順を示す断面図である。 1.1)・・・半導体基板 2.12・・・シリコン酸化膜 3・・・・・多結晶シリコン膜 4,13・・・ (第1の)シリコン窒化膜6・・・・
・ (第2の)シリコン窒化膜7.15・・・シリコン
酸化膜(フィールド酸化膜) 14・・・・・レジスト 7.17・・・活性領域 8.16・・・素子骨i!1)1wt域以上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上  務(他1名)(C)(り)
FIG. 1(al~(phantom) is a sectional view showing the process order of the manufacturing method of the present invention, FIG. 2+al~(d) is a sectional view showing the process order of the conventional manufacturing method. 1.1)・...Semiconductor substrate 2.12...Silicon oxide film 3...Polycrystalline silicon film 4, 13...(First) silicon nitride film 6...
- (Second) silicon nitride film 7.15...Silicon oxide film (field oxide film) 14...Resist 7.17...Active region 8.16...Element bone i! 1) Applicant for 1wt range or above Seiko Electronic Industries Co., Ltd. Agent Patent Attorney Tsumugi Mogami (1 other person) (C) (Ri)

Claims (7)

【特許請求の範囲】[Claims] (1)半導体表面に絶縁膜を形成する工程と、前記絶縁
膜上に多結晶シリコン膜を形成する工程と、前記多結晶
シリコン膜上に第1のシリコン窒化膜を形成する工程と
、前記第1のシリコン窒化膜と前記多結晶シリコン膜と
前記絶縁膜と半導体基板を選択的に順次エッチングする
工程と、第2のシリコン窒化膜を積層する工程と、前記
第2のシリコン窒化膜を異方性エッチングし前記多結晶
シリコン膜の側壁に前記第2のシリコン窒化膜のスペー
サを形成する工程と、前記第1のシリコン窒化膜および
前記第2のシリコン窒化膜から破れた前記多結晶シリコ
ン膜を酸化マスクとして多結晶シリコン膜で被れていな
い領域を酸化する工程と、前記第1および第2のシリコ
ン窒化膜上の酸化膜と前記第1および第2のシリコン窒
化膜と多結晶シリコン膜と前記絶縁膜とを順次除去する
事により、酸化膜で被れた領域と酸化膜のない領域を形
成する工程と、を含む事を特徴とする半導体装置の素子
分離形成方法。
(1) a step of forming an insulating film on a semiconductor surface; a step of forming a polycrystalline silicon film on the insulating film; a step of forming a first silicon nitride film on the polycrystalline silicon film; a step of selectively sequentially etching the first silicon nitride film, the polycrystalline silicon film, the insulating film, and the semiconductor substrate; a step of stacking a second silicon nitride film; and an anisotropic etching of the second silicon nitride film. forming a spacer of the second silicon nitride film on the side wall of the polycrystalline silicon film by etching; and removing the polycrystalline silicon film broken from the first silicon nitride film and the second silicon nitride film. oxidizing a region not covered with the polycrystalline silicon film as an oxidation mask; and oxidizing the oxide film on the first and second silicon nitride films, the first and second silicon nitride films, and the polycrystalline silicon film. A method for forming element isolation in a semiconductor device, comprising the step of sequentially removing the insulating film to form a region covered with an oxide film and a region without an oxide film.
(2)半導体はシリコンである事を特徴とする特許請求
の範囲第1項記載の半導体装置の素子分離形成方法。
(2) A method for forming element isolation in a semiconductor device according to claim 1, wherein the semiconductor is silicon.
(3)半導体表面に形成する絶縁膜30〜1000Åの
シリコン酸化膜である事を特徴とする特許請求の範囲第
1項記載の半導体装置の素子分離形成方法。
(3) The method for forming element isolation in a semiconductor device according to claim 1, wherein the insulating film is a silicon oxide film with a thickness of 30 to 1000 Å formed on the semiconductor surface.
(4)多結晶シリコン膜は300〜6000Åの膜厚を
有する事を特徴とする特許請求の範囲第1項記載の半導
体装置の素子分離形成方法。
(4) The method for forming element isolation of a semiconductor device according to claim 1, wherein the polycrystalline silicon film has a thickness of 300 to 6000 Å.
(5)第1のシリコン窒化膜の厚みは300〜2000
Åである事を特徴とする特許請求の範囲第1項記載の半
導体装置の素子分離形成方法。
(5) The thickness of the first silicon nitride film is 300 to 2000
3. The method for forming element isolation in a semiconductor device according to claim 1, wherein .ANG.
(6)半導体基板のエッチング量は素子分離用酸化膜の
厚みの0.4〜0.6の間にある事を特徴とする特許請
求の範囲第1項記載の半導体装置の素子分離形成方法。
(6) A method for forming element isolation in a semiconductor device according to claim 1, wherein the amount of etching of the semiconductor substrate is between 0.4 and 0.6 of the thickness of the oxide film for element isolation.
(7)第2のシリコン窒化膜の厚みは300〜3000
Åである事を特徴とする特許請求の範囲第1項記載の半
導体装置の素子分離形成方法。
(7) The thickness of the second silicon nitride film is 300 to 3000
3. The method for forming element isolation in a semiconductor device according to claim 1, wherein .ANG.
JP10537287A 1987-04-28 1987-04-28 Formation of element isolation of semiconductor device Pending JPS63271956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10537287A JPS63271956A (en) 1987-04-28 1987-04-28 Formation of element isolation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10537287A JPS63271956A (en) 1987-04-28 1987-04-28 Formation of element isolation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63271956A true JPS63271956A (en) 1988-11-09

