JPH0358102B2 - - Google Patents

Info

Publication number
JPH0358102B2
JPH0358102B2 JP56205877A JP20587781A JPH0358102B2 JP H0358102 B2 JPH0358102 B2 JP H0358102B2 JP 56205877 A JP56205877 A JP 56205877A JP 20587781 A JP20587781 A JP 20587781A JP H0358102 B2 JPH0358102 B2 JP H0358102B2
Authority
JP
Japan
Prior art keywords
copolymer
general formula
resist
mixture
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56205877A
Other languages
Japanese (ja)
Other versions
JPS58106536A (en
Inventor
Tsuneo Fujii
Hiroshi Inukai
Takayuki Deguchi
Toshihiko Amano
Masami Kakuchi
Hiroshi Asakawa
Osamu Kogure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Daikin Kogyo Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56205877A priority Critical patent/JPS58106536A/en
Priority to EP82111725A priority patent/EP0090089B1/en
Priority to US06/450,726 priority patent/US4539250A/en
Priority to DE8282111725T priority patent/DE3279090D1/en
Priority to CA000418004A priority patent/CA1207099A/en
Publication of JPS58106536A publication Critical patent/JPS58106536A/en
Priority to US06/710,190 priority patent/US4686168A/en
Publication of JPH0358102B2 publication Critical patent/JPH0358102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高エネルギー線リソグラフイ用ポジ型
レジスト材料およびそれを用いる微細レジストパ
ターンの形成方法に関する。 従来、マスキング、半導体製造などの技術分野
においてパターンの形成材料として可視光線また
は近紫外線を用いるフオトレジストが使用されて
おり、数μmオーダーの開口をうるにはそうした
レジストで充分であつた。しかし、近年、電子部
品の軽量化、大容量化に伴なつてパターンの微細
化が進み、数μmオーダー以下、とくに1μm以
下の開口をうる必要性が生じてきている。 そのような数μmないしサブミクロンオーダー
の微細パターンを形成するためには、従来のフオ
トレジスト材料では対応することができず、そこ
でさらに短波長の遠紫外線、X線、電子ビームな
どの高エネルギー線を利用したレジスト材料が開
発され、サブミクロンオーダーの微細パターンの
形成が可能になつてきている。 そのようなレジスト材料としてもつとも広く用
いられているものとしてはポリメチルメタクリレ
ート(以下、PMMAという)がある。PMMAは
きわめて高い解像度を有するが、感度が低く(た
とえば、軟X線であるMoのL線では1300mJ/
cm2、電子線では1×10-4C/cm2)、したがつて、
パターンの形成に長時間を必要とする。 そのほかある種のポリフルオロアルキルメタク
リレートを高エネルギー線用レジスト材料として
用いる試みもなされているが(特公昭55−24088
号公報参照)、それらのレジスト材料はPMMAの
欠点である感度は改善されているが、シリコンな
どのある種の基板に対し現像の際、レジストパタ
ーンとの間に現像液が浸透してレジストパターン
が剥離したりパターンが浮き上がつたりし、その
結果エツチングなどによつてえられる基板上のパ
ターンの寸法が所定の寸法よりも大きくなるな
り、精度の低下をきたすなどという密着性不良に
よる問題点がある。そのような欠点はポストベー
キングによつても回復することが充分にできない
ばあいがある。 本発明者らはこれら従来のレジスト材料の欠点
を克服すべく鋭意研究を重ねた結果、一般式
(): (式中、R1はメチル基の少なくとも1つをハロ
ゲン原子で置換した基、ハロゲン原子または水素
原子を表わし、R2は炭素数1〜6個を有する2
価の炭化水素基を表わし、Rfは少なくとも1つ
の水素原子で置換された炭素数1〜15個を有する
アルキル基を表わす)で表わされるフルオロアル
キルアクリレートと一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリル酸類を共重合
してえられる共重合体が、高い感度と解像度を有
し、しかもすぐれた密着性を有する微細パターン
形成用のポジ型レジスト材料としてきわめてすぐ
れたものであることを見出した。 前記一般式()で表わされる化合物として
