JPH0358103B2 - - Google Patents

Info

Publication number
JPH0358103B2
JPH0358103B2 JP56212729A JP21272981A JPH0358103B2 JP H0358103 B2 JPH0358103 B2 JP H0358103B2 JP 56212729 A JP56212729 A JP 56212729A JP 21272981 A JP21272981 A JP 21272981A JP H0358103 B2 JPH0358103 B2 JP H0358103B2
Authority
JP
Japan
Prior art keywords
group
general formula
copolymer
carbon atoms
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56212729A
Other languages
Japanese (ja)
Other versions
JPS58113932A (en
Inventor
Tsuneo Fujii
Hiroshi Inukai
Takayuki Deguchi
Toshihiko Amano
Masami Kakuchi
Hiroshi Asakawa
Osamu Kogure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Daikin Kogyo Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56212729A priority Critical patent/JPS58113932A/en
Priority to EP82111725A priority patent/EP0090089B1/en
Priority to CA000418004A priority patent/CA1207099A/en
Priority to US06/450,726 priority patent/US4539250A/en
Priority to DE8282111725T priority patent/DE3279090D1/en
Publication of JPS58113932A publication Critical patent/JPS58113932A/en
Priority to US06/710,190 priority patent/US4686168A/en
Publication of JPH0358103B2 publication Critical patent/JPH0358103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高エネルギー線リソグラフイ用ポジ型
レジスト材料およびそれを用いる微細レジストパ
ターンの形成方法に関する。 従来、マスキング、半導体製造などの技術分野
においてパターンの形成材料として可視光線また
は近紫外線を用いるフオトレジストが使用されて
おり、数μmオーダーの開口をうるにはそうした
レジストで充分であつた。しかし、近年、電子部
品の軽量化、大容量化に伴なつてパターンの微細
化が進み、数μmオーダー以下、とくに1μm以
下の開口をうる必要性が生じてきた。 そのような数μmないしサブミクロンオーダー
の微細パターンを形成するためには、従来のフオ
トレジスト材料では対応することができず、そこ
でさらに短波長の遠紫外線、X線、電子ビームな
どの高エネルギー線を利用したレジスト材料が開
発され、サブミクロンオーダーの微細パターンの
形成が可能になつてきた。 そのようなレジスト材料としてもつとも広く用
いられているものとしてはポリメタクリレート
(以下、PMMAという)がある。PMMAはきわ
めて高い解像度を有するが、感度が低く(たとえ
ば、軟X線であるMoのL線では1300mJ/cm2
電子線では1×10-4C/cm2)、したがつて、パタ
ーンの形成に長時間を必要とする。 そのほかある種のポリフルオロアルキルメタク
リレートを高エネルギー線用レジスト材料として
用いる試みもなされているが(特公昭55−24088
号公報参照)、それらのレジスト材料はPMMAの
欠点である感度は改善されているが、シリコンな
どのある種の基板に対し現像の際、レジストパタ
ーンとの間に現像液が浸透してレジストパターン
が剥離したりパターンが浮き上がつたりし、その
結果、エツチングなどによつてえられる基板上の
パターンの寸法が所定の寸法よりも大きくなるな
ど、精度の低下をきたすという密着性不良による
問題点がある。そのような欠点はポストベーキン
グによつても回復することが充分にはできないば
あいがある。 本発明者らはこれら従来のレジスト材料の欠点
を克服すべく鋭意研究を重ねた結果、一般式
(): (式中、R1はメチル基、エチル基もしくはそれ
らの水素原子の少なくとも1つをハロゲン原子で
置換した基、ハロゲン原子または水素原子を表わ
し、R2は炭素数1〜6個を有する2価の炭化水
素基を表わし、Rfは少なくとも1つの水素原子
がフツ素原子で置換された炭素数1〜15個を有す
るアルキル基を表わす)で表わされるフルオロア
ルキルアクリレートと一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリルアミドを共重
合してえられる共重合体が、高い感度と解像度を
有し、しかもすぐれた密着性を有する微細パター
ン形成用のポジ型レジスト材料としてきわめてす
ぐれたものであることを見出した。 前記一般式()で表わされる化合物として
は、具体的にはつぎの化学式で示されるものがあ
げられる。 CH2=C(CH3)COOCH2CF2CHF2 CH2=C(CH3)COOCH2CF2CF2CF2CHF2 CH2=CClCOOCH2CF2CHF2 CH2=C(CH3)COOCH2CF2CHFCF3 CH2=C(CH3)COOCH2CH2CF2CF2CF3 CH2=C(CH3)COOCH2CH2(CF2CF2)CF3 本発明にかかわる共重合体における一般式
()で表わされる化合物と一般式()で表わ
される化合物との割合(モル比)は60:40〜
99.9:0.1、なかんづく80:20〜99.9:0.1とする
のが好ましい。該共重合体の密着性は一般式
()で表わされる化合物の割合を増加させれば
させるほど向上するが、感度および解像度は逆に
低下する。前記の割合の範囲では、感度および解
像度が実用上問題となるまで低下せず、密着性も
充分な範囲である。また、重量平均分子量は、
10000〜20000000、好ましくは50000〜10000000の
ものが使用される。分子量は、高くなればなるほ
ど高エネルギー線の照射部分と非照射部分との溶
媒に対する溶解速度差が大となつて感度および解
像度が向上する。 本発明に用いる共重合体の製造は、一般式
()で表わされる化合物と一般式()で表わ
される化合物を通常の重合触媒の存在下にバルク
重合、溶液重合、乳化重合、懸濁重合などあらゆ
る重合法により共重合することによつて行なうこ
とができる。 重合度は重合触媒の添加量、反応温度などを変
化させる通常の方法で調整することができる。 基板上に前記共重合体のレジスト被膜を形成せ
しめる方法は、一般的なレジスト被膜形成法によ
つて行ないうる。すなわち該共重合体を脂肪族ケ
トン、脂肪族アルコール、脂肪族エステル、脂肪
族エーテル、芳香族炭化水素、脂環式ケトン、ハ
ロゲン化炭化水素またはそれらの混合物などの溶
剤に溶解させてレジスト溶液とし、該レジスト溶
液をスピンコーターなどを用いて基板上にコーテ
