JPS63271253A - Positive type radiation sensitive resist having high resolution - Google Patents

Positive type radiation sensitive resist having high resolution

Info

Publication number
JPS63271253A
JPS63271253A JP30548087A JP30548087A JPS63271253A JP S63271253 A JPS63271253 A JP S63271253A JP 30548087 A JP30548087 A JP 30548087A JP 30548087 A JP30548087 A JP 30548087A JP S63271253 A JPS63271253 A JP S63271253A
Authority
JP
Japan
Prior art keywords
resist
copolymer
etching resistance
cyanoacrylate
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30548087A
Other languages
Japanese (ja)
Other versions
JPH087443B2 (en
Inventor
Masaji Yonezawa
米澤 正次
Takeo Sugiura
杉浦 猛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP62305480A priority Critical patent/JPH087443B2/en
Publication of JPS63271253A publication Critical patent/JPS63271253A/en
Publication of JPH087443B2 publication Critical patent/JPH087443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Abstract

PURPOSE:To obtain the titled resist having the excellent dry etching resistance and available for a large scale integrated circuit by comprising a monodispersive copolymer obtd. by allowing one or more kinds of specified monomer groups to react with a crosslinkable alpha-cyanoacrylate, as a main component. CONSTITUTION:The composition contains the monodispersive copolymer of the alpha-cyanoacrylate having a crosslinking group in a molecule and the monomer shown by the formula as the main component, and said composition is crosslinked before or after irradiating a radiation to improve a dry etching resistance. In the formula, X is CN, NO2 or COOR, Y is CN, H or COOR, R is alkyl group or a halogenated alkyl group. Thus, the resolution or the dry etching resistance are improved, and the titled resist is suitable for super high density engraving in an electron beam or a X ray lithography step at the time of forming the large scale integrated circuit of a D-RAM semiconductor of larger than 64 megabit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式(I)で表わされる七ツマ−と、架橋性
α−シアノアクリル酸エステルとの単分散共重合体を主
剤としたポジ型高感度高解像度、放射線感応性レジスト
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a positive polymer whose main ingredient is a monodisperse copolymer of a heptamine represented by the general formula (I) and a crosslinkable α-cyanoacrylic acid ester. It concerns high-sensitivity, high-resolution, radiation-sensitive resists.

〔発明の技術的背景〕[Technical background of the invention]

半導体集積回路の光学式露光の限界である0、 5μ−
以下のレベルのリソグラフィー技術として電子ビーム直
接fi画、X線リソグラフィーさらには集束イオンビー
ムによる露光技術が提案されており、既に実現化の段階
を迎えつつあるが、これに対応できるレジストの開発が
おくれている。これらレジスト社料には放射線を照射す
ることにより、架橋反応を起し、現像液に不溶化するネ
ガ型と放射線を照射することにより、レジストの主剤ポ
リマーが主鎖分裂反応を起こし、低分子量化することに
より現像液に溶は易くなり照射領域のレジストが除かれ
るポジ型がある。
0.5μ- which is the limit of optical exposure of semiconductor integrated circuits
Exposure technologies using electron beam direct FI imaging, X-ray lithography, and focused ion beams have been proposed as lithography technologies at the following level, and are already reaching the stage of realization, but the development of resists that can support these technologies has been delayed. ing. When these resist materials are irradiated with radiation, a cross-linking reaction occurs, making them insoluble in the developer.By irradiation with radiation, the main polymer of the resist causes a main chain splitting reaction, resulting in a lower molecular weight. As a result, there is a positive type that is easily dissolved in a developer and the resist in the irradiated area is removed.

ネガ型レジストの特徴は高感度で、耐エツチング性に優
れているが、解像度が低いことである。
Negative resists are characterized by high sensitivity and excellent etching resistance, but low resolution.

これに対し、ポジ型レジストの特徴は解像度は高いが、
耐エツチング性と感度が劣ることである。
In contrast, positive resists have high resolution, but
The etching resistance and sensitivity are poor.

最近、半導体集積回路の高集積化への産業界の欲求はま
すますニスカレートして来ており、高感度で生産性の優
れたネガ型レジストも、その低解像度の故に、後退を余
儀なくされ、ポジ型レジストが主流となって来ている。
Recently, the industrial world's desire for higher integration of semiconductor integrated circuits has been increasing, and negative resists, which have high sensitivity and excellent productivity, have been forced into decline due to their low resolution, and positive resists have been forced to decline. Type resists are becoming mainstream.