は、具体的にはつぎの化学式で示されるものがあ
げられる。 CH2=C(CH3)COOCH2CF2CHF2 CH2=C(CH3)COOCH2CF2CF2CF2CHF2 CH2=C(CH3)COOCH2CH2CF2CF2CF3 CH2=C(CH3)COOCH2CH2(CF2CF22CF3 本発明にかかわる共重合体における一般式
()で表わされる化合物と一般式()で表わ
される化合物との割合(モル比)は60:40〜
99.9:0.1なかんづく80:20〜99.9:0.1とするの
が好ましい。該共重合体の密着性は一般式()
で表わされる化合物の割合を増加させればさせる
ほど向上するが、感度および解像度は逆に低下す
る。前記の割合の範囲では、感度および解像度が
実用上問題となるまで低下せず、密着性も充分な
範囲である。また該共重合体は、重量平均分子量
が10000〜20000000、好ましくは50000〜10000000
の範囲のものが使用される。分子量が高くなれば
なるほど、高エネルギー線の照射部分と非照射部
分との溶媒に対する溶解速度差が大となつて、感
度および解像度が向上する。 本発明に用いる共重合体の製造は、一般式
()で表わされる化合物と一般式()で表わ
される化合物を通常の重合触媒の存在下にバルク
重合、溶液重合、乳化重合、懸濁重合などあらゆ
る重合法により共重合することによつて行なうこ
とができる。 重合度は重合触媒の添加量、反応温度を変化さ
せるなど通常の方法で調整することができる。 基板上に前記共重合体のレジスト被膜を形成せ
しめる方法は、一般的なレジスト被膜形成法によ
つて行ないうる。すなわち該共重合体を脂肪族ケ
トン、脂肪族アルコール、脂肪族エステル、脂肪
族エーテル、芳香族炭化水素、脂環式ケトン、ハ
ロゲン化炭化水素またはそれらの混合物などの溶
剤に溶解させてレジスト溶液とし、該レジスト溶
液をスピンコーターなどを用いて基板上にコーテ
イングせしめ、ついで風乾、加熱乾燥などによつ
て溶媒を完全に蒸発させることによつてレジスト
被膜を形成することができる。 使用しうる基板はとくに限定されず、たとえば
クロムマスク基板、シリコン、酸化ケイ素、シリ
ケートグラスまたはチツ化ケイ素、アルミニウ
ム、チタン、金など各種の基板が本発明に使用で
き、いずれの基板においても本発明によつてえら
れるレジスト被膜は高い密着性を示す。 該レジスト被膜上に高エネルギー線を照射して
パターンを描画し、ついで現像液を用いて現像す
ることにより微細レジストパターンを形成せしめ
ることができる。 パターンの描画に用いる高エネルギー線として
は、電子線、300nm以下の紫外線、遠紫外線ま
たはX線を用いることができる。 現像液としては前記共重合体からなるレジスト
被膜において、高エネルギー線の照射により低分
子量化された部分と高エネルギー線が照射されて
いない本来の高分子量部分における両者の溶解速
度がいちじるしく異なる溶剤が用いられる。 そのような溶媒としては、 (A) 炭素数2〜8個のアルコールの1種もしくは
2種以上の混合物、または (B)() 炭素数2〜8個のアルコールの1種もし
くは2種以上の混合物と () 炭素数5〜11個の炭化水素の1種もしく
は2種以上の混合物または水とからなる混合
物 などがあげられる。(B)の中でも好ましいものは、
()がイソプロピルアルコールまたはノルマル
プロピルアルコールであり、()がヘキサン、
ヘプタン、オクタン、ノナン、ベンゼン、シクロ
ヘキサンまたは水である。また(B)の()でいう
炭化水素には、脂肪族炭化水素および芳香族炭化
水素が含まれる。(B)の()にあげた溶媒と
()にあげた溶媒の混合比は共重合体の分子量
や所望の感度によつて適宜選択して決められる。
また、現像温度および時間は現像液の種類や共重
合体の分子量により適宜定めればよい。 最後に現像後被照射体を乾燥および焼成するこ
とにより所望の微細レジストパターンが形成され
る。 つぎに参考例、実施例および比較例をあげて本
発明をさらに詳細に説明するが、本発明はそれら
の実施例のみに限定されるものではない。 参考例 1 メタクリル酸クロライド12部(重量部、以下同
様)および2,2,3,4,4,4−ヘキサフル
オロブチルアルコール60部に、重合禁止剤として
ハイドロキノンジメチルエーテル0.1部を加え、
90〜100℃で3時間加熱した。反応生成混合物を
蒸留して、2,2,3,4,4,4−ヘキサフル
オロブチルメタクリレート(以下、HFBMAと
いう)15部をえた(沸点:60〜63℃/20mmHg)。 つぎにHFBMA99部(97.1モル%)にメタクリ
ル酸(以下、MAという)1部(2.9モル%)お
よびアゾビスイソブチロニトリル(以下、AIBN
という)0.1部を加えて混合し、ついで脱気した
のち、この混合物を60℃で24時間共重合させた。
反応生成混合物にアセトンを加えて均一溶液とし
たのち、石油エーテルを加えて沈殿させることに
より共重合体68部をえた。 この共重合体は、熱分解ガスクロマトグラフイ
ーにより分析した結果、MAのモノマー単位を
3.0モル%含有し、ほぼ仕込比で共重合している
ことが確認された。この共重合体をメチルエチル
ケトン溶液として、35℃で求めた極限粘度〔η〕
は1.13であつた。またゲルパーミエーシヨンクロ
マトグラフイーにより求めた重量平均分子量は約
1100000であつた。 参考例 2〜4 第1表に示す割合のHFBMAおよびMAの単量
体混合物100部を使用し、AIBNの使用量を第1
表に示すとおりとしたほかは参考例1と同様にし
て実験を行ない、共重合体をえた。えられた共重
合体の参考例1と同様にして測定した極限粘度お
よび重量平均分子量を第1表に示す。