イングせしめ、ついで風乾、加熱乾燥などによつ
て溶媒を完全に蒸発させることによつてレジスト
被膜を形成することができる。 使用しうる基板はとくに限定されず、たとえば
クロムマスク基板、シリコン、酸化ケイ素、シリ
ケートグラスまたはチツ化ケイ素、アルミニウ
ム、チタン、金など各種の基板が本発明に使用で
き、いずれの基板においても本発明によつてえら
れるレジスト被膜は高い密着性を示す。 該レジスト被膜上に高エネルギー線を照射して
パターンを描画し、ついで現像液を用いて現像す
ることにより微細レジストパターンを形成せしめ
ることができる。 パターンの描画に用いる高エネルギー線として
は、電子線、300nm以下の紫外線、遠紫外線ま
たはX線などがあげられる。 現像液としては前記共重合体からなるレジスト
被膜において、高エネルギー線の照射により低分
子量化された部分と高エネルギー線が照射されて
いない本来の高分子量部分におけるそれらの溶解
速度がいちじるしく異なる溶剤が用いられる。 そのような溶媒としては、 (A) 炭素数2〜8個のアルコールの1種もしくは
2種以上の混合物、または (B)() 炭素数2〜8個のアルコールの1種もし
くは2種以上の混合物と () 炭素数5〜11個の炭化水素の1個もしく
は2種以上の混合物または水とからなる混合
物などがあげられる。(B)の中でも好ましいも
のは、()がイソプロピルアルコールまた
はノルマルプロピルアルコールであり、()
がヘキサン、ヘプタン、オクタン、ノナン、
ベンゼン、シクロヘキサンまたは水である。
(B)の()にあげた溶媒と()にあげた溶
媒の混合比は共重合体の分子量や所望の感度
によつて適宜選択して決められる。また、現
像温度および時間は現像液の種類や共重合体
の分子量により適宜定めればよい。 最後に現像後被照射体を乾燥および焼成す
ることにより所望の微細レジストパターンが
形成される。 つぎに参考例および実施例をあげて本発明をさ
らに詳細に説明するが、本発明はそれらの実施例
のみに限定されるものではない。 参考例 1 メタクリル酸クロライド12部(重量部、以下同
様)および2,2,3,4,4,4−ヘキサフル
オロブチルアルコール60部に、さらに重合禁止剤
としてハイドロキノンジメチルエーテル0.1部を
加え、90〜100℃で3時間加熱した。反応生成混
合物を蒸留して、2,2,3,4,4,4−ヘキ
サフルオロブチルメタクリレート(以下、
HFBMAという)15部をえた(沸点:60〜63
℃/20mmHg)。 つぎにHFBMA99部(97.1モル部)にメタクリ
ルアミド(以下、MAAという)1部(2.9モル
部)、アゾビスイソブチロニトリル(以下、
AIBNという)0.1部、ドデシルメルカプタン
0.025部およびメチルイソブチルケトン100部を加
えて混合し、脱気したのちこの混合物を60℃で24
時間共重合させた。反応生成混合物にアセトンを
加えて均一溶液としたのち、石油エーテルを加え
て沈殿させることにより共重合体93部をえた。 この共重合体は、熱分解ガスクロマトグラフイ
ーにより分析した結果、MAAのモノマー単位を
3.0モル%含有し、ほぼ仕込比で共重合している
ことが確認された。この共重合体をメチルエチル
ケトン溶液として、35℃で求めた極限粘度〔η〕
は0.39であつた。またゲルバーミユエーシヨンク
ロマトグラフイーにより求めた重量平均分子量
は、約550000であつた。 実施例 1 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調製した。該レジスト溶液をシリコンウエハ上に
スピンコーテイング法によつて被膜の膜厚が0.5μ
mとなるようにコーテイングし、ついで140℃で
30分間加熱して溶剤を蒸発させ、そののち常温に
まで冷却してレジスト被膜を形成した。 つぎにERE−302型電子線描画装置(エリオニ
クス社製)を用いて該レジスト被膜を有するそれ
ぞれの試料に加速電圧20kV(電流1×10-9A)の
電子線をそれぞれ0.08秒間(電子線量1.9×
10-7C/cm2)〜125秒間(電子線量2.9×10-4C/
cm2)で数点照射して描画した。これらの試料を23
℃のイソプロピルアルコール−n−ヘプタン混合
溶媒(容量比85:15)に90秒浸漬してレジストパ
ターンを現像した。このものはただちに23℃のn
−ヘプタンに60秒間浸漬して洗浄した。 以上によつてえられるレジストパターンのレジ
スト被膜の残存膜厚は膜厚測定器(タリステツプ
(英国ボブソン社製))によつて測定した。 第1図に照射時間(秒)と残存膜厚(μm)の
関係を表わす特性図を示す。第1図より該レジス
トの感度1.2×10-6C/cm2、γ値2.62が読みとれ
る。 ついで、0.47×10-6C/cm2の電子線でラインア
ンドスペース2、3および5μmで描画し、同様
に現像、洗浄および乾燥してえられたレジストパ
ターンを400倍の光学顕微鏡で観察して密着性を
評価した。その結果、いずれのパターンも完全に
密着しているのが観察された。 実施例 2 現像液として用いたイソプロピルアルコール−
n−ヘプタン混合溶媒を1.25%の水を含有するイ
ソプロピルアルコールに代えたほかは実施例1と
同様にして実験を行なつた。その結果感度は1×
10-6C/cm2であり、γ値は2.0であつた。また密着
性は非常にすぐれたものであつた。 参考例 2 HFBMAの使用量を90部とし、MAAの使用量
を10部としたほかは参考例1と同様にして実験を
行ない、共重合体をえた。 実施例 3 使用共重合体を参考例2でえたものに代え、現
像液をイソプロピルアルコール−n−オクタン
(容量比1:5)に代えたほかは実施例1と同様
にして実験を行なつた。その結果感度は2.9×
10-5C/cm2であり、γ値は1.2であつた。また密着
性は非常にすぐれるものであつた。 参考例 3 HFBMAに代えて2,2,3,3−テトラフ
ルオロ−1,1−ジメチルプロピルメタクリレー
ト99部を用い、MAAに代えてアクリルアミド1
部を用い、さらに重合開始剤0.05部を用いたほか
は実施例1と同様にして実験を行ない、共重合体
(〔η〕=1.10)をえた。 実施例 4 使用共重合体を参考例3でえたものに代えたほ
かは実施例1と同様にして実験を行なつた。その
結果感度は2.0×10-4C/cm2であり、γ値は1.4で
あつた。また密着性は非常にすぐれるものであつ
た。 参考例 4 メチルメタクリレート(以下、MAAという)
90部(88.5モル%)にメタクリルアミド10部
(11.5モル%)およびAIBN0.1部を加えて混合し、
ついで脱気したのち、この混合物を60℃で24時間
共重合させた。反応生成物にアセトンを加えて均
一溶液としたのち石油エーテル中に注ぎ、析出し
た重合体を回収し、真空乾燥を行ない、重合体85
部をえた。この共重合体をメチルエチルケトン溶
液として、35℃で求めた極限粘度[η]は1.1で
あつた。また、ゲルパーミエーシヨンクロマトグ
ラフイーにより求めた重量平均分子量は約600000
であつた。 参考例 5 MMA99.15部(99モル%)にメタクリルアミ
ド0.85部(1モル%)およびAIBN0.1部を加えて
混合し、以下参考例4と同様にして、重合体90部
をえた。 えられた重合体について参考例4と同様にして
求めた「η」は1.0、重量平均分子量は約500000
であつた。 参考例 6 MMA100部にAIBN0.1部を加えて混合し、つ
いで脱気したのち、この混合物を60℃で24時間重
合させた。反応生成物にアセトンを加えて均一溶
液としたのち石油エーテル中に注ぎ、析出した重
合体を回収し、真空乾燥を行ない、重合体90部を
えた。 えられた重合体をメチルエチルケトン溶液とし