〔従来技術とその問題点〕[Prior art and its problems]

ポジ型レジストの代表的主剤ポリマーにはポリメチルメ
タクリレート(P−MMA)があり、その解像度は0.
3〜0.5μ謂と云われているが、電子ビームに対する
感度が5 X 10−’C/cjと極めて低く、その上
、耐エツチング性もネガ型レジストに比べて劣り、実用
レジストには程遠い。
Polymethyl methacrylate (P-MMA) is a typical main polymer for positive resists, and its resolution is 0.
Although it is said to have a resistance of 3 to 0.5μ, its sensitivity to electron beams is extremely low at 5×10-'C/cj, and its etching resistance is also inferior to that of negative resists, making it far from a practical resist. .

ポジ型レジストはその解像度に比べ、従来開発されてい
るレジストの大半が感度と耐エツチング性が劣り、性能
的バランスを欠くため、集中的に検討されている。
Positive resists are being intensively studied because most of the conventionally developed resists have inferior sensitivity and etching resistance compared to their resolution, and lack a balance of performance.

これらの感度の改善の為めに提案されている多くが、C
1,Br、 F、 S、 O,Nなどの電子吸引基の導
入によるものであり、−例を挙げれば、ポリへキサフル
オロブチルメタクリレート、ポリトリクロロエチルメタ
クリレート、ポリブテン−1スルホン、ポリトリフルオ
ロエチルα−クロロアクリレート、ノボラック−ポリ2
−メチルペンテン−lスルホン混合物などがあるが、耐
ドライエツチング性を低下させないで、感度を改善し得
たケースは少ない、一方、耐エツチング性の改善にはレ
ジスト主剤ポリマーの側鎖に、 ■ベンゼン環の導入 ■架橋基の導入 ■分子量の大きなアルキル基の導入 ■ラジカル捕捉剤の添加 などが提案されているが、感度の低下を招くケースが多
い。
Many of the proposals for improving these sensitivities are based on C
1, by the introduction of electron-withdrawing groups such as Br, F, S, O, N, etc. - Examples include polyhexafluorobutyl methacrylate, polytrichloroethyl methacrylate, polybutene-1 sulfone, polytrifluoroethyl α-chloroacrylate, novolac-poly2
-Methylpentene-l sulfone mixtures, etc., but there are few cases where sensitivity can be improved without reducing dry etching resistance.On the other hand, to improve etching resistance, benzene is added to the side chains of the resist main polymer. Introduction of a ring, introduction of a crosslinking group, introduction of an alkyl group with a large molecular weight, and addition of a radical scavenger have been proposed, but these often result in a decrease in sensitivity.

解像度の改善にはネガ型レジストでは、スチレン、P−
ジメチルアミノメチルスチレン、イソプレンなどをアル
キルリチウムなどのアニオン重合開始剤を使用して、単
分散ポリマーを合成し、解像度が顕著に向上することが
報告されている。
Styrene, P-
It has been reported that monodisperse polymers are synthesized from dimethylaminomethylstyrene, isoprene, etc. using anionic polymerization initiators such as alkyl lithium, and the resolution is significantly improved.

〔発明の目的〕[Purpose of the invention]

本発明は、既に述べた一般式(I)で表されるモノマ一
群のうちの一種以上と、架橋性α−シアノアクリル酸エ
ステルよりなる単分散共重合体を架橋させることにより
、例えば耐エツチング性の優れた64メガピツ)D−R
AM以降の大規模集積回路用レジスト組成物を提供する
ことを目的としている。
The present invention can improve etching resistance, for example, by crosslinking a monodisperse copolymer made of a crosslinkable α-cyanoacrylic acid ester with one or more of the group of monomers represented by the general formula (I) described above. Excellent 64 megapix) D-R
The present invention aims to provide a resist composition for large-scale integrated circuits after AM.

〔発明の構成〕[Structure of the invention]

本発明は架橋基を分子内に保有するα−シアノ(ただし
、式中のXは、CM、 Hog、 C0OR,Yは、C
N。
The present invention is α-cyano having a crosslinking group in the molecule (wherein, X is CM, Hog, C0OR, Y is C
N.

H,C0OR,Rはアルキル基及びハロゲン化アルキル
基)のモノマーの単分散共重合体を主剤とする組成物を
放射線照射前又は後に架橋させ、耐ドライエツチング性
を向上させることを特徴としている。
H, COOR, R are alkyl groups and halogenated alkyl groups) The composition is crosslinked before or after radiation irradiation to improve dry etching resistance.

