JPS63271252A - Radiation sensitive resist - Google Patents
Radiation sensitive resistInfo
- Publication number
- JPS63271252A JPS63271252A JP30471687A JP30471687A JPS63271252A JP S63271252 A JPS63271252 A JP S63271252A JP 30471687 A JP30471687 A JP 30471687A JP 30471687 A JP30471687 A JP 30471687A JP S63271252 A JPS63271252 A JP S63271252A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- cyanoacrylate
- crosslinkable
- resolution
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims description 7
- 229920001577 copolymer Polymers 0.000 claims abstract description 17
- 238000001312 dry etching Methods 0.000 claims abstract description 14
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229920001519 homopolymer Polymers 0.000 claims abstract description 6
- 239000000178 monomer Substances 0.000 claims abstract description 5
- -1 α-cyanoacrylate ester Chemical class 0.000 claims description 27
- 239000002075 main ingredient Substances 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 18
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 239000004065 semiconductor Substances 0.000 abstract description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 238000010894 electron beam technology Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 12
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 125000006575 electron-withdrawing group Chemical group 0.000 description 3
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- XQBHAZDVLGNSOJ-UHFFFAOYSA-N 1-(4-ethenylphenyl)-n,n-dimethylmethanamine Chemical compound CN(C)CC1=CC=C(C=C)C=C1 XQBHAZDVLGNSOJ-UHFFFAOYSA-N 0.000 description 1
- SZTBMYHIYNGYIA-UHFFFAOYSA-M 2-chloroacrylate Chemical compound [O-]C(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-M 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- GASDVTHQNCFANM-UHFFFAOYSA-N 3-methylbutyl 2-cyanoprop-2-enoate Chemical compound CC(C)CCOC(=O)C(=C)C#N GASDVTHQNCFANM-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- JJJFUHOGVZWXNQ-UHFFFAOYSA-N enbucrilate Chemical compound CCCCOC(=O)C(=C)C#N JJJFUHOGVZWXNQ-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- RPQUGMLCZLGZTG-UHFFFAOYSA-N octyl cyanoacrylate Chemical compound CCCCCCCCOC(=O)C(=C)C#N RPQUGMLCZLGZTG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- SQGOMFWCSGKGEP-UHFFFAOYSA-N propan-2-yl 2-cyanoprop-2-enoate Chemical compound CC(C)OC(=O)C(=C)C#N SQGOMFWCSGKGEP-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は耐ドライエツチング性がすぐれ、且つ高解像度
の放射線感応性レジストに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation-sensitive resist having excellent dry etching resistance and high resolution.
更に詳しくは、架橋性α−シアノアクリル酸エステルの
単独重合又はこれと架橋性もしくは、非架橋性α−シア
ノアクリル酸エステルを共重合させて得られた単分散ポ
リマーにより、解像度の改善を図るとともに、α−シア
ノアクリル酸エステルの側疎の架橋による耐ドライエツ
チング性の改善により、例えば64メガビットD−RA
M以降の半導体大規模集積回路用レジストの提供を目的
としたものである。More specifically, by homopolymerizing a crosslinkable α-cyanoacrylate or by copolymerizing this with a crosslinkable or non-crosslinkable α-cyanoacrylate, the resolution can be improved and For example, 64 Mbit D-RA
The purpose is to provide a resist for semiconductor large-scale integrated circuits of M and later.
半導体集積回路は光学式露光の限界である線幅0.5μ
−以下のレベルのりツブラフイー技術として、電子線直
接描画、X線リソグラフィーなどの技術が開発されてい
るが、これに適合するレジストの開発も急を要する段階
になっている。Semiconductor integrated circuits have a line width of 0.5μ, which is the limit of optical exposure.
- Techniques such as electron beam direct writing and X-ray lithography have been developed as below-level adhesive lithography techniques, and the development of resists compatible with these techniques is now at an urgent stage.
これらレジスト材料には放射線を照射することにより、
架橋反応を起し、現像液に不溶化するネガ型と放射線を
照射することにより、レジストの主剤ポリマーが主鎖分
裂反応を起し、低分子量化することにより、現像液に易
溶性となり、照射領域のレジストのみ除去されるポジ型
とある。By irradiating these resist materials with radiation,
By irradiating a negative type that causes a crosslinking reaction and becomes insoluble in a developer, the main polymer of the resist undergoes a main chain splitting reaction and becomes lower in molecular weight, becoming easily soluble in a developer and reducing the irradiation area. It is a positive type that only removes resist.
ネガ型レジストの特徴は、高感度で、耐エツチング性が
優れているが、解像度が低いことである。Negative resists are characterized by high sensitivity and excellent etching resistance, but low resolution.