The present invention relates to a positive resist material for high-energy beam lithography and a method for forming a fine resist pattern using the same. Conventionally, photoresists using visible light or near ultraviolet light have been used as pattern forming materials in technical fields such as masking and semiconductor manufacturing, and such resists have been sufficient to form openings on the order of several μm. However, in recent years, as electronic components have become lighter and larger in capacity, patterns have become finer, and it has become necessary to have openings on the order of several μm or less, particularly 1 μm or less. In order to form such fine patterns on the order of several μm or submicron, conventional photoresist materials cannot be used, so high-energy rays such as far ultraviolet rays with shorter wavelengths, X-rays, and electron beams are used. Resist materials have been developed that utilize this technology, and it has become possible to form fine patterns on the submicron order. One of the most widely used resist materials is polymethyl methacrylate (hereinafter referred to as PMMA). Although PMMA has extremely high resolution, it has low sensitivity (for example, 1300 mJ/L for Mo L-ray, which is a soft X-ray).
cm 2 , 1×10 -4 C/cm 2 for electron beam), therefore,
It takes a long time to form a pattern. In addition, attempts have been made to use certain polyfluoroalkyl methacrylates as resist materials for high-energy rays (Japanese Patent Publication No. 55-24088
Although these resist materials have improved sensitivity, which is a drawback of PMMA, when developing certain types of substrates such as silicon, the developer may penetrate between the resist pattern and the resist pattern. Problems caused by poor adhesion, such as peeling off or lifting of the pattern, resulting in the dimensions of the pattern on the substrate obtained by etching becoming larger than the specified dimensions, resulting in a decrease in precision. There is a point. In some cases, such defects cannot be sufficiently recovered even by post-baking. The present inventors have conducted intensive research to overcome the drawbacks of these conventional resist materials, and as a result, the general formula (): (In the formula, R 1 represents a group in which at least one methyl group is substituted with a halogen atom, a halogen atom, or a hydrogen atom, and R 2 represents a 2 having 1 to 6 carbon atoms.
