JPS58113932A - Resist material and formation of resist micropattern using it - Google Patents

Resist material and formation of resist micropattern using it

Info

Publication number
JPS58113932A
JPS58113932A JP56212729A JP21272981A JPS58113932A JP S58113932 A JPS58113932 A JP S58113932A JP 56212729 A JP56212729 A JP 56212729A JP 21272981 A JP21272981 A JP 21272981A JP S58113932 A JPS58113932 A JP S58113932A
Authority
JP
Japan
Prior art keywords
resist
copolymer
general formula
group
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56212729A
Other languages
Japanese (ja)
Other versions
JPH0358103B2 (en
Inventor
Tsuneo Fujii
藤井 恒男
Hiroshi Inukai
宏 犬飼
Takayuki Deguchi
出口 隆行
Toshihiko Amano
俊彦 天野
Masami Kakuchi
覚知 正美
Hiroshi Asakawa
浩 浅川
Osamu Kogure
小暮 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Nippon Telegraph and Telephone Corp, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP56212729A priority Critical patent/JPS58113932A/en
Priority to US06/450,726 priority patent/US4539250A/en
Priority to CA000418004A priority patent/CA1207099A/en
Priority to DE8282111725T priority patent/DE3279090D1/en
Priority to EP82111725A priority patent/EP0090089B1/en
Publication of JPS58113932A publication Critical patent/JPS58113932A/en
Priority to US06/710,190 priority patent/US4686168A/en
Publication of JPH0358103B2 publication Critical patent/JPH0358103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Abstract

PURPOSE:To form a resist micropattern improved in adhesion to a base without deteriorating sensitivity and resolution, by irradiating a resist film of a copolymer of fluoroalkylacrylate and acrylamide with high energy rays. CONSTITUTION:A resist micropattern is formed by copolymerizing (A) fluoroalkyl acrylate of formulaI(R1 is optionally halogenated methyl or ethyl, halogen or H, R2 is 1-6C divalent hydrocarbon group, and Rf is 1-15C fluorinated alkyl), such as formula II, and (B) acrylamide of formula III (R3 is H, methyl, ethyl, or the like), such as methacrylamide, irradiating a resist film made of this copolymer with high energy rays, such as electron beams, and developing it.

Description

【発明の詳細な説明】 型レジスト材料およびそれを用いる微細レジストパター
ンの形成方法に関する・ 従来、マスキング、半導体製造などの技術分野において
パターンの形成材料として可視光線または近紫外線を用
いるフォトレジストが使用されており、数Parオーダ
ーの開口をつるにはそうしたレジストで充分であった・
しかし)近年\電子部品の軽量化、大容量化に伴なって
パターンの微細化が進み、数μ重オーダー以下、とくに
1μm以下の開口【つる必要性が生じてきた。
[Detailed Description of the Invention] Regarding a mold resist material and a method for forming a fine resist pattern using the same - Conventionally, photoresists that use visible light or near ultraviolet rays have been used as pattern forming materials in technical fields such as masking and semiconductor manufacturing. Such a resist was sufficient to create an opening on the order of several Par.
However, in recent years, as electronic components have become lighter and larger in capacity, patterns have become increasingly finer, and there has been a need for openings on the order of several micrometers or smaller, particularly 1 micrometer or smaller.

そのような数μmないしサブ電クロンオーダーの微細パ
ターンを形成するためには、従来の7オシレジスト材料
では対応することができず、そこでさらに短波長の遠紫
外線、xa1電子ビームなどの高エネルギー線を利用し
たレジスト材料が開発され、サブミクロンオーダーの[
dパターンの形成が可能になってきた。
In order to form such fine patterns on the order of several μm or sub-electrons, conventional 7-oscilloscope resist materials cannot be used, so high-energy rays such as short-wavelength deep ultraviolet rays and XA1 electron beams are used. The resist material used was developed, and submicron order [
It has become possible to form a d pattern.

そのようなレジスト材料としてもつとも広く用いられて
いるものとしてはポリメタクリレート,c以下、PMM
Aという)がある。PMMAはきわめ5て高い解像度を
有するが、感度が低く(たとえば、軟XllであるMo
のxJIIIIでは1300mJ/am”、電子線では
I X 10−’O/am2)、したがッテ、ハp一ン
の形成に長時間を必要とする。
Polymethacrylate, below C, PMM is widely used as such resist material.
There is a). PMMA has very high resolution but low sensitivity (for example, soft
1300 mJ/am'' for xJIII, and I x 10-'O/am2 for electron beam), but it takes a long time to form 1.