α−シアノアクリル酸エステル及び一般式(r )のポ
リマーは、その分子内に電子吸引基CN、 N、 0お
よびCI、F、Orなどのハロゲン′元素を保有し、放
射線に対し、すぐれた感応性を持っており、これらによ
って構成される共重合体−は相乗効果により感度上昇が
可能となり、その上、これらの共重合体は極めて易分解
性であるばかりでなく、すぐれた単分散共重合体を形成
す・るので、解像度が大幅に向上できる。また、耐エツ
チング性は架橋性基を側鎖にもつα−シアノアクリル酸
エステルを採用することにより改善できる。
α-Cyanoacrylic acid ester and the polymer of the general formula (r) have electron-withdrawing groups CN, N, 0 and halogen elements such as CI, F, and Or in their molecules, and have excellent sensitivity to radiation. The copolymers composed of these are capable of increasing sensitivity due to the synergistic effect. Furthermore, these copolymers are not only extremely easy to decompose, but also have excellent monodisperse copolymer properties. By forming a fusion, the resolution can be greatly improved. Furthermore, the etching resistance can be improved by employing an α-cyanoacrylic acid ester having a crosslinkable group in its side chain.

本発明で用いられる側鎖に架橋性基を有するα−シアノ
アクリル酸エステルは次式で表わされる。
The α-cyanoacrylic acid ester having a crosslinkable group in the side chain used in the present invention is represented by the following formula.

CN CH2= C−C0OR ただし、式中のRは、アルコキシアルキル基、ヒドロキ
シアルキル基、アリル基、アルキニル基などの架橋性基
であり、具体的には、α−シアノアクリル酸2−メトキ
シエチル、α−シアノアクリル酸2−ヒドロキシエチル
、α−シアノアクリル酸プロパギル、α−シアノアクリ
ル酸アリルなどである。
CN CH2= C-C0OR However, R in the formula is a crosslinkable group such as an alkoxyalkyl group, a hydroxyalkyl group, an allyl group, an alkynyl group, and specifically, 2-methoxyethyl α-cyanoacrylate, These include 2-hydroxyethyl α-cyanoacrylate, propargyl α-cyanoacrylate, and allyl α-cyanoacrylate.

これに対応する一般式(I)のモノマーは、例えば、ビ
ニリデンシアニド、ニトロエチレン、メチレンマロン酸
ジエチルなどである。
Corresponding monomers of general formula (I) are, for example, vinylidene cyanide, nitroethylene, diethyl methylenemalonate, and the like.

これらのモノマーは通常の合成法で得られたもので良く
、アニオン重合抑制剤を混入したままで良い。
These monomers may be obtained by conventional synthesis methods, and may be mixed with an anionic polymerization inhibitor.

以上の共重合体は通常、分子量が2万〜200万である
が、好ましくは20万〜100万のものが使用される。
The above copolymers usually have a molecular weight of 20,000 to 2,000,000, but preferably 200,000 to 1,000,000.

〔発明の効果〕〔Effect of the invention〕

本発明によるポジ型レジスト材料は64メガビットD−
RAM以降の半導体大規模集積回路製造の際の電子ビー
ム、xlリソグラフィ一工程におけるような超高密度彫
刻に適するものであり、加工精度の大幅な向上とラテイ
チュードの広い回路設計を保証するとともにその放射線
に対する極めて高い感度はX線リソグラフィ一工程にお
ける高い生産性とコスト低減に大きな効果をもたらすも
のである。以下、この発明の実施例を示すが、電子線も
X線リングラフイーに使用される軟X線(波長4〜10
人)も物質に及ぼす化学作用は同じであり、レジストの
電子線に対する感度とX線に対する感度とは比例関係(
例えば10−’C/ cj =10a+J / cd 
)にあることが、Proc Internationa
l Conf、Microlithography+ 
Paris、July+261(I977)等で公知に
なっているので、煩雑を避けるため、電子線照射による
結果を実施例とするとにした。
The positive resist material according to the present invention has a 64 Mbit D-
It is suitable for ultra-high-density engraving such as the electron beam and XL lithography process used in the manufacturing of semiconductor large-scale integrated circuits after RAM, and guarantees a significant improvement in processing accuracy and circuit design with a wide latitude, as well as eliminating radiation. The extremely high sensitivity to X-ray lithography has a significant effect on high productivity and cost reduction in one process of X-ray lithography. Examples of the present invention will be shown below, but electron beams can also be used for soft
Humans) have the same chemical effect on substances, and the sensitivity of a resist to electron beams and sensitivity to X-rays are in a proportional relationship (
For example 10-'C/cj = 10a+J/cd
) is in Proc International
Conf, Microlithography+
Paris, July+261 (I977), etc., so in order to avoid complications, the results of electron beam irradiation will be used as examples.