Family

ID=14405867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10537287A Pending JPS63271956A (en) 1987-04-28 1987-04-28 Formation of element isolation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63271956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164037A (en) * 1988-12-19 1990-06-25 Nec Corp Selecting oxidative separation
JPH07302836A (en) * 1992-10-13 1995-11-14 Hyundai Electron Ind Co Ltd Field oxidized film formation of semiconductor device
WO1996029731A1 (en) * 1995-03-17 1996-09-26 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US7235460B2 (en) 1993-07-30 2007-06-26 Stmicroelectronics, Inc. Method of forming active and isolation areas with split active patterning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587839A (en) * 1981-07-07 1983-01-17 Toshiba Corp Manufacture of semiconductor device
JPS5976472A (en) * 1982-10-26 1984-05-01 Toshiba Corp Manufacture of semiconductor device
JPS59202649A (en) * 1983-05-02 1984-11-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62211938A (en) * 1986-03-12 1987-09-17 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587839A (en) * 1981-07-07 1983-01-17 Toshiba Corp Manufacture of semiconductor device
JPS5976472A (en) * 1982-10-26 1984-05-01 Toshiba Corp Manufacture of semiconductor device
JPS59202649A (en) * 1983-05-02 1984-11-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62211938A (en) * 1986-03-12 1987-09-17 Fujitsu Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164037A (en) * 1988-12-19 1990-06-25 Nec Corp Selecting oxidative separation
JPH07302836A (en) * 1992-10-13 1995-11-14 Hyundai Electron Ind Co Ltd Field oxidized film formation of semiconductor device
US7235460B2 (en) 1993-07-30 2007-06-26 Stmicroelectronics, Inc. Method of forming active and isolation areas with split active patterning
WO1996029731A1 (en) * 1995-03-17 1996-09-26 Hitachi, Ltd. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5149669A (en) Method of forming an isolation region in a semiconductor device
JP2683318B2 (en) Method for forming field oxide film of semiconductor device
US6083810A (en) Integrated circuit fabrication process
JPH05144806A (en) Semiconductor device having recess-type and side- wall sealing type poly-buffer-shaped locus separating band and manufacture thereof
JPH06163529A (en) Sidewall-sealed sandwich-shaped poly- buffered locos insulating region, vlsi structure and method
JP3539483B2 (en) Method for manufacturing semiconductor device
US5629230A (en) Semiconductor processing method of forming field oxide regions on a semiconductor substrate utilizing a laterally outward projecting foot portion
JPS63271956A (en) Formation of element isolation of semiconductor device
JP3933746B2 (en) Element isolation method for semiconductor device
JP3171810B2 (en) Method for manufacturing device isolation oxide film
EP0424018A2 (en) Integrated circuit field isolation process
JPS63217640A (en) Formation of element isolation in semiconductor device
JP2686735B2 (en) Element isolation method for semiconductor device
JPS63217639A (en) Formation of element isolation in semiconductor device
JP2538830B2 (en) A method for partial oxidation of silicon using a ceramic barrier layer.
US6013560A (en) Semiconductor processing methods of forming field oxidation regions on a semiconductor substrate
JPH0744214B2 (en) Method for manufacturing semiconductor device
KR20050043622A (en) Manufacturing method of semiconductor device
JPH04151838A (en) Manufacture of semiconductor device
JPS633430A (en) Formation of element isolating semiconductor device
JPH06163531A (en) Formation of element isolation region in semiconductor
JPH0338733B2 (en)
JPH06224187A (en) Forming method for locos oxide film
JPH05243215A (en) Method for manufacturing improved polysilicon buffer type locos constitution structure
JPH07254594A (en) Manufacture of semiconductor device