そのほかある種のポリフルオロアルキルメタクリレート
を高エネルギー線用レジスト材料として用いる試みもな
されているがC特公昭55ー24088号公報参照)、
それらのレジスト材料はPMMAの欠点である感度は改
善されているが、シリコンなどのある種の基板に対し現
像の際、レジストパターンとの間に現像液が浸透してレ
ジストパターンが剥離したりパターンが浮き上がったり
し、その結果、エツチングなどによってえられる基板上
刃パターンの寸法が所定の寸法よりも大きくなるなど、
精度の低下をきたすという密着性不良による問題点があ
る。そのような欠点はポストベーキングによっても回復
することが充分にはできないばあいがある。
In addition, attempts have been made to use certain polyfluoroalkyl methacrylates as resist materials for high-energy rays (see Japanese Patent Publication No. 55-24088).
Although these resist materials have improved sensitivity, which is a drawback of PMMA, when developing certain types of substrates such as silicon, the developer solution penetrates between the resist pattern and the resist pattern may peel off or the pattern may rise, and as a result, the dimensions of the blade pattern on the substrate obtained by etching etc. may become larger than the specified dimensions.
There is a problem due to poor adhesion, which causes a decrease in accuracy. In some cases, such defects cannot be sufficiently recovered even by post-baking.

本発明者らはこれら従来のレジスト材料の欠点を克服す
べく鋭意研究を重ねた結果、一般式(): (式中、R□はメチル基、エチル基もしくはそれらの水
素原子の少なくとも1つをハロゲン原子で置換した基、
ハロゲン原子または水素原子を表わし、R2は炭素数1
〜6個を有する2価の炭化水素基を表わし、R2は少な
くとも1つの水素原子がフッ素原子で置換された炭素数
1〜15個を有するアルキル基を表わす)で表わされる
フルオロアルキルアクリレートと一般式(■):3 0H2=0 1(I) C式中、R3は水素原子、メチル基またはエチル基を表
わす)で表わされるアクリルアミドを共重合してえられ
る共重合体が、高い感度と解像度を有し、しかもすぐれ
た密着性を有する微細パターン形成用のポジ型レジスト
材料としてきわめてすぐれたものであることを見出した
The present inventors conducted extensive research to overcome the drawbacks of these conventional resist materials, and as a result, we found the following formula: a group substituted with a halogen atom,
Represents a halogen atom or a hydrogen atom, R2 has 1 carbon number
fluoroalkyl acrylate represented by the general formula (■): 3 0H2=0 1(I) A copolymer obtained by copolymerizing acrylamide represented by the formula C (in which R3 represents a hydrogen atom, a methyl group, or an ethyl group) exhibits high sensitivity and resolution. It has been found that the resist material has excellent adhesion properties and is an excellent positive resist material for forming fine patterns.

前記一般式(I)で表わされる化合物としては、具体的
にはつぎの化学′式で示ぎれるものがあげられる。
Specific examples of the compound represented by the general formula (I) include those represented by the following chemical formula.

OH2:O(OH3)OOOGH2GIF20HF20
H2=O(OH3)0900H2(IF、OF、Oν2
C!2(%=O(OH3)OOOOH2a1P2OFU
FOF30)13 0H2=CI(町10000H2C)I20’?20F
g(7F。
OH2:O(OH3)OOOGH2GIF20HF20
H2=O(OH3)0900H2(IF,OF,Oν2
C! 2(%=O(OH3)OOOOOH2a1P2OFU
FOF30) 13 0H2=CI (Town 10000H2C) I20'? 20F
g (7F.

0H2= O(OH,+ooooH2au2(oy、c
yir、)2cyy。
0H2= O(OH, +ooooH2au2(oy, c
yir,)2cyy.

本発明にかかわる共重合体における一般式(I)で表わ
される化合物と一般式(1)で表わされる化合物との割
合(モル比〕は60 : 40〜99.9 : 0.1
、なかんづ< 80 j 20〜99.9 + 0.1
とするのが好ましい。該共重合体の密着性は一般式fl
)で表わされる化合物の割合を増加させればさせるほど
向上するが、感度および解像度は逆に低下する。
The ratio (molar ratio) of the compound represented by general formula (I) and the compound represented by general formula (1) in the copolymer according to the present invention is 60:40 to 99.9:0.1.
, Nakazu < 80 j 20~99.9 + 0.1
It is preferable that The adhesion of the copolymer is expressed by the general formula fl
) The higher the proportion of compounds represented by ), the higher the improvement, but the sensitivity and resolution decrease.