この発明はこれらの実施例に限定されるものでないこと
は云うまでもない。
It goes without saying that the present invention is not limited to these examples.

以下、実施例を挙げて本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例1 アニオン重合開始剤チオセミカルバジド5×to−’モ
ルを含む700mj!のアセトン溶液をフラスコ内に導
入し、フラスコ内を一60°Cに冷却した。
Example 1 700 mj containing 5xto-' moles of anionic polymerization initiator thiosemicarbazide! An acetone solution was introduced into the flask, and the inside of the flask was cooled to -60°C.

この系内を十分かきまぜながら、アニオン重合抑制剤S
Og50ppmを含むα−シアノアクリル酸プロパギル
0.01モルを含有する100m1のアセトン溶液を系
内温度を一60℃以下に保ちつつ、徐々に加えて反応さ
せ、得られたりピングポリマーに、アニオン重合抑制剤
SO1を50pp+I含むビニリデンシアニド0.09
モルを含有する100m1のアセトン溶液を系内温度−
60℃以下に保ち十分かきまぜながら加えて、共重合反
応を進め、アニオン重合停止剤を加えて反応を停止させ
た。
While stirring the system thoroughly, add the anionic polymerization inhibitor S.
100 ml of acetone solution containing 0.01 mol of propargyl α-cyanoacrylate containing 50 ppm of Og was gradually added and reacted while keeping the system temperature below -60°C, and the resulting Ping polymer was inhibited from anionic polymerization. Vinylidene cyanide 0.09 containing 50pp+I agent SO1
100ml of acetone solution containing mol.
The copolymerization reaction was carried out by adding the mixture while keeping the temperature at 60° C. or lower and stirring thoroughly, and the anionic polymerization terminator was added to terminate the reaction.

この共重合体を再沈澱法により精製し、ゲルパーミニ−
シランクロマトグラフィー(GPC)−光散乱法で分子
量を測定したところ、分子量は20゜7万で、その分散
度(L/ Mn ) = 1.05であった。
This copolymer was purified by reprecipitation method and gel permini
When the molecular weight was measured by silane chromatography (GPC)-light scattering method, the molecular weight was 20.7 million, and the degree of dispersion (L/Mn) was 1.05.

この共重合体の5重量%シクロヘキサノン溶液に熱架橋
剤を添加してレジストを調製した。このレジストを回転
塗布法により0.5μ■厚の熱酸化シリコン層上に塗布
して、0.43μ霞の膜厚の共重合体膜を得た。これを
150℃、30分、熱処理し熱架橋後、加速電圧10 
KV、  4 X l O−’C/c+1の電子線を所
定パターンに従ってレジスト膜面に照射した。続いて、
これを大気中に取出して、25°Cのシクロヘキサノン
とメチルイソブチルケトンの1=2の現像液に3分間浸
漬することによって現像し、イソプロピルアルコールで
リンスし乾燥させた0次いで、130℃30分間加熱処
理(ポストベーク)した、このレジスト膜をCF4−反
応性イオンエツチング装置で、CP4+5%Ox IO
SCCM 60mTorr 、印加パワー13.56 
MHz 、 150Hの条件でエツチングしたところ、
P−MMAのエツチングレートは750人/sinであ
ったのに対し、このレジスト膜のエツチングレートは4
80人/1nで、P−MMAより優れた耐性を示した。
A resist was prepared by adding a thermal crosslinking agent to a 5% by weight cyclohexanone solution of this copolymer. This resist was coated on a thermally oxidized silicon layer with a thickness of 0.5 .mu.m by a spin coating method to obtain a copolymer film with a thickness of 0.43 .mu.m. This was heat-treated at 150°C for 30 minutes, and after thermal crosslinking, the acceleration voltage was 10
KV, 4 X l O-'C/c+1 electron beams were irradiated onto the resist film surface according to a predetermined pattern. continue,
This was taken out into the atmosphere and developed by immersing it in a 1=2 developer solution of cyclohexanone and methyl isobutyl ketone at 25°C for 3 minutes, rinsing with isopropyl alcohol and drying.Then, it was heated at 130°C for 30 minutes. This treated (post-baked) resist film was etched with CP4+5% Ox IO using a CF4-reactive ion etching device.
SCCM 60mTorr, applied power 13.56
When etched under the conditions of MHz and 150H,
While the etching rate of P-MMA was 750 people/sin, the etching rate of this resist film was 4.
It showed better tolerance than P-MMA at 80 people/1n.