これに対して、ポジ型レジストの特徴は、解像度が高い
が、感度や耐エツチング性がネガ型レジストより劣るこ
とである。On the other hand, positive resists have high resolution but are inferior in sensitivity and etching resistance to negative resists.
最近、大規模集積回路の高集積化速度は一段と加速され
ており、放射線感応性レジストの主流はポジ型レジスト
へ移行している。然しなから、このレジストは低感度と
耐ドライエツチング性に大きな弱点があり、未だ解決さ
れていない。Recently, the rate of integration of large-scale integrated circuits has been further accelerated, and the mainstream of radiation-sensitive resists has shifted to positive resists. However, this resist has major weaknesses in low sensitivity and dry etching resistance, which have not yet been resolved.
(従来技術とその問題点〕
ポジ型レジストの代表的主剤ポリマーとしては、ポリメ
チルメタクリレート(P−MMA)があるが、その優れ
た解像度(0,3〜0.5μ−)とは極めてアンバラン
スな低感度(5X 10−1c/cd)と不十分な耐ド
ライエツチング性の故に、実用化レジストとしては認知
されていない。(Prior art and its problems) Polymethyl methacrylate (P-MMA) is a typical main polymer for positive resists, but its excellent resolution (0.3 to 0.5 μ-) is extremely unbalanced. It is not recognized as a practical resist because of its low sensitivity (5×10 −1 c/cd) and insufficient dry etching resistance.
この為、業界の関心は耐ドライエツチング性と感度向上
に集中しており、多くの提案がなされているが、放射線
に対する感度と耐ドライエツチング性は互いに相反する
機能である為、クリチカルな改善実績は挙っていない、
レジスト感度の改善にはC4!+ 81 F+ S、
L Nなどの電子吸引基の導入が考えられ、例えばポリ
へキサフルオロブチルメタクリレート、ポリトリクロロ
エチルメタクリレート、ポリトリフルオロエチルα−ク
ロルアクリレート、ポリブテン−1スルホン、ポリ2−
メチルペンテン−1スルホン−ノボラック樹脂混合物な
どが提案されているが、その大半が電子吸引基の導入に
より耐ドライエツチング性の低下を招き、本格的レジス
トには程遠いのが実情である。For this reason, the industry's interest is focused on improving dry etching resistance and sensitivity, and many proposals have been made, but since sensitivity to radiation and dry etching resistance are mutually contradictory functions, no critical improvement has been achieved. is not mentioned,
C4 to improve resist sensitivity! +81 F+S,
Introduction of electron-withdrawing groups such as LN is considered, for example, polyhexafluorobutyl methacrylate, polytrichloroethyl methacrylate, polytrifluoroethyl α-chloroacrylate, polybutene-1 sulfone, poly2-
Methylpentene-1-sulfone-novolak resin mixtures have been proposed, but most of them have low dry etching resistance due to the introduction of electron-withdrawing groups, and are far from being suitable as full-scale resists.
耐ドライエツチング性の改善には、主剤ポリマーの側鎖
に■ベンゼン環の導入、■分子量の大きなアルキル基の
導入■架橋基の導入■ラジカル捕捉剤の添加等があるが
、感度低下を招きバランスのとれたレジストがないので
、使用条件により、レジストを選んでいるのが実情であ
る。Dry etching resistance can be improved by introducing a benzene ring into the side chain of the main polymer, introducing an alkyl group with a large molecular weight, introducing a cross-linking group, adding a radical scavenger, etc. However, this may lead to a decrease in sensitivity and result in an imbalance. Since there is no suitable resist, the actual situation is that resists are selected depending on the conditions of use.
解像度の改善にはネガ型レジストでは、スチレン、P−
ジメチルアミノメチルスチレン、イソプレンなどイアル
キルリチウムなどのアニオン重合開始剤を使用して単分
散ポリマーにし、解像度の顕著に向上することが報告さ
れている。Styrene, P-
It has been reported that the resolution can be significantly improved by using an anionic polymerization initiator such as dimethylaminomethylstyrene, isoprene, or alkyllithium to form a monodisperse polymer.
本発明はα−シアノアクリル酸エステルを主剤ポリマー
とするレジストの最大の欠点とされている耐ドライエツ
チング性はレジスト膜の架橋により改善し、解像度の向
上には単分散ポリマーを採用、必要に応じて電子吸引基
を導入することにより、D−RAMにして例えば64メ
ガビツト以降の高解像度レジストの提供を目的としてい
る。The present invention improves the dry etching resistance, which is considered the biggest drawback of resists whose main polymer is α-cyanoacrylic acid ester, by crosslinking the resist film, and uses a monodisperse polymer to improve resolution. By introducing an electron-withdrawing group into the resist, it is intended to provide a high-resolution resist for D-RAM of, for example, 64 megabits or higher.