前記の割合の範囲では、感度および解像度が実用上問題
となるまで低下せず、密着性も充分な範囲である。また
、重量平均分子量は、10,000〜20.000.0
00.a9ましくはso、 ooo〜1o、 ooo、
 ciooのものが使用される。分子量は、高くなれば
なるほど高エネルギー線の照射部分と非照射部分その溶
媒に対する溶解速度差が大となって感度および解像度が
向上する。
Within the above ratio range, the sensitivity and resolution do not deteriorate to the extent that they become a practical problem, and the adhesion is also within a sufficient range. In addition, the weight average molecular weight is 10,000 to 20.000.0
00. a9 is so, ooo~1o, ooo,
cioo is used. The higher the molecular weight, the greater the difference in the rate of dissolution in the solvent between the irradiated portion and the non-irradiated portion of the high-energy rays, resulting in improved sensitivity and resolution.

本発明に用いる共重合体の製造は、一般式(I)で表わ
される化合物と一般式(1)で表わされる化合物を通常
の重合触媒の存在下にバルク重合、溶液重合、乳化重合
、懸濁重合などあらゆる重合法により共重合することに
よって行なうことができる。
The copolymer used in the present invention can be produced by bulk polymerization, solution polymerization, emulsion polymerization, or suspension polymerization of a compound represented by general formula (I) and a compound represented by general formula (1) in the presence of a conventional polymerization catalyst. This can be carried out by copolymerization using any polymerization method such as polymerization.

重合度は重合触媒の添加量、反応温度などを変化させる
通常の方法で調整することができる。
The degree of polymerization can be adjusted by a conventional method by changing the amount of polymerization catalyst added, reaction temperature, etc.

基板上に前記共重合体のレジスト被膜を形成せしめる方
法は、一般的なレジスト被膜形成法によって行ないつる
。すなわち該共重合体を脂肪族ケトン、脂肪族アルコー
ル、脂肪族エステル、脂肪族エーテル、芳香族炭化水素
、脂環式ケシン、ハセゲン化炭化水素またはそれらの混
合物などの溶剤に溶解させてレジスト溶液とし、該レジ
スト溶液をスピンコーターなどを用いて基板上にコーテ
ィングせしめ、ついで風乾、加熱乾燥などによって溶媒
を完全に蒸発させることによってレジスト被膜を形成す
ることができる。
The method for forming the resist film of the copolymer on the substrate is carried out by a general resist film forming method. That is, the copolymer is dissolved in a solvent such as an aliphatic ketone, an aliphatic alcohol, an aliphatic ester, an aliphatic ether, an aromatic hydrocarbon, an alicyclic ketene, a hacegenated hydrocarbon, or a mixture thereof to prepare a resist solution. A resist film can be formed by coating the resist solution on a substrate using a spin coater or the like, and then completely evaporating the solvent by air drying, heating drying, or the like.

使用しつる基板はとくに限定されず、たとえばクロムマ
スク基板、シリコン、酸化ナイ素、シリケートグラスま
たはチツ化ケイ素、アルミニウム、チタン、金など各種
の基板が本発明に使用でき、いずれの基板においても本
発明によって見られるレジスト被膜は高い密着性を示す
The substrate used is not particularly limited, and various substrates such as a chrome mask substrate, silicon, nitric oxide, silicate glass, silicon titanium, aluminum, titanium, and gold can be used in the present invention, and any substrate can be used in the present invention. The resist coating seen by the invention exhibits high adhesion.

該レジスト被膜上に高エネルギー線を照射、してパター
ンを描画し、ついで現像液を用いて現像することにより
微細レジストパターンを形成せしめることができる。
A fine resist pattern can be formed by irradiating the resist film with high-energy rays to draw a pattern, and then developing it using a developer.

パターンの描画に用いる高エネルギー線としては、電子
線、300n!II以下の紫外線、遠紫外線またはxI
Iなどがあげられる。
The high energy beam used for pattern drawing is an electron beam, 300n! Ultraviolet rays below II, far ultraviolet rays or xI
Examples include I.