て、35℃で求めた極限粘度[η]は1.0であつた。
また、ゲルパーミエーシヨンクロマトグラフイー
により求めた重量平均分子量は約500000であつ
た。 実施例 5 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調製した。該レジスト溶液をシリコンウエハー上
にスピンコーテイング法によつて被膜の膜厚が
0.8μmとなるようにコーテイングし、ついで140
℃、30分間のプリベーキングを行なつて溶剤を蒸
発させ、そののち室温まで冷却してレジスト被膜
を形成させた。つぎに実施例1で用いた電子線照
射装置で2.0×10-6C/cm2の電子線照射量で、一辺
が1.0μm、2.0μm、3.0μm、5.0μmの正方形パタ
ーンが各々400個形成されるように電子線描画を
行ない、それをイソプロピルアルコール/ノルマ
ルヘプタン混合溶液(容量比85:15)で90秒間現
像し(23℃)、さらにリンス(23℃でノルマルヘ
プタン中60秒間)し、乾燥させたものを光学顕微
鏡で観察し、形成された各大きさのパターンの残
存率((残存していたパターンの個数/400個)×
100)を求めたところ、全てのパターンが残存し
ており残存率100%であつた。 実施例 6 共重合体、現像液、リンス液および電子線照射
量を第1表に示すものに代えた他は実施例5と同
様にして実験を行ない、各々のレジストについて
各大きさのパターンごとの残存率を求めた。結果
を第1表に示す。 比較例 1 HFBMAの同族重合体([η]0.8、重量平均分
子量約800000)を用いて、この重合体4部にメチ
ルイソブチルケトン46部を加えて均一溶液を調製
した。該レジスト溶液をシリコンウエハー上にス
ピンコーテイング法によつて被膜の膜厚が0.8μm
になるようにコーテイングし、ついで140℃で30
分間のプリベーキングを行ない溶剤を蒸発させ、
室温まで冷却してレジスト被膜を形成させた。つ
ぎに現像液、リンス液および電子線照射量を第1
表に記載のものにかえた他は実施例5と同様にし
て実験を行ない、各大きさのパターンごとの残存
率を求めた。結果を第1表に示す。 比較例 2〜4 第1表に示す重合体10部を酢酸エチルセロソル
ブ90部に溶解させて均一溶液としたのち、シリコ
ンウエハー上に約1μmとなる条件でコーテイン
グし、200℃で30分間のプリベーキングを行ない、
0.8μmの厚さのレジスト被膜をえた。現像液(現
像条件は23℃、120秒間)、リンス液を第1表に示
すものに代えた他は実施例5と同様にして実験を
行ない、各レジストについて各大きさのパターン
ごとの残存率を求めた。結果を第1表に示す。
The present invention relates to a positive resist material for high-energy beam lithography and a method for forming a fine resist pattern using the same. Conventionally, photoresists using visible light or near ultraviolet light have been used as pattern forming materials in technical fields such as masking and semiconductor manufacturing, and such resists have been sufficient to form openings on the order of several μm. However, in recent years, as electronic components have become lighter and larger in capacity, patterns have become finer, and it has become necessary to have openings on the order of several μm or less, particularly 1 μm or less. In order to form such fine patterns on the order of several μm or submicron, conventional photoresist materials cannot be used, so high-energy rays such as far ultraviolet rays with shorter wavelengths, X-rays, and electron beams are used. Resist materials have been developed that utilize this technology, and it has become possible to form fine patterns on the submicron order. One of the most widely used resist materials is polymethacrylate (hereinafter referred to as PMMA). Although PMMA has extremely high resolution, it has low sensitivity (for example, 1300 mJ/cm 2 for Mo L-ray, which is a soft X-ray,
(1×10 −4 C/cm 2 ) for electron beams, and therefore requires a long time to form a pattern. In addition, attempts have been made to use certain polyfluoroalkyl methacrylates as resist materials for high-energy rays (Japanese Patent Publication No. 55-24088
Although these resist materials have improved sensitivity, which is a drawback of PMMA, when developing certain types of substrates such as silicon, the developer may penetrate between the resist pattern and the resist pattern. Problems caused by poor adhesion, such as peeling off or lifting of the pattern, resulting in a decrease in precision, such as the dimensions of the pattern on the substrate obtained by etching becoming larger than the specified dimensions. There is a point. Such defects may not be fully recovered even by post-baking. The present inventors have conducted intensive research to overcome the drawbacks of these conventional resist materials, and as a result, the