即ち、本発明は架橋性α−シアノアクリル酸エステル単
独重合体又は架橋性共重合体として単分散ポリマーを採
用し、解像度の向上を図るとともに、これら架橋性ポリ
マーを放射線照射の前又は後で架橋させるこ、とにより
、耐ドライエツチング性を向上させることに成功した。That is, the present invention employs a monodisperse polymer as a crosslinkable α-cyanoacrylate homopolymer or a crosslinkable copolymer to improve resolution, and also crosslinks these crosslinkable polymers before or after radiation irradiation. By this, we succeeded in improving the dry etching resistance.
本発明に使用される架橋性α−シアノアクリル酸エステ
ルは次式で表わされるものである。The crosslinkable α-cyanoacrylic acid ester used in the present invention is represented by the following formula.
CH−−C−C0OR
ただし、式中のRは、アルコキシアルキル基、ヒドロキ
シアルキル基、アルキニル基、アリル基などの架橋性基
であり、具体的には、α−シアノアクリル酸2−メトキ
シエチル、α−シアノアクリル酸2−ヒドロキシエチル
、α−シアノアクリル酸プロパギル、α−シアノアクリ
ル酸アリル等である。CH--C-C0OR However, R in the formula is a crosslinkable group such as an alkoxyalkyl group, a hydroxyalkyl group, an alkynyl group, an allyl group, and specifically, 2-methoxyethyl α-cyanoacrylate, These include 2-hydroxyethyl α-cyanoacrylate, propargyl α-cyanoacrylate, allyl α-cyanoacrylate, and the like.
これに対応するα−シアノアクリル酸エステルは耐エツ
チング性、耐熱性、レジスト膜の酸化シリコン層との密
着性など、レジストの主要特性を左右する可能性のある
プロセスコントロール上の諸条件を考慮して、必要に応
じて架橋性α−シアノアクリル酸エステルのみならず、
非架橋性α−シアノアクリル酸エステルも使用される。The corresponding α-cyanoacrylic acid ester was developed by taking into account various process control conditions that may affect the main properties of the resist, such as etching resistance, heat resistance, and adhesion to the silicon oxide layer of the resist film. In addition to the crosslinkable α-cyanoacrylic acid ester, if necessary,
Non-crosslinkable α-cyanoacrylic esters are also used.
使用される非架橋性α−シアノアクリル酸エステルは具
体的にはα−シアノアクリル酸メチル。The non-crosslinkable α-cyanoacrylate ester used is specifically methyl α-cyanoacrylate.
α−シアノアクリル酸エチル、α−シアノアクリル酸n
−プロピル、α−シアノアクリル酸イソプロピル、α−
シアノアクリル酸n−ブチル、α−シアノアクリル酸イ
ソブチル、α−シアノアクリル酸n−ペンチル、α−シ
アノアクリル酸イソアミル、α−シアノアクリルan−
ヘキシル、α−シアノアクリル酸シクロヘキシル、α−
シアノアクリル酸n−オクチル、α−シアノアクリル酸
2−エチルヘキシル、α−シアノアクリル酸トリフルオ
ロエチル、α−シアノアクリル酸トリクロロエチル、α
−シアノアクリル酸フェニル等である。α-cyanoacrylate ethyl, α-cyanoacrylate n
-propyl, α-isopropyl cyanoacrylate, α-
n-butyl cyanoacrylate, isobutyl α-cyanoacrylate, n-pentyl α-cyanoacrylate, isoamyl α-cyanoacrylate, an-cyanoacrylate
hexyl, α-cyclohexyl cyanoacrylate, α-
n-octyl cyanoacrylate, 2-ethylhexyl α-cyanoacrylate, trifluoroethyl α-cyanoacrylate, trichloroethyl α-cyanoacrylate, α
- phenyl cyanoacrylate, etc.
これらのモノマーは通常の合成法で得られたもので良く
、アニオン重合抑制剤の混入したままで良い。These monomers may be obtained by conventional synthesis methods, and may be mixed with an anionic polymerization inhibitor.
以上の重合体は分子量が2万〜200万であるが好まし
くは20万〜100万のものが使用される。The above polymers have a molecular weight of 20,000 to 2,000,000, but preferably 200,000 to 1,000,000 are used.
本発明によるポジ型レジスト材料はその抜群の解像度と
従来のポジ型レジストに見られない感度特性の優秀性に
加えて高い耐ドライエツチング性により、D−RAMに
して例えば64メガビツト以降の半導体大規模集積回路
製造の際の電子ビーム、X線リソグラフィ一工程におけ
るような超高密度彫刻に適合するものであり、加工精度
の大幅な向上により回路設計に充分な余裕を保証すると
ともに掻めて高い感度特性とすぐれた耐ドライエツチン
グ性によりコストの低減と高い生産性に大きな効果をも
たらすものである。The positive resist material according to the present invention has excellent resolution and excellent sensitivity characteristics not seen in conventional positive resists, as well as high dry etching resistance, making it suitable for use in large-scale semiconductor applications such as D-RAMs of 64 megabits and above. It is suitable for ultra-high-density engraving such as that used in one process of electron beam and Its characteristics and excellent dry etching resistance bring about significant effects in cost reduction and high productivity.