現像液としては前記共重合体からなるレジスト被膜にお
いて、高エネルギー線の照射により低分子量化された部
分と高エネルギー線が照射されていない本来の高分子量
部分におけるそれらの溶解速度がいちじるしく異なる溶
剤が用いられる。
The developing solution is a solvent in which, in the resist film made of the copolymer, the dissolution rate of the part whose molecular weight has been reduced by irradiation with high-energy rays and the originally high-molecular-weight part which has not been irradiated with high-energy rays is significantly different. used.

そのような溶媒としては、 内炭素数2〜8個のアルコールの1種もしくは2種以上
の混合物、または (n)(t)炭素1f〜8個のアルコールのIliモt
、<は2種以上の混合物と (ii)炭素数5〜11個の炭化水素の1個もしくは2
種以上の混合物または水とからなる混合物などがあげら
れる。(B)の中でも好ましいものは、(1)がイソプ
ロピルアルフールまたはノルマルプロピルアルコールで
あり、(■)がヘキサン、ヘプタン、オクタン、ノナン
、ベンゼン、シクロヘキサンまたは水である。(B)の
(1)にあげた溶媒と(川にあげた溶媒の混合比は共重
合体の分子量や所望の感度によって適宜選択して決めら
れる。
Such solvents include one or a mixture of two or more alcohols having 2 to 8 carbon atoms, or (n)(t) alcohols having 1f to 8 carbon atoms;
, < represents a mixture of two or more types and (ii) one or two hydrocarbons having 5 to 11 carbon atoms.
Examples include mixtures of more than one species and mixtures with water. Among (B), (1) is preferably isopropyl alfur or normal propyl alcohol, and (■) is hexane, heptane, octane, nonane, benzene, cyclohexane or water. The mixing ratio of the solvents listed in (1) of (B) and the solvents listed above can be appropriately selected and determined depending on the molecular weight of the copolymer and the desired sensitivity.

また、現像温度および時間は現像液の種類や共重合体の
分子量により適宜定めればよい。
Further, the developing temperature and time may be appropriately determined depending on the type of developer and the molecular weight of the copolymer.

最後に現像後被照射体を乾燥および焼成することにより
所望の微細レジストパターンが形成される。
Finally, the desired fine resist pattern is formed by drying and baking the irradiated object after development.

つぎに参考例および実施例をあげて本発明をさらに詳細
に説明するが、本発明はそれらの実施例のみに限定され
るものではない。
Next, the present invention will be explained in more detail with reference to reference examples and examples, but the present invention is not limited only to these examples.

参考例1 メタクリル酸クロライド12部(重量部、以下同様)オ
よび2.2. L 4.4.4−ヘキサフルオロブチル
アルコール60Wlに、さらに重合禁止剤としえ、90
〜100°Oで3時間加熱した。反応生成混合物を蒸留
して、2.2.5.4.4.4−ヘキサフルオロブチル
メタクリレート(以下、HIFIIMAという)15部
をえた(沸点=60〜6いηQmsm)iり〕。
Reference Example 1 12 parts (parts by weight, same hereinafter) of methacrylic acid chloride and 2.2. L 4.4.4-Hexafluorobutyl alcohol 60Wl, further added as a polymerization inhibitor, 90
Heated at ~100°O for 3 hours. The reaction product mixture was distilled to obtain 15 parts of 2.2.5.4.4-hexafluorobutyl methacrylate (hereinafter referred to as HIFIIMA) (boiling point = 60-6 ηQmsm).

つぎにHIPBMk 99部(97,1モル部]にメタ
クリルアミド(以下、MAAという)1部(2,9モル
部)、アゾビスイゾプ手ロニトリル(以下、人工ENと
いう) 0.ff 部、)”デシルメルカプタン0.0
25部およびメチルイソブチルケトン1oosを加えて
混合し、脱気したのちこの混合物を60°Oで24時間
共重合させた。反応生成混合物にア七トンを加えて均一
溶液としたのち、石油エーテルを加えて沈殿させること
により共重合体93部をえた。
Next, 99 parts (97.1 mole parts) of HIPBMk, 1 part (2.9 mole parts) of methacrylamide (hereinafter referred to as MAA), 0.ff part of azobis isophandronitrile (hereinafter referred to as artificial EN), and 1 part (2.9 mole parts) of decyl mercaptan 0.0
After adding and mixing 25 parts and 1 oz of methyl isobutyl ketone and degassing, the mixture was copolymerized at 60°O for 24 hours. A7ton was added to the reaction product mixture to make a homogeneous solution, and then petroleum ether was added to precipitate it, yielding 93 parts of a copolymer.