general formula (): (In the formula, R 1 represents a methyl group, an ethyl group, a group in which at least one of their hydrogen atoms is substituted with a halogen atom, a halogen atom, or a hydrogen atom, and R 2 represents a divalent group having 1 to 6 carbon atoms. (represents a hydrocarbon group, R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group.) A copolymer obtained by copolymerizing acrylamide has high sensitivity and resolution, and has excellent adhesion. It has been found that it is an extremely excellent positive resist material for pattern formation. Specific examples of the compound represented by the general formula () include those represented by the following chemical formula. CH 2 =C(CH 3 )COOCH 2 CF 2 CHF 2 CH 2 =C(CH 3 )COOCH 2 CF 2 CF 2 CF 2 CHF 2 CH 2 = CClCOOCH 2 CF 2 CHF 2 CH 2 = C(CH 3 ) COOCH 2 CF 2 CHFCF 3 CH2 =C( CH3 ) COOCH2CH2CF2CF2CF3CH2 =C( CH3 ) COOCH2CH2 ( CF2CF2 ) CF3General formula ( ) in the copolymer related to the present invention The ratio (mole ratio) of the compound represented by and the compound represented by the general formula () is 60:40 ~
99.9:0.1, especially preferably 80:20 to 99.9:0.1. The adhesion of the copolymer improves as the proportion of the compound represented by the general formula () increases, but the sensitivity and resolution decrease. Within the above ratio range, the sensitivity and resolution do not deteriorate to the extent that they become a practical problem, and the adhesion is also within a sufficient range. In addition, the weight average molecular weight is
10,000 to 2,000,000, preferably 50,000 to 1,000,000 are used. As the molecular weight becomes higher, the difference in dissolution rate in a solvent between the irradiated portion and the non-irradiated portion of the high-energy ray becomes larger, and the sensitivity and resolution improve. The copolymer used in the present invention can be produced by bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc. of the compound represented by the general formula () and the compound represented by the general formula () in the presence of a conventional polymerization catalyst. This can be carried out by copolymerization using any polymerization method. The degree of polymerization can be adjusted by a conventional method by changing the amount of polymerization catalyst added, reaction temperature, etc. A method for forming a resist film of the copolymer on the substrate can be performed by a general resist film forming method. That is, the copolymer is dissolved in a solvent such as an aliphatic ketone, an aliphatic alcohol, an aliphatic ester, an aliphatic ether, an aromatic hydrocarbon, an alicyclic ketone, a halogenated hydrocarbon, or a mixture thereof to prepare a resist solution. A resist film can be formed by coating the resist solution onto a substrate using a spin coater or the like, and then completely evaporating the solvent by air drying, heating drying, or the like. The substrate that can be used is not particularly limited, and various substrates such as a chrome mask substrate, silicon, silicon oxide, silicate glass, silicon nitride, aluminum, titanium, and gold can be used in the present invention, and the present invention can be applied to any of the substrates. The resist film obtained by this method shows high adhesion. A fine resist pattern