なお、この系の反応性イオンエツチング装置(RIE)
によるエツチング結果の走査型電子顕微鏡(SEM)観
察結果、0.3μ園の直線状パターンの形成を確認した
In addition, this system's reactive ion etching apparatus (RIE)
As a result of scanning electron microscopy (SEM) observation of the etching results, it was confirmed that a linear pattern with a diameter of 0.3 μm was formed.

注:実施例、及び比較例中のポリマーの分子量測定はい
ずれもGPC−光散乱法によった。
Note: The molecular weights of the polymers in Examples and Comparative Examples were all measured by GPC-light scattering method.

実施例2 α−シアノアクリル酸プロパギルとニトロエチレンのモ
ル比1:9の単分散共重合体を実施例1に準じて低温ア
ニオン重合法により得たが、その分子量は18.9万、
その分散度(Mw/Mn)= 1.04であった。この
5重量%シクロヘキサノン溶液を作り、これに熱架橋剤
を添加してレジストを調製した。このレジストを回転塗
布法により0.5μ霧厚の熱酸化シリコン層上に塗布し
、0.4μ−の膜厚の共重合体膜を得た。これを実施例
1に準じて、熱架橋・電子線照射・現像・リンス・乾燥
・ポストベークを行った。このレジスト膜を実施例1と
同一条件でエツチングをしたところ、このレジスト膜の
エツチングレートは420人/sinで、P−MMAよ
り優れた耐性を示した。この系のRIEによる酸化シリ
コン層のバターニング結果をSEMにより観察したとこ
ろ、0.3μ−の直線状パターンがシャープに形成され
ていることが確認された。
Example 2 A monodisperse copolymer of propargyl α-cyanoacrylate and nitroethylene in a molar ratio of 1:9 was obtained by a low-temperature anionic polymerization method according to Example 1, and its molecular weight was 189,000.
The degree of dispersion (Mw/Mn) was 1.04. This 5% by weight cyclohexanone solution was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist was applied onto a thermally oxidized silicon layer with a thickness of 0.5 .mu.m by a spin coating method to obtain a copolymer film with a thickness of 0.4 .mu.m. This was subjected to thermal crosslinking, electron beam irradiation, development, rinsing, drying, and post-baking according to Example 1. When this resist film was etched under the same conditions as in Example 1, the etching rate of this resist film was 420 people/sin, which showed better resistance than P-MMA. When the result of patterning the silicon oxide layer by RIE of this system was observed by SEM, it was confirmed that a sharp linear pattern of 0.3 μ- was formed.

実施例3 α−シアノアクリル酸アリルとメチレンマロン酸ジエチ
ルのモル比l:9の単分散共重合体を実施例1に準じ低
温アニオン重合法により得たが、その分子量は34.4
万、分散度(Mw/Mn)−1,05であった。
Example 3 A monodisperse copolymer of allyl α-cyanoacrylate and diethyl methylenemalonate at a molar ratio of 1:9 was obtained by a low-temperature anionic polymerization method according to Example 1, and its molecular weight was 34.4.
The dispersity (Mw/Mn) was -1.05.

このポリマーの5重量%シクロヘキサノン溶液を作り、
これに紫外線架橋剤を添加してレジストを調製した。こ
のレジストを回転塗布法により0゜5μ■厚の熱酸化シ
リコン層上に塗布して、膜厚0.54μ−の共重合体膜
を得た。これを実施例1に準じて、プリベーク・紫外線
架橋・電子線照射・現像・リンスし、乾燥後、ポストベ
ークした。
Make a 5% by weight solution of this polymer in cyclohexanone,
A resist was prepared by adding an ultraviolet crosslinking agent to this. This resist was coated on a thermally oxidized silicon layer with a thickness of 0.5 μm by a spin coating method to obtain a copolymer film with a thickness of 0.54 μm. This was prebaked, crosslinked with ultraviolet rays, irradiated with an electron beam, developed, rinsed, dried, and postbaked in accordance with Example 1.

このレジスト膜を実施例1の条件でエツチングしたとこ
ろ、このレジスト膜のエツチングレートは440人/s
inで、P−MMAより優れた耐性を示した。
When this resist film was etched under the conditions of Example 1, the etching rate of this resist film was 440 people/s.
In, it showed better resistance than P-MMA.