以下、この発明の実施例を示すが、電子線もX線リング
ラフイーに使用される軟X線(波長4〜IO人)も物質
に及ぼす化学作用は同じであり、レジストの電子線に対
する感度とX線に対する感度とは比例関係(例えば10
−’C/d −10■J/d)にあることが、Proc
International Conf、旧crol
it−hography、 Paris、 July
261(197?)等で公知になっているので、煩雑を
避けるため、電子線照射による結果を実施例とするとに
した。Examples of the present invention will be shown below, but the chemical effects of electron beams and soft X-rays (wavelength 4 to IO) used in X-ray phosphorography are the same, and the sensitivity of the resist to electron beams is the same. and the sensitivity to X-rays are in a proportional relationship (for example, 10
-'C/d -10■J/d) is Proc
International Conf, formerly crol
it-hography, Paris, July
261 (197?), etc., so in order to avoid complications, the results obtained by electron beam irradiation will be used as an example.
この発明はこれらの実施例に限定されるものでないこと
は云うまでもない。It goes without saying that the present invention is not limited to these examples.
以下、実施例を挙げて本発明を更に説明する。The present invention will be further explained below with reference to Examples.
実施例1
アニオン重合開始剤チオ尿素5X10−’モルを含む7
00m1 のアセトン溶液をフラスコ内に導入し、系内
温度を一70℃に冷却した。この系内を十分かきまぜな
がら、アニオン重合抑制剤sow 50pp−を含むα
−シアノアクリル酸アリル0.01.モルを含有する1
00鵬lのアセトン溶液を系内温度を一70℃以下に保
ちながら加え、リビングポリマーを生成せしめ、これに
アニオン重合抑制Son 50ppmを含むα−シアノ
アクリル酸シクロヘキシル0.09モルを含有する10
0s+1 のアセトン溶液を、引続き系内温度を一70
℃以下に保ちながら加えて共重合反応を行った後、重合
停止剤を加えて重合反応を停止した。得られた共重合体
は再沈澱法で精製した後、ゲルパーミエーション・クロ
マトブラフイー(GPC)−光散乱法でその分子量を測
定したところ、その分子量は33,8万でその分散度(
Mw/Mn)は】、05であった。Example 1 Anionic polymerization initiator 7 containing 5X10-' moles of thiourea
00 ml of acetone solution was introduced into the flask, and the system temperature was cooled to -70°C. While thoroughly stirring the system, add α containing 50pp of anionic polymerization inhibitor sow.
-Allyl cyanoacrylate 0.01. 1 containing moles
0.00 liters of acetone solution was added while keeping the system temperature below -70°C to form a living polymer, which contained 0.09 mol of cyclohexyl α-cyanoacrylate containing 50 ppm of anionic polymerization inhibitor.
0s+1 acetone solution and then lower the system temperature to -70℃.
After adding and carrying out a copolymerization reaction while keeping the temperature below ℃, a polymerization terminator was added to terminate the polymerization reaction. After the obtained copolymer was purified by reprecipitation method, its molecular weight was measured by gel permeation chromatography (GPC)-light scattering method.The molecular weight was 338,000, and its dispersity (
Mw/Mn) was 05.
このポリマーの5重量%シクロヘキサノン溶液を作り、
これに紫外線架橋剤を加えてレジストを調製した。この
レジストを回転塗布法により、0゜5/7踏厚の熱酸化
シリコン層上に塗布して、0.53μ腸の膜厚の共重合
体膜を得た。これを130℃、30分熱処理(プリベー
ク)後、紫外線架橋させて、加速電圧10KV、 4
x 10−’C/cjの電子線を所定パターンに従ワ
てレジスト膜面に照射した。続いて、これを大気中に取
出して、25℃のシクロヘキサノンとメチルイソブチル
ケトンの1+2の現像液に3分間浸漬することによって
現像後、イソプロピルアルコールでリンスし乾燥させた
0次いで、130℃、30分間加熱処理(ポストベーク
)した。Make a 5% by weight solution of this polymer in cyclohexanone,
A UV crosslinking agent was added to this to prepare a resist. This resist was applied onto a thermally oxidized silicone layer having a thickness of 0.5/7 by a spin coating method to obtain a copolymer film having a thickness of 0.53 μm. After heat treatment (pre-baking) at 130°C for 30 minutes, cross-linking with ultraviolet rays, acceleration voltage 10KV, 4
An electron beam of x 10-'C/cj was irradiated onto the resist film surface according to a predetermined pattern. Subsequently, this was taken out into the atmosphere and developed by immersing it in a 1+2 developer of cyclohexanone and methyl isobutyl ketone at 25°C for 3 minutes, and then rinsed with isopropyl alcohol and dried at 130°C for 30 minutes. Heat treated (post-baked).