can be formed by irradiating the resist film with high-energy rays to draw a pattern and then developing it using a developer. Examples of high-energy rays used for pattern drawing include electron beams, ultraviolet rays of 300 nm or less, deep ultraviolet rays, and X-rays. The developing solution is a solvent in which, in the resist film made of the copolymer, the dissolution rate of the part whose molecular weight has been reduced by irradiation with high-energy rays and the originally high-molecular-weight part which has not been irradiated with high-energy rays is significantly different. used. Such solvents include (A) one or a mixture of two or more alcohols having 2 to 8 carbon atoms; or (B) () one or more alcohols having 2 to 8 carbon atoms. Examples include a mixture consisting of a mixture and () a mixture of one or more hydrocarbons having 5 to 11 carbon atoms, or water. Among (B), () is preferably isopropyl alcohol or normal propyl alcohol;
is hexane, heptane, octane, nonane,
benzene, cyclohexane or water.
The mixing ratio of the solvents listed in () and the solvents listed in () of (B) can be appropriately selected and determined depending on the molecular weight of the copolymer and the desired sensitivity. Further, the developing temperature and time may be appropriately determined depending on the type of developer and the molecular weight of the copolymer. Finally, the desired fine resist pattern is formed by drying and baking the irradiated object after development. Next, the present invention will be explained in more detail with reference to reference examples and examples, but the present invention is not limited only to these examples. Reference Example 1 To 12 parts of methacrylic acid chloride (parts by weight, the same applies hereinafter) and 60 parts of 2,2,3,4,4,4-hexafluorobutyl alcohol, 0.1 part of hydroquinone dimethyl ether as a polymerization inhibitor was added, and 90~ Heated at 100°C for 3 hours. The reaction product mixture was distilled to give 2,2,3,4,4,4-hexafluorobutyl methacrylate (hereinafter referred to as
15 parts (called HFBMA) (boiling point: 60-63
℃/20mmHg). Next, to 99 parts (97.1 mol parts) of HFBMA, 1 part (2.9 mol parts) of methacrylamide (hereinafter referred to as MAA) and azobisisobutyronitrile (hereinafter referred to as ``MAA''),
AIBN) 0.1 part, dodecyl mercaptan
0.025 parts and 100 parts of methyl isobutyl ketone were added, mixed, degassed, and the mixture was heated at 60°C for 24 hours.
Copolymerized over time. Acetone was added to the reaction product mixture to make a homogeneous solution, and then petroleum ether was added to precipitate it, yielding 93 parts of a copolymer. Analysis of this copolymer by pyrolysis gas chromatography revealed that the monomer unit of MAA was
It was confirmed that the content was 3.0 mol%, and copolymerization occurred at approximately the charging ratio. Intrinsic viscosity [η] determined at 35℃ using this copolymer as a methyl ethyl ketone solution
was 0.39. Further, the weight average molecular weight determined by gel vermiaction chromatography was approximately 550,000. Example 1 46 parts of methyl isobutyl ketone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The resist solution was spin-coated onto a silicon wafer until the film thickness was 0.5μ.
Coated so that it becomes m, and then heated at 140℃.