なお、この系のRIHによる酸化シリコン層のバターニ
ング結果は実施例1同様0.3β鵬の直線状パターンが
良好な状態で形成されているのが、SEMにより観察さ
れた。
As a result of patterning the silicon oxide layer by RIH in this system, it was observed by SEM that a linear pattern of 0.3β was formed in good condition as in Example 1.

実施例4 α−シアノアクリル酸2−ヒドロキシエチルとメチレン
マロン酸ジメチルのモル比3ニアの単分散共重合体を実
施例1に準じ低温アニオン重合法により得たが、その分
子量は35.1万、分散度(Mw/Mn) = 1.0
4であった。この5重量%シクロヘキサノン溶液を作り
、これに熱架橋剤を添加してレジストを調製した。この
レジストを回転塗布法により、0.5p■厚の熱酸化シ
リコン層上に塗布し、0.56μ−の膜厚の共重合体膜
を得た。
Example 4 A monodisperse copolymer of 2-hydroxyethyl α-cyanoacrylate and dimethyl methylenemalonate with a molar ratio of 3 was obtained by a low-temperature anionic polymerization method according to Example 1, and its molecular weight was 351,000. , dispersion degree (Mw/Mn) = 1.0
It was 4. This 5% by weight cyclohexanone solution was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist was coated on a thermally oxidized silicon layer with a thickness of 0.5 μm by a spin coating method to obtain a copolymer film with a thickness of 0.56 μm.

この膜を実施例1に準じて熱架橋・電子線照射・現像・
リンス・乾燥、ポストベークを行なった。
This film was subjected to thermal crosslinking, electron beam irradiation, development, and
Rinsing, drying, and post-bake were performed.

このレジスト膜を実施例1の条件でエツチングしたとこ
ろ、このレジスト膜のエツチングレートは470人/w
inで、P−MMAより優れた耐性を示した。なお、こ
のレジストの解像度は0.3μ−で、SEMによる観察
によれば、シャープなパターンエツジがi!!!された
When this resist film was etched under the conditions of Example 1, the etching rate of this resist film was 470 people/w.
In, it showed better resistance than P-MMA. Note that the resolution of this resist is 0.3 μ-, and according to SEM observation, sharp pattern edges are observed with i! ! ! It was done.

比較例1 α−シアノアクリル酸トリフルオロエチルとメチレンマ
ロン酸ジエチルのモル比6:4の単分散共重合体を実施
例1に準じて低温アニオン重合法により得たが、その分
子量は36.1万、分散度(Mw/Mn)= 1.04
であった。この5重量%シクロヘキサノン溶液を作り、
回転塗布法により、0.5〃■厚の熱酸化シリコン層上
に塗布し、0.54μ−の膜厚の共重゛−合体膜を得た
。これを130℃、30分プリベークし、実施例1に準
じて電子線照射・現像・リンス・ポストベークを行なっ
た。
Comparative Example 1 A monodisperse copolymer of trifluoroethyl α-cyanoacrylate and diethyl methylenemalonate in a molar ratio of 6:4 was obtained by a low-temperature anionic polymerization method according to Example 1, but its molecular weight was 36.1. 10,000, degree of dispersion (Mw/Mn) = 1.04
Met. Make this 5% by weight cyclohexanone solution,
It was coated on a thermally oxidized silicon layer with a thickness of 0.5 mm by a spin coating method to obtain a copolymerized film with a thickness of 0.54 μm. This was prebaked at 130° C. for 30 minutes, and subjected to electron beam irradiation, development, rinsing, and postbaking in the same manner as in Example 1.

このレジスト膜をエツチングをしたところ、エツチング
レートは885人/sinとP−MMAより低い耐性を
示した。
When this resist film was etched, the etching rate was 885 people/sin, which showed lower resistance than P-MMA.

この系のRIHによる酸化シリコン層のバターニング結
果をSEMで観察したところ、0.3μ謬のシャープな
直線状パターンの形成が確認された。
When the result of patterning the silicon oxide layer by RIH in this system was observed by SEM, it was confirmed that a sharp linear pattern with an error of 0.3 μm was formed.