a valent hydrocarbon group, Rf represents an alkyl group having 1 to 15 carbon atoms substituted with at least one hydrogen atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group) A copolymer obtained by copolymerizing acrylic acids has high sensitivity and resolution, and has excellent adhesion. It has been found that this material is extremely excellent as a positive resist material for forming fine patterns. Specific examples of the compound represented by the general formula () include those represented by the following chemical formula. CH 2 =C(CH 3 )COOCH 2 CF 2 CHF 2 CH 2 =C(CH 3 )COOCH 2 CF 2 CF 2 CF 2 CHF 2 CH 2 =C(CH 3 )COOCH 2 CH 2 CF 2 CF 2 CF 3 CH 2 =C(CH 3 )COOCH 2 CH 2 (CF 2 CF 2 ) 2 CF 3General formula in the copolymer according to the present invention ( ) The ratio (molar ratio) of the compound represented by formula () to the compound represented by general formula () is 60:40~
It is preferable to set it to 99.9:0.1, especially 80:20 to 99.9:0.1. The adhesion of the copolymer is expressed by the general formula ()
As the proportion of the compound represented by is increased, the improvement is improved, but the sensitivity and resolution are conversely reduced. Within the above ratio range, the sensitivity and resolution do not deteriorate to the extent that they become a practical problem, and the adhesion is also within a sufficient range. Further, the copolymer has a weight average molecular weight of 10,000 to 2,000,000, preferably 50,000 to 1,000,000.
range is used. As the molecular weight becomes higher, the difference in dissolution rate in the solvent between the irradiated part and the non-irradiated part becomes larger, and the sensitivity and resolution improve. The copolymer used in the present invention can be produced by bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc. of the compound represented by the general formula () and the compound represented by the general formula () in the presence of a conventional polymerization catalyst. This can be carried out by copolymerization using any polymerization method. The degree of polymerization can be adjusted by conventional methods such as changing the amount of polymerization catalyst added and the reaction temperature. A method for forming a resist film of the copolymer on the substrate can be performed by a general resist film forming method. That is, the copolymer is dissolved in a solvent such as an aliphatic ketone, an aliphatic alcohol, an aliphatic ester, an aliphatic ether, an aromatic hydrocarbon, an alicyclic ketone, a halogenated hydrocarbon, or a mixture thereof to prepare a resist solution. A resist film can be formed by coating the resist solution onto a substrate using a spin coater or the like, and then completely evaporating the solvent by air drying, heating drying, or the like. The substrate that can be used is not particularly limited, and various substrates such as a chrome mask substrate, silicon, silicon oxide, silicate glass, silicon nitride, aluminum, titanium, and gold can be used in the present invention, and the present invention can be applied to any of the substrates. The resist film obtained by this method shows high adhesion. A fine resist pattern can be formed by irradiating the resist film with high-energy rays to draw a pattern and then developing it using a developer. As the high-energy beam used for pattern drawing, an electron beam, ultraviolet rays of 300 nm or less, deep ultraviolet rays, or X-rays can be used. The developing solution is a solvent in which the dissolution rate of the resist film made of the above-mentioned copolymer is significantly different between the part whose molecular weight has been reduced by irradiation with high-energy rays and the originally high-molecular-weight part which has not been irradiated with high-energy rays. used. Such solvents include (A) one or a mixture of two or more alcohols having 2 to 8 carbon atoms; or (B) () one or more alcohols having 2 to 8 carbon atoms. Examples include a mixture consisting of a mixture and () a mixture of one or more hydrocarbons having 5 to 11 carbon atoms, or water. Among (B), the preferred ones are:
() is isopropyl alcohol or normal propyl alcohol, () is hexane,
Heptane, octane, nonane, benzene, cyclohexane or water. Furthermore, the hydrocarbons referred to in parentheses in (B) include aliphatic hydrocarbons and aromatic hydrocarbons. The mixing ratio of the solvents listed in () and the solvents listed in () of (B) can be appropriately selected and determined depending on the molecular weight of the copolymer and the desired sensitivity.