この共重合体は、熱分解ガスク四マドグラフィーにより
分析した結果、MAAのモノマ一単位を3.0モル襲含
有し、はぼ仕込比で共重合していることが確認された。
This copolymer was analyzed by pyrolysis gas tetramography, and it was confirmed that it contained 3.0 moles of MAA monomer unit and was copolymerized at a similar charging ratio.

この共重合体をメチルエチルケトン溶液として、35c
loで求めた極限粘度〔η〕は0.39であった。また
ゲルバーミュエーションクロマトグラフイーにより求め
た重量平均分子量は、約550.000であった。
This copolymer was made into a methyl ethyl ketone solution, and 35c
The intrinsic viscosity [η] determined by lo was 0.39. The weight average molecular weight determined by gel vermutation chromatography was approximately 550,000.

実施例1 参考例1で見られた共重合体4部にメチルイソブチルナ
トン46部を加えて均一なレジスト溶液を調製した。該
レジスト溶液をシリコンウェハ上にスピンコーティング
法によって被膜の膜厚が0.5μmとなるようにコーテ
ィングし、ついで140°0で30分間加熱して溶剤を
蒸発させ、そののち常温にまで冷却してレジスト被膜を
形成した〇 つぎにIIjR]Li−302型電子線描画装置(エリ
オニクス社製)を用し・て該レジスト被膜を有するそれ
ぞれの試料に加速電圧2DkV (電流I X 10−
’A)の電子線をそれぞれ0.08秒間(電子線量1.
9×10−70/am2) 〜125秒間(電子線量2
.9 X’10−’010ffi” )で数点照射して
描画した。これらの試料を23’0のイソプロピルアル
コール−n−へブタン混合溶媒(容量比85 : 15
 )に90秒浸漬してレジストパターンを現像した。こ
のものはただちに23°aのn−ヘプタンに60秒間浸
漬して洗浄した〇 以上によってえられるレジストパターンのレジスト被膜
の残存膜厚は膜厚測定11i(タリステップC英国ボプ
ソン社製))によって測定した。
Example 1 46 parts of methyl isobutyl natone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The resist solution was coated onto a silicon wafer by a spin coating method so that the film thickness was 0.5 μm, and then heated at 140° for 30 minutes to evaporate the solvent, and then cooled to room temperature. After forming the resist film, each sample having the resist film was subjected to an accelerating voltage of 2DkV (current I x 10-
'A) electron beam for 0.08 seconds each (electron beam dose 1.
9 x 10-70/am2) ~125 seconds (electron dose 2
.. 9X'10-'010ffi"). These samples were irradiated with 23'0 isopropyl alcohol-n-hebutane mixed solvent (volume ratio 85:15).
) for 90 seconds to develop the resist pattern. This product was immediately immersed in n-heptane at 23°A for 60 seconds and washed.The remaining film thickness of the resist film of the resist pattern obtained by above was measured using Film Thickness Measurement 11i (Talystep C manufactured by Bopson Ltd., UK). did.

第1図に照射時間(秒)と残存膜厚(Fmlの関係を表
わす特性図を示す。第1図より該レジストの感度i −
2X 10−’O/a+a2、r値2.62が読みとれ
る。
Figure 1 shows a characteristic diagram showing the relationship between irradiation time (seconds) and residual film thickness (Fml). Figure 1 shows the sensitivity of the resist i -
2X 10-'O/a+a2, r value of 2.62 can be read.

ついで、0.47X 10−’Q/am2の電子線でラ
イシン(容量比1:5)に代えたはかは実施例1と同様
にして実験を行なった。その結果感度は2.9 X 1
0 0/am  であり、γ値は1.2であった。
Next, an experiment was carried out in the same manner as in Example 1 except that lysine (capacity ratio 1:5) was used instead of lysine using an electron beam of 0.47 x 10-'Q/am2. As a result, the sensitivity is 2.9 x 1
0 0/am, and the γ value was 1.2.

また密着性は非常にすぐれるものであった。Moreover, the adhesion was very good.

参考例3 HIFDMAに代えて2.2.5.5−テトラフルオ四
−1,1−ジメチルプロピルメタクリレート991Mf
t用い、MAAに代えてアクリルアミド1廓を用い、さ
らに重合開始剤0.05部を用いたほかは実施例1と同
様にして実験を行ない、共電′合体(〔η〕=1.10
 )をえた。
Reference example 3 2.2.5.5-tetrafluoro4-1,1-dimethylpropyl methacrylate 991Mf in place of HIFDMA
An experiment was carried out in the same manner as in Example 1, except that 1 g of acrylamide was used in place of MAA, and 0.05 part of a polymerization initiator was used.
) was obtained.