The solvent was evaporated by heating for 30 minutes, and then cooled to room temperature to form a resist film. Next, using an ERE-302 electron beam lithography system (manufactured by Elionix Co., Ltd.), each sample with the resist film was exposed to an electron beam at an acceleration voltage of 20 kV (current 1 x 10 -9 A) for 0.08 seconds (electron dose 1.9 ×
10 -7 C/cm 2 ) to 125 seconds (electron dose 2.9×10 -4 C/
cm 2 ) and was drawn by irradiating several points. 23 of these samples
The resist pattern was developed by immersing it in a mixed solvent of isopropyl alcohol and n-heptane (volume ratio 85:15) at 0.degree. C. for 90 seconds. This item should be immediately heated to 23°C
- Cleaned by soaking in heptane for 60 seconds. The remaining film thickness of the resist film of the resist pattern obtained in the above manner was measured using a film thickness measuring device (Talystep (manufactured by Bobson, UK)). FIG. 1 shows a characteristic diagram showing the relationship between irradiation time (seconds) and residual film thickness (μm). From FIG. 1, it can be seen that the resist has a sensitivity of 1.2×10 −6 C/cm 2 and a γ value of 2.62. Next, lines and spaces of 2, 3, and 5 μm were drawn using an electron beam of 0.47×10 −6 C/cm 2 , and the resulting resist pattern was similarly developed, washed, and dried, and the resulting resist pattern was observed under a 400x optical microscope. Adhesion was evaluated. As a result, it was observed that both patterns were completely adhered to each other. Example 2 Isopropyl alcohol used as developer
An experiment was carried out in the same manner as in Example 1, except that the n-heptane mixed solvent was replaced with isopropyl alcohol containing 1.25% water. As a result, the sensitivity is 1×
10 −6 C/cm 2 , and the γ value was 2.0. Moreover, the adhesion was very good. Reference Example 2 A copolymer was obtained by carrying out an experiment in the same manner as in Reference Example 1, except that the amount of HFBMA used was 90 parts and the amount of MAA was 10 parts. Example 3 An experiment was conducted in the same manner as in Example 1, except that the copolymer used was replaced with that obtained in Reference Example 2, and the developer was replaced with isopropyl alcohol-n-octane (volume ratio 1:5). . As a result, the sensitivity is 2.9×
10 −5 C/cm 2 , and the γ value was 1.2. Also, the adhesion was very good. Reference Example 3 99 parts of 2,2,3,3-tetrafluoro-1,1-dimethylpropyl methacrylate was used in place of HFBMA, and 1 part of acrylamide was used in place of MAA.
A copolymer ([η]=1.10) was obtained by conducting an experiment in the same manner as in Example 1 except that 0.05 parts of polymerization initiator was used. Example 4 An experiment was conducted in the same manner as in Example 1, except that the copolymer used was replaced with that obtained in Reference Example 3. As a result, the sensitivity was 2.0×10 −4 C/cm 2 and the γ value was 1.4. Also, the adhesion was very good. Reference example 4 Methyl methacrylate (hereinafter referred to as MAA)
Add and mix 10 parts of methacrylamide (11.5 mol%) and 0.1 part of AIBN to 90 parts (88.5 mol%),
After degassing, the mixture was copolymerized at 60° C. for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, the precipitated polymer was collected, vacuum dried, and polymer 85
I got a department. The intrinsic viscosity [η] of this copolymer determined as a solution in methyl ethyl ketone at 35° C. was 1.1. In addition, the weight average molecular weight determined by gel permeation chromatography is approximately 600,000.
It was hot. Reference Example 5 99.15 parts of MMA (99 mol%), 0.85 parts of methacrylamide (1 mol%) and 0.1 part of AIBN were added and mixed, and the same procedure as in Reference Example 4 was repeated to obtain 90 parts of a polymer. "η" of the obtained polymer was determined in the same manner as in Reference Example 4, and the weight average molecular weight was 1.0 and the weight average molecular weight was approximately 500000.
It was hot. Reference Example 6 0.1 part of AIBN was added to 100 parts of MMA and mixed. After degassing, this mixture was polymerized at 60° C. for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, and the precipitated polymer was collected and vacuum dried to obtain 90 parts of the polymer. The intrinsic viscosity [η] determined at 35° C. of the resulting polymer as a methyl ethyl ketone solution was 1.0.
Furthermore, the weight average molecular weight determined by gel permeation chromatography was approximately 500,000. Example 5 46 parts of methyl isobutyl ketone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The thickness of the film is increased by spin coating the resist solution onto a silicon wafer.
Coating to 0.8μm, then 140μm
C. for 30 minutes to evaporate the solvent, and then cooled to room temperature to form a resist film. Next, using the electron beam irradiation device used in Example 1, 400 square patterns each with sides of 1.0 μm, 2.0 μm, 3.0 μm, and 5.0 μm were formed with an electron beam irradiation dose of 2.0 × 10 -6 C/cm 2 . Electron beam writing was performed as shown in the image, and it was developed for 90 seconds (at 23°C) with a mixed solution of isopropyl alcohol/n-heptane (volume ratio 85:15), and then rinsed (at 23°C for 60 seconds in n-heptane). The dried material was observed with an optical microscope, and the survival rate of the patterns of each size formed ((number of remaining patterns/400) x
100), all the patterns remained and the survival rate was 100%. Example 6 An experiment was conducted in the same manner as in Example 5, except that the copolymer, developer, rinse solution, and electron beam irradiation amount were changed to those shown in Table 1, and each resist was tested for each pattern of each size. The survival rate was calculated. The results are shown in Table 1. Comparative Example 1 Using a homologous polymer of HFBMA ([η] 0.8, weight average molecular weight approximately 800,000), a homogeneous solution was prepared by adding 46 parts of methyl isobutyl ketone to 4 parts of this polymer. The resist solution was spin-coated onto a silicon wafer to a film thickness of 0.8 μm.