Further, the developing temperature and time may be appropriately determined depending on the type of developer and the molecular weight of the copolymer. Finally, the desired fine resist pattern is formed by drying and baking the irradiated object after development. Next, the present invention will be explained in more detail with reference to Reference Examples, Examples, and Comparative Examples, but the present invention is not limited to these Examples. Reference Example 1 0.1 part of hydroquinone dimethyl ether was added as a polymerization inhibitor to 12 parts of methacrylic acid chloride (parts by weight, same below) and 60 parts of 2,2,3,4,4,4-hexafluorobutyl alcohol,
Heated at 90-100°C for 3 hours. The reaction product mixture was distilled to obtain 15 parts of 2,2,3,4,4,4-hexafluorobutyl methacrylate (hereinafter referred to as HFBMA) (boiling point: 60-63°C/20mmHg). Next, 99 parts (97.1 mol%) of HFBMA, 1 part (2.9 mol%) of methacrylic acid (hereinafter referred to as MA) and azobisisobutyronitrile (hereinafter referred to as AIBN
After adding and mixing 0.1 part of 100% acetate (20%) and then degassing, the mixture was copolymerized at 60° C. for 24 hours.
Acetone was added to the reaction product mixture to make a homogeneous solution, and then petroleum ether was added to precipitate it, yielding 68 parts of a copolymer. Analysis of this copolymer by pyrolysis gas chromatography revealed that the monomer unit of MA was
It was confirmed that the content was 3.0 mol%, and copolymerization occurred at approximately the charging ratio. Intrinsic viscosity [η] determined at 35℃ using this copolymer as a methyl ethyl ketone solution
was 1.13. The weight average molecular weight determined by gel permeation chromatography is approximately
It was 1100000. Reference Examples 2 to 4 Using 100 parts of a monomer mixture of HFBMA and MA in the proportions shown in Table 1, the amount of AIBN used was
A copolymer was obtained by carrying out an experiment in the same manner as in Reference Example 1, except that the procedures were as shown in the table. Table 1 shows the intrinsic viscosity and weight average molecular weight of the obtained copolymer, which were measured in the same manner as in Reference Example 1.

【表】 参考例 5 2,2,3,3−テトラフルオロ−1,1−ジ
メチルプロピルメタクリレート(4FiPMA)の
97.3モル%およびMAの2.7モル%からなる単量体
混合物100部を用いたほかは参考例1と同様にし
て実験を行ない、共重合体をえた。えられた共重
合体の参考例1と同様にして測定した極限粘度