実施例4 使用共重合体を参考例3でえたものに代えたほかは実施
例1と同様にして実験を行なった。
Example 4 An experiment was conducted in the same manner as in Example 1, except that the copolymer used was replaced with that obtained in Reference Example 3.

その結果感度は2.OX 10°’O/am2であり、
r値は1.4であった。また密着性は非常にすぐれるも
のであった。
As a result, the sensitivity was 2. OX 10°'O/am2,
The r value was 1.4. Moreover, the adhesion was very good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子線照射時間と残存膜厚の関係なアンドスペ
ース2.3および5μmで描画し、同様に現像、洗浄お
よび乾燥して見られたレジストパターンを400倍の光
学顕微鏡で観察して密層性を評価した。その結果、いず
れのパターンも完全に密着しているのが観察された@実
施例2 現像液として用いたイソプロピルアルコール−n−へブ
タン混合溶媒を1.25%の水を含有するイソプロピル
アルコールに代えたほか6は実施例1と同様にして実験
を行なった。その結果感度はI X 10−6010!
!+2であり、r値は2,0であった。また密着性は非
常にすぐれたものであった。 参考例2 HFEMAの使用量を90部とし、MMAの使用量を1
0部としたほかは参考例1と同様にして実験を行ない、
共重合体を蔓た。 実施例3 使用共重合体t−参考例2でえたものに代え、現像液を
イソプロピルアルコール−n −オク$表わす特性図で
ある。 特許出願人 ダイキン工業株式会社 1図 R創8今間 (秒) 第1頁の続き 0発 明 者 浅用浩 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電気通信研究所内 0発 明 者 小暮攻 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電気通信研究所内 ■出 願 人 日本電信電話公社 −35′/
Figure 1 shows the relationship between the electron beam irradiation time and the remaining film thickness.The resist pattern was drawn with an AND space of 2.3 and 5 μm, and was similarly developed, washed, and dried, and was observed using an optical microscope at 400x magnification. The density was evaluated. As a result, it was observed that all patterns were completely adhered @Example 2 The isopropyl alcohol-n-hebutane mixed solvent used as the developer was replaced with isopropyl alcohol containing 1.25% water. In addition, the experiment was conducted in the same manner as in Example 1. As a result, the sensitivity was I x 10-6010!
! +2, and the r value was 2.0. Moreover, the adhesion was very good. Reference example 2 The amount of HFEMA used is 90 parts, and the amount of MMA used is 1 part.
The experiment was carried out in the same manner as in Reference Example 1 except that part 0 was used,
A copolymer was added. Example 3 Copolymer t used - It is a characteristic diagram showing the developer solution isopropyl alcohol-n-oct in place of the one obtained in Reference Example 2. Patent Applicant Daikin Industries, Ltd. 1 Figure R So 8 Imma (Seconds) Continued from Page 1 0 Inventor Hiroshi Asayo 162 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki Prefecture Nippon Telegraph and Telephone Public Corporation Ibaraki Telecommunications Research 0 in-house inventions Author: Kogure Ibaraki Prefecture, Naka-gun, Tokai-mura, Shirakata-za Shirane 162, Nippon Telegraph and Telephone Public Corporation, Ibaraki Telecommunications Research Institute ■Applicant: Nippon Telegraph and Telephone Public Corporation-35'/

Claims (1)