このレジスト膜をCF4反応性イオンエツチング装置で
、CFa+5%Ox IO3CCM 60mTorr+
印加パワー13.56MHz、 150Wの条件で
エツチングしたところ、P−MMAのエツチングレート
は75 −〇人/sinであったのに対し、このレジス
トのエツチングレートは450人/sinで、P−MM
Aより優れた耐性を示した。この系の酸化シリコン層の
パターンを走査型電子顕微鏡(SEM)で、観察したが
、0.3μ鶴の直線状のパターンの形成が観察された。This resist film was etched using a CF4 reactive ion etching device at CFa+5%Ox IO3CCM 60mTorr+
When etching was performed under the conditions of applied power of 13.56 MHz and 150 W, the etching rate of P-MMA was 75-0 people/sin, whereas the etching rate of this resist was 450 people/sin, and P-MM
It showed better resistance than A. When the pattern of the silicon oxide layer of this system was observed using a scanning electron microscope (SEM), the formation of a linear pattern of 0.3 μm diameter was observed.
注:実施例および比較例中のポリマーの分子量測定はい
ずれもGPC−光散乱法によった。Note: The molecular weights of the polymers in Examples and Comparative Examples were all measured by GPC-light scattering method.
実施例2
α−シアノアクリル酸2−エチルヘキシルとα−シアノ
アクリル酸2−ヒドロキシエチルのモル比9:lの単分
散共重合体を実施例1に準じて低温アニオン重合法によ
り得たが、その分子量は41.8万、分散度(MwMn
)=1.04であった。このポリマーの5重量%シクロ
ヘキサノン溶液を作り、これに熱架橋剤を添加してレジ
ストを調製した。このレジストを回転塗布法により、0
.5μmの厚さの熱酸化シリコン層上に0.54μ霧の
膜厚の共重合体膜を得た。Example 2 A monodisperse copolymer of 2-ethylhexyl α-cyanoacrylate and 2-hydroxyethyl α-cyanoacrylate in a molar ratio of 9:1 was obtained by a low-temperature anionic polymerization method according to Example 1. The molecular weight is 418,000, the degree of dispersion (MwMn
)=1.04. A 5% by weight cyclohexanone solution of this polymer was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist was coated with a 0%
.. A copolymer film with a thickness of 0.54 μm was obtained on a thermally oxidized silicon layer with a thickness of 5 μm.
これを150℃、30分熱処理し、架橋させた後、実施
例1に準じて電子線照射、現像後、リンス、ポストベー
クを行った。This was heat-treated at 150° C. for 30 minutes to cause crosslinking, followed by electron beam irradiation, development, rinsing, and post-baking in the same manner as in Example 1.
このレジスト膜を実施例1の条件で、エツチングしたと
ころ、このレジスト膜のエツチングレートは420人/
sinで、P−MMAより優れた耐性を示した。この系
のRIHによる酸化シリコン層のパターニング結果をS
EMにより観察し、ファインな0.3μ票の直線状のパ
ターンを確認した。When this resist film was etched under the conditions of Example 1, the etching rate of this resist film was 420 people/
sin and showed better resistance than P-MMA. The patterning results of the silicon oxide layer by RIH of this system are shown in S
Observation by EM confirmed a fine 0.3μ linear pattern.
実施例3
α−シアノアクリル酸プロパギルとα−シアノアクリル
酸へキサフルオロブチルのモル比1:9の単分散共重合
体を実施例1に準じて低温アニオン重合法により得たが
、その分子l 46.4万、分散度(M−富n)=1.
05であった。このポリマーの5重量%シクロヘキサノ
ン溶液を作す、これに熱架橋剤を添加してレジストを調
製した。このレジストを回転塗布法により、0.5μ■
厚の熱酸化シリコン層上に塗布して、0.56μ園の膜
J1の共重合体膜を得た。Example 3 A monodisperse copolymer of propargyl α-cyanoacrylate and hexafluorobutyl α-cyanoacrylate in a molar ratio of 1:9 was obtained by a low-temperature anionic polymerization method according to Example 1. 464,000, degree of dispersion (M-wealth n) = 1.
It was 05. A resist was prepared by preparing a 5% by weight solution of this polymer in cyclohexanone and adding a thermal crosslinking agent thereto. This resist was coated with 0.5μ■ by spin coating method.