〔η〕は1.12であつた。 参考例 6 HFBMAの97.1モル%およびアクリル酸の2.9
モル%からなる単量体混合物100部を用いたほか
は参考例1と同様にして実験を行ない、共重合体
をえた。えられた共重合体の参考例1と同様にし
て測定した極限粘度〔η〕は0.89であつた。 実施例 1 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調製した。該レジスト溶液をシリコンウエハ上に
スピンコーテイング法によつて被膜の膜厚が0.8μ
mとなるようにコーテイングし、ついで140℃で
30分間加熱して溶剤を蒸発させ、そののち常温に
まで冷却してレジスト被膜を形成した。 つぎにERE−302型電子線描画装置(エリオニ
クス社製)を用いて該レジスト被膜を有するそれ
ぞれの試料に加速電圧20kV(電流密度1×
10-9A/cm2)の電子線をそれぞれ照射時間0.08秒
間(電子線量2.9×10-7C/cm2)〜125秒間(電子
線量2.9×10-4C/cm2)で段階的に数点照射して描
画した。これらの試料を23℃のイソプロピルアル
コール−ノルマルヘプタン混合溶媒(容量比25:
10)に90秒間浸漬してレジストパターンを現像し
た。このものはただちに23℃のノルマルヘプタン
に60秒間浸漬して洗浄し、ついで乾燥させた。 以上によつてえられるレジストパターンのレジ
スト被膜の残存膜厚は膜厚測定器(タリステツプ
(英国ボブソン社製))によつて測定した。 第1図に電子線照射時間(秒)と残存膜厚(μ
m)の関係を表わす特性図を示す。第1図より該
レジストの感度1.9×10-6C/cm2、γ値1.4が読み
とれる。 ついで、1.9×10-6C/cm2の電子線でラインアン
ドスペース2、3および5μmで描画し、同様に
現像、洗浄および乾燥してえられたレジストパタ
ーンを400倍の光学顕微鏡で観察して密着性を評
価した。その結果、いずれのパターンも完全に密
着しているのが観察された。 実施例 2〜7 共重合体、現像液および洗浄液を第2表に示す
ものに代えたほかは実施例1と同様にして実験を
行なつた。えられたそれぞれのレジスト被膜の感
度、γ値および密着性を第2表に示す。 なお第2表中、レジスト被膜の密着性はそれぞ
れのレジスト被膜の感度に対応する照射線量を有
する電子線を使用し、ラインアンドスペース2、
3および5μmで描画し、それぞれの現像液およ
び洗浄液で現像および洗浄を行ない、ついで乾燥
してえられたレジストパターンを400倍の光学顕
微鏡で観察して評価したものであり、評価の表示
および基準はつぎのとおりである。 ×:いずれか一部に剥離が観察されたもの。 △:いずれか少しでも浮き上がつているのが観察
されたもの。 ○:いずれも完全に密着しているのが観察された
もの。 比較例 1 参考例1でえられた共重合体に代えて
HFBMAの同族重合体(〔η〕0.8、重量平均分子
量約800000)を用い、レジスト被膜の膜厚を0.5μ
mとなるようにコーテイングし、現像液および洗
浄液を第2表に示すものに代えたほかは実施例1
と同様にして実験を行なつた。えられたレジスト
被膜の感度、γ値および密着性を第2表に示す。
[Table] Reference example 5 2,2,3,3-tetrafluoro-1,1-dimethylpropyl methacrylate (4FiPMA)
An experiment was carried out in the same manner as in Reference Example 1, except that 100 parts of a monomer mixture consisting of 97.3 mol% MA and 2.7 mol% MA was used to obtain a copolymer. The intrinsic viscosity [η] of the obtained copolymer was measured in the same manner as in Reference Example 1 and was 1.12. Reference example 6 97.1 mol% of HFBMA and 2.9 mol% of acrylic acid
A copolymer was obtained by carrying out an experiment in the same manner as in Reference Example 1, except that 100 parts of a monomer mixture consisting of mol % was used. The intrinsic viscosity [η] of the obtained copolymer was measured in the same manner as in Reference Example 1 and was 0.89. Example 1 46 parts of methyl isobutyl ketone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The resist solution was spin-coated onto a silicon wafer until the film thickness was 0.8μ.
Coated so that it becomes m, and then heated at 140℃.