Coat it so that it becomes
Prebaking for 1 minute to evaporate the solvent,
A resist film was formed by cooling to room temperature. Next, adjust the developer, rinse solution, and electron beam irradiation amount to the first
An experiment was conducted in the same manner as in Example 5, except that the samples were changed to those listed in the table, and the survival rate for each pattern of each size was determined. The results are shown in Table 1. Comparative Examples 2 to 4 10 parts of the polymer shown in Table 1 was dissolved in 90 parts of ethyl cellosolve acetate to make a homogeneous solution, and then coated on a silicon wafer to a thickness of approximately 1 μm, and pretreated at 200°C for 30 minutes. Perform baking;
A resist film with a thickness of 0.8 μm was obtained. An experiment was conducted in the same manner as in Example 5, except that the developer (development conditions were 23°C for 120 seconds) and rinse solution were replaced with those shown in Table 1. I asked for The results are shown in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子線照射時間と残存膜厚の関係を表
わす特性図である。
FIG. 1 is a characteristic diagram showing the relationship between electron beam irradiation time and residual film thickness.

Claims (1)

【特許請求の範囲】 1 一般式(): (式中、R1はメチル基、エチル基もしくはそれ
らの水素原子の少なくとも1つをハロゲン原子で
置換した基、ハロゲン原子または水素原子を表わ
し、R2は炭素数1〜6個を有する2価の炭化水
素基を表わし、Rfは少なくとも1つの水素原子
がフツ素原子で置換された炭素数1〜15個を有す
るアルキル基を表わす)で表わされるフルオロア
ルキルアクリレートと一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリルアミドとの共
重合体からなるレジスト材料。 2 前記一般式()で表わされるフルオロアル
キルアクリレートと前記一般式()で表わされ
るアクリルアミドとのモル比が60:40〜99.9:
0.1である共重合体からなる特許請求の範囲第1
項記載のレジスト材料。 3 前記一般式()で表わされるフルオロアル
キルアクリレートと前記一般式()で表わされ
るアクリルアミドとのモル比が80:20〜99.9:
0.1である共重合体からなる特許請求の範囲第1
項記載のレジスト材料。 4 前記共重合体の重量平均分子量が10000〜
20000000である特許請求の範囲第1項、第2項ま
たは第3項記載のレジスト材料。 5 前記共重合体の重量平均分子量が50000〜
10000000である特許請求の範囲第1項、第2項ま
たは第3項記載のレジスト材料。 6 一般式(): (式中、R1はメチル基、エチル基もしくはそれ
らの水素原子の少なくとも1つをハロゲン原子で
置換した基、ハロゲン原子または水素原子を表わ
し、R2は炭素数1〜6個を有する2価の炭化水
素基を表わし、Rfは少なくとも1つの水素原子
がフツ素原子で置換された炭素数1〜15個を有す
るアルキル基を表わす)で表わされるフルオロア
ルキルアクリレートと一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリルアミドを共重
合してえられる共重合体からなるレジスト被膜に
高エネルギー線を照射したのち、現像することを
特徴とする微細レジストパターン形成方法。 7 前記現像が炭素数2〜8個のアルコールの1
種または2種以上の混合物を現像液として用いて
行なうものである特許請求の範囲第6項記載の微
細レジストパターンの形成方法。 8 前記現像が () 炭素数2〜8個のアルコールの1種もしく
は2種以上の混合物と () 炭素数5〜11個の炭化水素の1種もしくは
2種以上の混合物または水 とからなる混合物を現像液として用いて行なうも
のである特許請求の範囲第6項記載の微細レジス
トパターンの形成方法。 9 前記現像が () イソプロピルアルコールまたはノルマルプ
ロピルアルコールと () ヘキサン、ヘプタン、オクタン、ノナン、
ベンゼン、シクロヘキサンまたは水 とからなる混合物を現像液として用いて行なうも
のである特許請求の範囲第6項記載の微細レジス
トパターンの形成方法。
[Claims] 1 General formula (): (In the formula, R 1 represents a methyl group, an ethyl group, a group in which at least one of their hydrogen atoms is substituted with a halogen atom, a halogen atom, or a hydrogen atom, and R 2 represents a divalent group having 1 to 6 carbon atoms. (represents a hydrocarbon group, R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group.) A resist material made of a copolymer with acrylamide. 2 The molar ratio of the fluoroalkyl acrylate represented by the general formula () to the acrylamide represented by the general formula () is 60:40 to 99.9:
Claim 1 consisting of a copolymer of 0.1
Resist materials listed in section. 3 The molar ratio of the fluoroalkyl acrylate represented by the general formula () to the acrylamide represented by the general formula () is 80:20 to 99.9:
Claim 1 consisting of a copolymer of 0.1
Resist materials listed in section. 4 The weight average molecular weight of the copolymer is from 10,000 to
20000000. The resist material according to claim 1, 2 or 3. 5 The weight average molecular weight of the copolymer is 50,000 to 50,000.