A copolymer film of film J1 with a thickness of 0.56 μm was obtained by coating on a thermally oxidized silicon layer with a thickness of 0.56 μm.
これを実施例2に準じて、プリベーク・熱架橋・電子線
照射・現像・リンス後、ポストベークを行った。このレ
ジスト膜を実施例1に準じてエツチングしたところ、こ
のレジスト膜のエツチングレートは580人/sinで
、P−MMAより優れた耐性を示した。この系のRIH
による酸化シリコン層のパターニング結果をSEMによ
り観察したところ、ファインな0.3μ園の直線状のパ
ターンを確認した。This was prebaked, thermally crosslinked, electron beam irradiated, developed, rinsed, and then postbaked in accordance with Example 2. When this resist film was etched according to Example 1, the etching rate of this resist film was 580 people/sin, which showed superior resistance to P-MMA. RIH of this system
When the patterning results of the silicon oxide layer were observed by SEM, a fine 0.3 μm linear pattern was confirmed.
実施例4
α−シアノアクリル酸アリルとα−シアノアクリル酸プ
ロピルのモル比1:9の単分散共重合体を実施例1に準
じ低温アニオン重合法により得たが、その分子量は31
.1万、分散度(MwMn)=1.07であった。この
ポリマーの5重量%シクロヘキサノン溶液を作り、これ
に紫外線架橋剤を添加してレジストを調製した。このレ
ジストを回転塗布法により、0.5μ■厚の熱酸化シリ
コン層上に塗布して、0.48μ鰯の膜厚の共重合体膜
を得た。 これを実施例1に準じて、プリベーク・紫外
線架橋・電子線照射・現像・リンスをし、ポストベーク
を行った。このレジスト膜を実施例1に準じてエツチン
グした。このレジスト膜のエツチングレートは430人
/+++inでP−MMAより優れた耐性を示した。こ
の系のRIHによる酸化シリコン層のパターニング結果
をSEMにより観察したところ、0.3μ−の直線状の
シャープなパターンを確認した。Example 4 A monodisperse copolymer of allyl α-cyanoacrylate and propyl α-cyanoacrylate in a molar ratio of 1:9 was obtained by a low-temperature anionic polymerization method according to Example 1, but its molecular weight was 31.
.. 10,000, and the degree of dispersion (MwMn) was 1.07. A 5% by weight cyclohexanone solution of this polymer was prepared, and a UV crosslinking agent was added thereto to prepare a resist. This resist was applied onto a thermally oxidized silicon layer having a thickness of 0.5 μm by a spin coating method to obtain a copolymer film having a thickness of 0.48 μm. This was subjected to prebaking, ultraviolet crosslinking, electron beam irradiation, development, rinsing, and postbaking in accordance with Example 1. This resist film was etched according to Example 1. The etching rate of this resist film was 430 people/+++in, which showed better resistance than P-MMA. When the patterning result of the silicon oxide layer by RIH of this system was observed by SEM, a sharp linear pattern of 0.3 μ- was confirmed.
実施例5
α−シアノアクリル酸プロパギルとα−シアノアクリル
酸シクロヘキシルのモル比1:9の単分散共重合体を実
施例1に準じ低温アニオン重合法により得たが、その分
子量33.8万、分散度(Mw/M n) = 1.0
4であった。この5重量%シクロヘキサノン溶液を作り
、これに熱架橋剤を添加してレジストを調製した。この
レジストを回転塗布法により、0.5μ園厚の熱酸化シ
リコン層上に塗布して0.51 u■の膜厚の共重合体
膜を得た。Example 5 A monodisperse copolymer of propargyl α-cyanoacrylate and cyclohexyl α-cyanoacrylate in a molar ratio of 1:9 was obtained by a low-temperature anionic polymerization method according to Example 1, but its molecular weight was 338,000, Dispersity (Mw/Mn) = 1.0
It was 4. This 5% by weight cyclohexanone solution was prepared, and a thermal crosslinking agent was added thereto to prepare a resist. This resist was coated on a thermally oxidized silicon layer with a thickness of 0.5 microns by a spin coating method to obtain a copolymer film with a thickness of 0.51 microns.
これを実施例2に準じて、プリベーク・熱架橋・電子線
照射・現像・リンス・ポストベークを行った。このレジ
スト膜を実施例1に準じてエツチングした。このレジス
ト膜のエツチングレートは465人/■1nでP−MM
Aより優れた耐性を示した。This was subjected to prebaking, thermal crosslinking, electron beam irradiation, development, rinsing, and postbaking in accordance with Example 2. This resist film was etched according to Example 1. The etching rate of this resist film is 465 people/■1n and P-MM.
It showed better resistance than A.