【特許請求の範囲】 1一般式(I): 1 (式中、R工はメチル基、エチル基もしくは雪。 れらの水素原子の少なくとも1つをハロゲン原子で置換
した基、ハロゲン原子または水素原子を表わし、R2は
炭素数1〜6個を有する2価の炭化水素基を表わし、R
2は少なくとも1つの水素原子がフッ素原子で置換され
た炭素数1〜15個を有するアルキル基を表わす)で表
わされるフルオロアルキルアクリレートと一般式(I)
: 3 (式中、R3は水素原子、メチル基またはエチル基を表
わす)で表わされるアクリルアミドとの共重合体からな
るレジスト材料。 2 前記一般式(1)で表わされるフルオロアルキルア
クリレートと前記一般式(II)で表わされるアクリル
アミドとのモル比が60 ? 40〜99.9 :0.
1である共重合体からなる特許請求の範囲@1項記載の
レジスジ材料。 5 前記一般式(1)で表わされるフルオロアルキルア
クリレートと前記一般式(1)で表わされるアクリルア
ミドとのモル比が80 ! 20〜99.9 +0.1
である共重合体からなる特許請求の範囲第1項記載のレ
ジスト材料。 4 前記共重合体の重量平均分子量が10,000〜2
0、000.000である特許請求の範囲111f1項
、第2項または第3項記載のレジスト材料。 5 前記共重合体の重量平均分子量が50.000〜1
0、000.000である特許請求の範囲第1項、第2
項または1113項記載のレジスト材料。 6一般式(1): (式中、R工はメチル基、エチル基もしくはそれらの水
素原子の少なくとも1つを/’%ロゲン原子で置換した
基、ハロゲン原子または水素原子を表わし、R2は炭素
数1〜6個を有する2価の炭化水素基を表わし、R1は
少なくとも1つの水素原子がフッ素原子で置換された炭
素数1〜15個を有するアルキル基を表わす)で表わさ
れるフルオロアルキルアクリレートし と一般式(幻; (7H2= 0 1(■) H2 (式、中、R3は水素原子、メチル基またはエチル基を
表わす)で表わされるアクリルアミドを共重合してえら
れる共重合体からなるレジスト被膜に高エネルギー線を
照射したのち、現像することを特徴とする微細レジスト
パターン形成方法。 7 前記現像が炭素数2〜B11のアルコールの111
Iまたは2種以上の混合物を現像液として用いて行なう
ものである特許請求の範囲第6項記載の微細レジストパ
ターンの形成方法。 8 前記現像が (1) N 素数2〜8個のアルコールの1種もしくは
2種以上の混合物と (1)炭素数5〜11個の炭化水素の1種もしくは2種
以上の混合物または水 とからなる混合物を現像液として用いて行なうものであ
る特許請求の範囲第6項記載の微靴レジストパターンの
形成方法。 9 前記現像が (1)イソプロピルアルコールまたはノルマルプ四ピル
アルコールと (fl)ヘキサン、ヘプタン、オクタン、ノナン、ベン
ゼン、シクロヘキサンまたは水 とからなる混合物な現像液として用いて行なうものであ
る特許請求の範囲第6項記載の微細レジスtパターンの
形成方法0
[Scope of Claims] 1 General formula (I): 1 (wherein R is a methyl group, an ethyl group, or a snow group. A group in which at least one of these hydrogen atoms is substituted with a halogen atom, a halogen atom, or hydrogen represents an atom, R2 represents a divalent hydrocarbon group having 1 to 6 carbon atoms, and R
2 represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (I)
A resist material comprising a copolymer with acrylamide represented by: 3 (wherein R3 represents a hydrogen atom, a methyl group, or an ethyl group). 2. The molar ratio of the fluoroalkyl acrylate represented by the general formula (1) to the acrylamide represented by the general formula (II) is 60? 40-99.9:0.
1. The resist material according to claim 1, comprising a copolymer of 1. 5 The molar ratio of the fluoroalkyl acrylate represented by the general formula (1) to the acrylamide represented by the general formula (1) is 80! 20~99.9 +0.1
The resist material according to claim 1, comprising a copolymer. 4 The weight average molecular weight of the copolymer is 10,000 to 2
0,000.000. The resist material according to claim 111f1, 2 or 3. 5 The weight average molecular weight of the copolymer is 50.000 to 1
Claims 1 and 2 which are 0,000.000
A resist material according to item 1 or item 1113. 6 General formula (1): (wherein, R represents a methyl group, an ethyl group, or a group in which at least one of their hydrogen atoms is substituted with a halogen atom, a halogen atom, or a hydrogen atom, and R2 represents a carbon a divalent hydrocarbon group having 1 to 6 carbon atoms, and R1 represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom); A resist consisting of a copolymer obtained by copolymerizing acrylamide and acrylamide represented by the general formula (phantom; (7H2 = 0 1 (■) A method for forming a fine resist pattern, characterized in that the film is irradiated with high-energy rays and then developed.
7. The method for forming a fine resist pattern according to claim 6, which is carried out using I or a mixture of two or more types as a developer. 8 The development is made from (1) one or a mixture of two or more N alcohols having 2 to 8 prime numbers and (1) one or a mixture of two or more hydrocarbons having 5 to 11 carbon atoms or water. 7. The method for forming a shoe resist pattern according to claim 6, which is carried out using a mixture of the following as a developer. 9. Claim No. 9, wherein the development is carried out using a developer mixture consisting of (1) isopropyl alcohol or normal tetrapyl alcohol and (fl) hexane, heptane, octane, nonane, benzene, cyclohexane, or water. Method 0 of forming a fine resist T pattern as described in Section 6
JP56212729A 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it Granted JPS58113932A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56212729A JPS58113932A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it
US06/450,726 US4539250A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
CA000418004A CA1207099A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
DE8282111725T DE3279090D1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
EP82111725A EP0090089B1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/710,190 US4686168A (en) 1981-12-19 1985-03-11 Fluoroalkyl acrylate resist material and process for forming fine resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212729A JPS58113932A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it