10000000. The resist material according to claim 1, 2 or 3. 6 General formula (): (In the formula, R 1 represents a methyl group, an ethyl group, a group in which at least one of their hydrogen atoms is substituted with a halogen atom, a halogen atom, or a hydrogen atom, and R 2 represents a divalent group having 1 to 6 carbon atoms. (represents a hydrocarbon group, R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group) A resist film made of a copolymer obtained by copolymerizing acrylamide is irradiated with high-energy rays and then developed. A method for forming a fine resist pattern. 7. The developing agent is an alcohol having 2 to 8 carbon atoms.
7. The method for forming a fine resist pattern according to claim 6, wherein the method is carried out using a species or a mixture of two or more species as a developer. 8. A mixture in which the development is made of () one or a mixture of two or more alcohols having 2 to 8 carbon atoms and () a mixture of one or more hydrocarbons having 5 to 11 carbon atoms or water. 7. A method for forming a fine resist pattern according to claim 6, which is carried out using as a developer. 9 The development is performed using () isopropyl alcohol or n-propyl alcohol and () hexane, heptane, octane, nonane,
7. The method for forming a fine resist pattern according to claim 6, wherein the method is carried out using a mixture of benzene, cyclohexane, or water as a developer.
JP56212729A 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it Granted JPS58113932A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56212729A JPS58113932A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it
EP82111725A EP0090089B1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
CA000418004A CA1207099A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/450,726 US4539250A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
DE8282111725T DE3279090D1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/710,190 US4686168A (en) 1981-12-19 1985-03-11 Fluoroalkyl acrylate resist material and process for forming fine resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212729A JPS58113932A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it

Publications (2)

Publication Number Publication Date
JPS58113932A JPS58113932A (en) 1983-07-07
JPH0358103B2 true JPH0358103B2 (en) 1991-09-04

Family

ID=16627462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212729A Granted JPS58113932A (en) 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it

Country Status (1)

Country Link
JP (1) JPS58113932A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218713A (en) * 1987-02-17 1988-09-12 Daikin Ind Ltd Alpha-fluoroacrylic acid polymer and use thereof
US5011275A (en) * 1988-07-05 1991-04-30 Ciba-Geigy Corporation Dimethylacrylamide-copolymer hydrogels with high oxygen permeability
JPH02111988A (en) * 1988-10-21 1990-04-24 Toppan Printing Co Ltd Duplicating pattern for hologram, its production, and production of hologram
US20070219331A1 (en) * 2004-04-15 2007-09-20 Masahiko Ishikawa Fluorine-Containing Polymer and Treating Agent Composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524088A (en) * 1979-03-02 1980-02-20 Daiichi Koki Folding thick bedquilt drying tool
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5653114A (en) * 1979-10-08 1981-05-12 Kohjin Co Ltd Preparation of polymeric material for positive resist sensitive to radiation and far ultraviolet rays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5524088A (en) * 1979-03-02 1980-02-20 Daiichi Koki Folding thick bedquilt drying tool
JPS5653114A (en) * 1979-10-08 1981-05-12 Kohjin Co Ltd Preparation of polymeric material for positive resist sensitive to radiation and far ultraviolet rays

Also Published As

Publication number Publication date
JPS58113932A (en) 1983-07-07

Similar Documents

Publication Publication Date Title
US4686168A (en) Fluoroalkyl acrylate resist material and process for forming fine resist pattern
JP4421710B2 (en) Novel polymers and photoresist compositions containing them
KR20060050399A (en) Protective film-forming composition for immersion exposure and pattern forming method using the same
EP0064222B1 (en) Process for forming resist patterns
US4345020A (en) Positive resist polymer composition and method of forming resist pattern
WO2019150966A1 (en) Resist composition and resist film
JP3221909B2 (en) Photoresist material and pattern forming method using the same
US4279984A (en) Positive resist for high energy radiation
US4476217A (en) Sensitive positive electron beam resists
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
JPH0358103B2 (en)
KR100198408B1 (en) Resist material and process for use
JPH0358104B2 (en)
EP0006939B1 (en) Positive type resist polymer composition and method of making resist patterns
JPH0358102B2 (en)
US4414313A (en) Sensitive positive electron beam resists
EP0064864B1 (en) Method of making sensitive positive electron beam resists
US4415653A (en) Method of making sensitive positive electron beam resists
JP2988268B2 (en) Radiation-sensitive resin composition
US4276365A (en) Positive resist terpolymer composition and method of forming resist pattern
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
US4656119A (en) Method of manufacturing X-ray resist
JPS6411936B2 (en)
JPH087441B2 (en) Positive type high sensitivity radiation sensitive resist
KR20030089171A (en) Light-absorbing polymer for forming organic anti-reflective coating layer, composition including the same, and method for producing semiconductor device pattern using the same