比較例2 ビニリデンシアニド5部、α−シアノアクリル酸エチル
10部、酢酸3部、アゾビスイソブチロニトリル0.1
部をガラス封管に仕込み、窒素中50℃15時間重合さ
せた。これをエチルエーテル中にあけて、重合物を沈澱
させ、40 ”Cで真空乾燥して白色粉末状の非単分散
共重合体12.5部を得た。この共重合体の分子量は2
9,3万であった。
Comparative Example 2 5 parts of vinylidene cyanide, 10 parts of ethyl α-cyanoacrylate, 3 parts of acetic acid, 0.1 part of azobisisobutyronitrile
A portion of the mixture was placed in a glass sealed tube and polymerized at 50° C. for 15 hours in nitrogen. This was poured into ethyl ether to precipitate the polymer, which was vacuum dried at 40"C to obtain 12.5 parts of a non-monodisperse copolymer in the form of a white powder. The molecular weight of this copolymer was 2.
It was 9.3 million.

この共重合体の5重量%のシクロヘキサン溶液を作り、
回転塗布法により、0.5μ・厚の一酸化シリコン層上
に塗布して0.51tImの厚さの共重合体膜を得た。
A 5% by weight cyclohexane solution of this copolymer was made,
A copolymer film with a thickness of 0.51 tIm was obtained by coating on a silicon monoxide layer with a thickness of 0.5 μm by a spin coating method.

これを130 ”C130分加熱(プリベーク)後、実
施例1に準じて、電子線照射・現像・リンス・乾燥・ポ
ストベークを行なった。このレジスト膜を実施例1に準
じてエツチングしたところ、このレジストのエツチング
レートは、850人/ m i nで実施例1と同様P
−MMAより低い耐性を示した。また、RfHによりエ
ッチングし、SEMにより観察したところ、0.5μ−
のパターンの形成が確認された。
After heating (pre-baking) at 130"C for 130 minutes, electron beam irradiation, development, rinsing, drying, and post-baking were performed according to Example 1. When this resist film was etched according to Example 1, this The resist etching rate was 850 people/min, the same as in Example 1.
- showed lower resistance than MMA. In addition, when etched with RfH and observed with SEM, it was found that 0.5 μ-
The formation of a pattern was confirmed.

以上、実施例1〜4と比較例1.2から、単分散ポリマ
ーと架橋性α−シアノアクリル酸エステル及び増感モノ
マー(一般式(I))の導入は、解像度と耐ドライエツ
チング性及び感度の改善にクリチカルな効果のあること
が明らかである。
As described above, from Examples 1 to 4 and Comparative Example 1.2, the introduction of the monodisperse polymer, crosslinkable α-cyanoacrylic acid ester, and sensitizing monomer (general formula (I)) improves resolution, dry etching resistance, and sensitivity. It is clear that it has a critical effect on improving.

Claims (1)

【特許請求の範囲】 一般式( I )▲数式、化学式、表等があります▼ (ただし、式中のXはCN、NO_2、COOR、Yは
CN、H、COORで、Rはアルキル基及びハロゲン化
アルキル基)で表わされるモノマー群のうちの1種以上
と架橋性α−シアノアクリル酸エステルとを反応させて
得られる単分散共重合体を主剤とした高解像度ポジ型放
射線感応性レジスト。
[Claims] General formula (I) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (However, in the formula, A high-resolution positive-working radiation-sensitive resist whose main ingredient is a monodisperse copolymer obtained by reacting one or more of the monomer group represented by (alkyl group) with a crosslinkable α-cyanoacrylic acid ester.
JP62305480A 1986-12-29 1987-12-01 High resolution positive type radiation sensitive resist Expired - Lifetime JPH087443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305480A JPH087443B2 (en) 1986-12-29 1987-12-01 High resolution positive type radiation sensitive resist

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31422686 1986-12-29
JP61-314226 1986-12-29
JP62305480A JPH087443B2 (en) 1986-12-29 1987-12-01 High resolution positive type radiation sensitive resist

Publications (2)

Publication Number Publication Date
JPS63271253A true JPS63271253A (en) 1988-11-09
JPH087443B2 JPH087443B2 (en) 1996-01-29

Family

ID=26564313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305480A Expired - Lifetime JPH087443B2 (en) 1986-12-29 1987-12-01 High resolution positive type radiation sensitive resist

Country Status (1)