Publications (2)

Publication Number Publication Date
JPS58113932A true JPS58113932A (en) 1983-07-07
JPH0358103B2 JPH0358103B2 (en) 1991-09-04

Family

ID=16627462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212729A Granted JPS58113932A (en) 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it

Country Status (1)

Country Link
JP (1) JPS58113932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871820A (en) * 1987-02-17 1989-10-03 Daikin Industries, Ltd. Alpha-fluoroacrylic acid polymer and its use
JPH02111988A (en) * 1988-10-21 1990-04-24 Toppan Printing Co Ltd Duplicating pattern for hologram, its production, and production of hologram
US5011275A (en) * 1988-07-05 1991-04-30 Ciba-Geigy Corporation Dimethylacrylamide-copolymer hydrogels with high oxygen permeability
EP1757627A1 (en) * 2004-04-15 2007-02-28 Daikin Industries, Ltd. Fluorine-containing polymer and treating agent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524088A (en) * 1979-03-02 1980-02-20 Daiichi Koki Folding thick bedquilt drying tool
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5653114A (en) * 1979-10-08 1981-05-12 Kohjin Co Ltd Preparation of polymeric material for positive resist sensitive to radiation and far ultraviolet rays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5524088A (en) * 1979-03-02 1980-02-20 Daiichi Koki Folding thick bedquilt drying tool
JPS5653114A (en) * 1979-10-08 1981-05-12 Kohjin Co Ltd Preparation of polymeric material for positive resist sensitive to radiation and far ultraviolet rays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871820A (en) * 1987-02-17 1989-10-03 Daikin Industries, Ltd. Alpha-fluoroacrylic acid polymer and its use
US5011275A (en) * 1988-07-05 1991-04-30 Ciba-Geigy Corporation Dimethylacrylamide-copolymer hydrogels with high oxygen permeability
JPH02111988A (en) * 1988-10-21 1990-04-24 Toppan Printing Co Ltd Duplicating pattern for hologram, its production, and production of hologram
EP1757627A1 (en) * 2004-04-15 2007-02-28 Daikin Industries, Ltd. Fluorine-containing polymer and treating agent composition
EP1757627A4 (en) * 2004-04-15 2007-05-09 Daikin Ind Ltd Fluorine-containing polymer and treating agent composition

Also Published As

Publication number Publication date
JPH0358103B2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
JP2824350B2 (en) Device manufacturing method
US4686168A (en) Fluoroalkyl acrylate resist material and process for forming fine resist pattern
US5585219A (en) Resist composition and process for forming resist pattern
JPH10186647A (en) Colored photoresist, its method and industrial product by using the same
KR20020063114A (en) Lithographic photoresist composition and process for its use
JP2002006483A (en) Photoresist composition
JP5418906B2 (en) Anti-reflective coating composition
JP2001072716A (en) Organometallic polymer and use
EP0064222A2 (en) Process for forming resist patterns
US4476217A (en) Sensitive positive electron beam resists
JPS58113932A (en) Resist material and formation of resist micropattern using it
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
JPS58113933A (en) Resist material and formation of resist micropattern using it
US4415653A (en) Method of making sensitive positive electron beam resists
US4414313A (en) Sensitive positive electron beam resists
GB2148309A (en) Radiation-sensitive polymer composition
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPS58106536A (en) Resist material and formation of resist micropattern using it
JPS5983157A (en) Method of increasing sensitivity and contrast of positive type polymer resist
JPS608493B2 (en) Method for forming a positive resist image
US4568734A (en) Electron-beam and X-ray sensitive polymers and resists
US4656119A (en) Method of manufacturing X-ray resist
JPS6411936B2 (en)
JPS6070443A (en) Formation of micropattern
JPH021860A (en) Radiation sensitive positive type resist high in resolution