この系のRIEによ゛る酸化シリコン層のパターニング
結果をSEMにより観察したところ、0.3μlの直線
状のパターンの形成がf! iWされた。When the patterning results of the silicon oxide layer by RIE of this system were observed using SEM, the formation of a 0.3 μl linear pattern was found to be f! iW was done.
比較例1
α−シアノアクリル酸エチルの単分散単独重合体を実施
例1に準じ低温アニオン重合法により得たが、その分子
量は24.5万、分散度(Mw/Mn)−1,06であ
った。この重合体の5重量%シクロヘキサノン溶液を作
り、回転塗布法により、O85μ園厚の熱酸化シリコン
層上に塗布して、0.48μ隋の膜厚の重合体膜を得た
。これを130″C230分加熱処理(プリベーク)後
、加速電圧10KV、6X10〜’C/ciiの電子線
を所定パターンに従ってレジスト膜面に照射した。続い
て実施例1に準じて現像・リンス・ポストベークした。Comparative Example 1 A monodisperse homopolymer of ethyl α-cyanoacrylate was obtained by a low-temperature anionic polymerization method according to Example 1, but its molecular weight was 245,000 and the degree of dispersion (Mw/Mn) was −1.06. there were. A 5% by weight cyclohexanone solution of this polymer was prepared and coated on a thermally oxidized silicon layer with a thickness of 0.48 μm by a spin coating method to obtain a polymer film with a thickness of 0.48 μm. After heat treatment (prebaking) at 130''C for 230 minutes, the resist film surface was irradiated with an electron beam of 6X10~'C/cii at an acceleration voltage of 10KV according to a predetermined pattern.Subsequently, development, rinsing, and post-processing were performed in accordance with Example 1. Baked.
このレジスト膜を実施例1に準じてエツチングしたとこ
ろ、エツチングレートは810人/sinでP−MMA
より低い耐性を示した。このレジストの解像度は実施例
1〜5同様0.3μ■であつた。When this resist film was etched according to Example 1, the etching rate was 810 people/sin.
showed lower tolerance. The resolution of this resist was 0.3 μm as in Examples 1-5.
比較例2
α−シアノアクリル酸トリフルオロエチルとα−シアノ
アクリル酸エチルのモル比6:4の単分散共重合体を実
施例1に準じ低温アニオン重合法により得たが、その分
子量は31.7万、分散度(M@/Mn)= 1.04
であった。Comparative Example 2 A monodisperse copolymer of trifluoroethyl α-cyanoacrylate and ethyl α-cyanoacrylate in a molar ratio of 6:4 was obtained by a low-temperature anionic polymerization method according to Example 1, but its molecular weight was 31. 70,000, dispersion degree (M@/Mn) = 1.04
Met.
この5重量%シクロヘキサノン溶液を作り、これを回転
塗布法により、0.5μ園厚の熱酸化シリコン層上に塗
布して、0.46μmの膜厚の共重合体膜を得た。これ
を実施例1に準じて、プリベーク・電子線照射・現像・
リンス・ポストベークを行った。This 5% by weight cyclohexanone solution was prepared and applied by spin coating onto a thermally oxidized silicon layer with a thickness of 0.5 μm to obtain a copolymer film with a thickness of 0.46 μm. This was prebaked, electron beam irradiated, developed, and processed according to Example 1.
I did a rinse and post bake.
このレジスト膜をエツチングしたところ、エツチングレ
ートは860人/winでP−MMAより低い耐性を示
した。このレジストの解像度は実施例1〜5同様0.3
μ鯖であった。When this resist film was etched, the etching rate was 860 people/win, which showed lower resistance than P-MMA. The resolution of this resist is 0.3 as in Examples 1 to 5.
It was μ mackerel.
比較例3
α−シアノアクリル酸エチル15部、酢酸3部アゾビス
イソブチロニトリル081部をガラス封管に仕込み、窒
素中で50°C115時間加熱することにより、14.
1部の分子量32万の非単分散単独重合体をえた。Comparative Example 3 15 parts of ethyl α-cyanoacrylate, 3 parts of acetic acid, and 081 parts of azobisisobutyronitrile were placed in a glass sealed tube and heated in nitrogen at 50°C for 115 hours.
One part of a non-monodisperse homopolymer having a molecular weight of 320,000 was obtained.
これを5重量%のシクロヘキサノン溶液に調製し、0.
55@厚の熱酸化シリコン層上に塗布して、0.42μ
−の膜厚の単独重合体膜を得た。This was prepared into a 5% by weight cyclohexanone solution, and 0.0% by weight was prepared.
Coated on a thermally oxidized silicon layer with a thickness of 0.42μ.
A homopolymer film with a film thickness of - was obtained.