Country Link
JP (1) JPH087443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170073438A1 (en) * 2011-10-19 2017-03-16 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
US10308802B2 (en) 2014-09-08 2019-06-04 Sirrus, Inc. Polymers including one or more 1,1-disubstituted alkene compounds and polymer compositions thereof
US10414839B2 (en) 2010-10-20 2019-09-17 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
EP3683267A1 (en) * 2014-09-08 2020-07-22 Sirrus, Inc. Emulsion polymers including one or more 1,1-disubstituted alkene compounds, emulsion methods, and polymer compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132678A (en) * 1976-04-28 1977-11-07 Fujitsu Ltd High-sensitive positive type electron beam formation
JPS52153671A (en) * 1976-06-16 1977-12-20 Matsushita Electric Ind Co Ltd Electron beam resist and its usage
JPS55105244A (en) * 1979-02-06 1980-08-12 Victor Co Of Japan Ltd Electron beam resist
JPS58108213A (en) * 1981-12-22 1983-06-28 Toagosei Chem Ind Co Ltd Preparation of polymer of 2-cyanoacrylic acid ester
JPS6045238A (en) * 1983-08-23 1985-03-11 Fujitsu Ltd Positive type resist material and its preparation
JPS60158441A (en) * 1983-12-20 1985-08-19 チバ−ガイギ− アクチエンゲゼルシヤフト Formation of image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132678A (en) * 1976-04-28 1977-11-07 Fujitsu Ltd High-sensitive positive type electron beam formation
JPS52153671A (en) * 1976-06-16 1977-12-20 Matsushita Electric Ind Co Ltd Electron beam resist and its usage
JPS55105244A (en) * 1979-02-06 1980-08-12 Victor Co Of Japan Ltd Electron beam resist
JPS58108213A (en) * 1981-12-22 1983-06-28 Toagosei Chem Ind Co Ltd Preparation of polymer of 2-cyanoacrylic acid ester
JPS6045238A (en) * 1983-08-23 1985-03-11 Fujitsu Ltd Positive type resist material and its preparation
JPS60158441A (en) * 1983-12-20 1985-08-19 チバ−ガイギ− アクチエンゲゼルシヤフト Formation of image

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414839B2 (en) 2010-10-20 2019-09-17 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
US20170073438A1 (en) * 2011-10-19 2017-03-16 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
US10308802B2 (en) 2014-09-08 2019-06-04 Sirrus, Inc. Polymers including one or more 1,1-disubstituted alkene compounds and polymer compositions thereof
EP3683267A1 (en) * 2014-09-08 2020-07-22 Sirrus, Inc. Emulsion polymers including one or more 1,1-disubstituted alkene compounds, emulsion methods, and polymer compositions
CN111825785A (en) * 2014-09-08 2020-10-27 赛鲁斯股份有限公司 Emulsion polymers, emulsion processes and polymer compositions comprising one or more 1, 1-disubstituted alkene compounds
EP3789408A1 (en) * 2014-09-08 2021-03-10 Sirrus, Inc. Solution polymers including one or more 1,1-disubstituted alkene compounds, solution polymerization methods, and polymer compositions
US11021617B2 (en) 2014-09-08 2021-06-01 Sirrus, Inc. Polymers including one or more 1,1-disubstituted alkene compounds and polymer compositions thereof

Also Published As

Publication number Publication date
JPH087443B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US6737215B2 (en) Photoresist composition for deep ultraviolet lithography
JPH05249683A (en) Radiation sensitive composition
JPH10207058A (en) Photosensitive film copolymer, its manufacture, photosensitive film, manufacture of semiconductor device and semiconductor device
KR100362937B1 (en) Novel photoresist crosslinkers, photoresist polymers and photoresist compositions comprising them
JPH0943848A (en) Resist material and resist pattern forming method
TW200530748A (en) Photoresist composition
JP2001106737A (en) Photoresist polymer, production process therefor, photoresist composition, method for forming photoresist pattern and semiconductor element
JP2004529245A (en) Polymers suitable for photoresist compositions
JPH02170165A (en) Radiation sensitive composition and pattern forming method using this composition
JP3022412B2 (en) Negative photoresist material and pattern forming method using the same
JPH1069071A (en) Sensitizer bonded to polymer
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
JPS5983157A (en) Method of increasing sensitivity and contrast of positive type polymer resist
US4795692A (en) Negative-working polymers useful as X-ray or E-beam resists
JPS63271254A (en) Radiation sensitive positive type resist having high resolution
JPS63271252A (en) Radiation sensitive resist
JPH01154146A (en) Radiation sensitive resist having high sensitivity
JPH021860A (en) Radiation sensitive positive type resist high in resolution
JP2600897B2 (en) Positive resist composition and pattern forming method
JPS60252348A (en) Formation of pattern
JPH0358104B2 (en)
JPH087441B2 (en) Positive type high sensitivity radiation sensitive resist
JPH0358103B2 (en)
JPS5988737A (en) Radiation sensitive organic high polymer material
JPS60254041A (en) Formation of pattern