これを実施例1に準じて、プリベーク・電子線照射・現
像・リンス・ポストベークを行い、このレジスト膜をR
IHによりエツチングした。この結果をSEMで観察し
たところ、0.4μ−の直線状のパターンを確認した。This was subjected to pre-baking, electron beam irradiation, development, rinsing and post-baking according to Example 1, and this resist film was R
Etched by IH. When this result was observed with SEM, a 0.4 μ-linear pattern was confirmed.
比較例1〜3と実施例1〜5の結果は単分散ポリマーと
架橋性α−シアノアクリル酸エステルの導入により、解
像度と耐ドライエツチング性のクリチカルな改善がなさ
れたことを示すものである。The results of Comparative Examples 1 to 3 and Examples 1 to 5 demonstrate that the introduction of a monodisperse polymer and a crosslinkable α-cyanoacrylate ester resulted in critical improvements in resolution and dry etching resistance.
Claims (1)
重合体もしくはこのモノマー群の2種以上よりなる単分
散共重合体又はこのモノマーの1種以上と非架橋性α−
シアノアクリル酸エステルの1種以上よりなる単分散共
重合体を主剤とする耐ドライエッチング性高解像度放射
線感応性レジスト。1) A monodisperse homopolymer of crosslinkable α-cyanoacrylate ester, a monodisperse copolymer consisting of two or more of this monomer group, or one or more of these monomers and non-crosslinkable α-
A dry etching-resistant, high-resolution radiation-sensitive resist whose main ingredient is a monodisperse copolymer composed of one or more cyanoacrylic acid esters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30471687A JPH087442B2 (en) | 1986-12-29 | 1987-12-02 | Radiation sensitive resist |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31422586 | 1986-12-29 | ||
JP61-314225 | 1986-12-29 | ||
JP30471687A JPH087442B2 (en) | 1986-12-29 | 1987-12-02 | Radiation sensitive resist |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63271252A true JPS63271252A (en) | 1988-11-09 |
JPH087442B2 JPH087442B2 (en) | 1996-01-29 |
Family
ID=26564020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30471687A Expired - Lifetime JPH087442B2 (en) | 1986-12-29 | 1987-12-02 | Radiation sensitive resist |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH087442B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022564A (en) * | 1988-06-15 | 1990-01-08 | Toagosei Chem Ind Co Ltd | Positive type electron beam resist |
JPH04195138A (en) * | 1990-11-28 | 1992-07-15 | Shin Etsu Chem Co Ltd | Resist material |
JPH04350658A (en) * | 1991-05-28 | 1992-12-04 | Shin Etsu Chem Co Ltd | Resist material |
-
1987
- 1987-12-02 JP JP30471687A patent/JPH087442B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022564A (en) * | 1988-06-15 | 1990-01-08 | Toagosei Chem Ind Co Ltd | Positive type electron beam resist |
JPH04195138A (en) * | 1990-11-28 | 1992-07-15 | Shin Etsu Chem Co Ltd | Resist material |
JPH04350658A (en) * | 1991-05-28 | 1992-12-04 | Shin Etsu Chem Co Ltd | Resist material |
Also Published As
Publication number | Publication date |
---|---|
JPH087442B2 (en) | 1996-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4156745A (en) | Electron sensitive resist and a method preparing the same | |
US4430419A (en) | Positive resist and method for manufacturing a pattern thereof | |
JP3221909B2 (en) | Photoresist material and pattern forming method using the same | |
JPH0119135B2 (en) | ||
JPS63271252A (en) | Radiation sensitive resist | |
US3885060A (en) | Production of insolubilized organic polymers | |
JPS63271253A (en) | Positive type radiation sensitive resist having high resolution | |
JPS5828571B2 (en) | Resist formation method for microfabrication | |
JPH087441B2 (en) | Positive type high sensitivity radiation sensitive resist | |
JPS617835A (en) | Resist material | |
JPH0453419B2 (en) | ||
JPH0693122B2 (en) | Highly sensitive radiation resist | |
JPS63271251A (en) | Radiation sensitive resist having high sensitivity and resolution | |
JPS63271254A (en) | Radiation sensitive positive type resist having high resolution | |
JPH0358104B2 (en) | ||
JPS63271250A (en) | Positive type resist material having dry etching resistance | |
JPH0358103B2 (en) | ||
JPH05257285A (en) | Radiosensitive material and formation of pattern using the same | |
JPH021860A (en) | Radiation sensitive positive type resist high in resolution | |
JPS60252348A (en) | Formation of pattern | |
JPS6134660B2 (en) | ||
JPS6120031A (en) | Resist material and its preparation | |
JPH0377985B2 (en) | ||
JP3812056B2 (en) | Method for producing resist pattern | |
JPS62172342A (en) | Pattern forming material |