The solvent was evaporated by heating for 30 minutes, and then cooled to room temperature to form a resist film. Next, using an ERE-302 electron beam lithography system (manufactured by Elionix Co., Ltd.), each sample having the resist film was applied at an accelerating voltage of 20 kV (current density: 1×
10 -9 A/cm 2 ) electron beam was applied stepwise for irradiation time of 0.08 seconds (electron dose 2.9 x 10 -7 C/cm 2 ) to 125 seconds (electron dose 2.9 x 10 -4 C/cm 2 ). I irradiated several points and drew it. These samples were mixed with isopropyl alcohol-n-heptane mixed solvent (volume ratio 25:
10) for 90 seconds to develop the resist pattern. This material was immediately washed by immersion in normal heptane at 23° C. for 60 seconds, and then dried. The remaining film thickness of the resist film of the resist pattern obtained in the above manner was measured using a film thickness measuring device (Talystep (manufactured by Bobson, UK)). Figure 1 shows the electron beam irradiation time (seconds) and the remaining film thickness (μ
A characteristic diagram showing the relationship of m) is shown. From FIG. 1, it can be seen that the resist has a sensitivity of 1.9×10 −6 C/cm 2 and a γ value of 1.4. Next, lines and spaces of 2, 3, and 5 μm were drawn using an electron beam of 1.9×10 -6 C/cm 2 , and the resulting resist pattern was similarly developed, washed, and dried, and the resulting resist pattern was observed under a 400x optical microscope. Adhesion was evaluated. As a result, it was observed that both patterns were completely adhered to each other. Examples 2 to 7 Experiments were conducted in the same manner as in Example 1, except that the copolymer, developer, and cleaning solution were replaced with those shown in Table 2. Table 2 shows the sensitivity, γ value, and adhesion of each resist film obtained. In Table 2, the adhesion of the resist film was measured using an electron beam with an irradiation dose corresponding to the sensitivity of each resist film.
The resist pattern was drawn at 3 and 5 μm, developed and washed with each developer and cleaning solution, and then dried, and the resulting resist pattern was observed and evaluated using an optical microscope at 400x magnification. is as follows. ×: Peeling was observed in any part. △: Any slight lifting was observed. ○: In both cases, complete adhesion was observed. Comparative Example 1 Instead of the copolymer obtained in Reference Example 1
Using a homologous polymer of HFBMA ([η] 0.8, weight average molecular weight approximately 800000), the film thickness of the resist film was 0.5μ.
Example 1, except that the coating was carried out so that it became m, and the developing solution and cleaning solution were replaced with those shown in Table 2.
The experiment was conducted in the same manner. Table 2 shows the sensitivity, γ value, and adhesion of the resist film obtained.

【表】 参考例 7 メチルメタクリレート(以下、MMAという)
78部(75モル%)にメタクリル酸22部(25モル
%)およびAIBN0.1部を加えて混合し、ついで
脱気したのち、この混合物を60℃で24時間共重合
させた。反応生成物にアセトンを加えて均一溶液
としたのち石油エーテル中に注ぎ、析出した重合
体を回収し、真空乾燥を行ない、重合体83部をえ
た。 えられた重合体は、ジメチルホルムアミドに溶
解して水酸化カリウムによる中和滴定により分析
した結果、メタクリル酸のモノマー単位を25モル
%含有し、ほぼ仕込比で共重合したものであるこ
とを確認した。この共重合体をメチルエチルケト
ン溶液として、35℃で求めた極限粘度[η]は
1.1であつた。また、ゲルパーミエーシヨンクロ
マトグラフイーにより求めた重量平均分子量は約
600000であつた。 参考例 8 MMA100部にAIBN0.1部を加えて混合し、つ
いで脱気したのち、この混合物を60℃で24時間重
合させた。反応生成物にアセトンを加えて均一溶
液としたのち石油エーテル中に注ぎ、析出した重
合体を回収し、真空乾燥を行ない、重合体90部を
えた。 えられた重合体をメチルエチルケトン溶液とし
て、35℃で求めた極限粘度[η]は1.0であつた。
また、ゲルパーミエーシヨンクロマトグラフイー
により求めた重量平均分子量は約500000であつ
た。 実施例 8 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調製した。該レジスト溶液をシリコンウエハー上
にスピンコーテイング法によつて被膜の膜厚が
0.8μmとなるようにコーテイングし、ついで140
℃、30分間のプリベーキングを行なつて溶剤を蒸
発させ、そののち室温まで冷却してレジスト被膜
を形成させた。つぎに実施例1と同一の電子線照
射装置を用いて2.5×10-6C/cm2の電子線照射量
で、一辺が1.0μm、2.0μm、3.0μm、5.0μmの正
方形パターンが各々400個形成されるように電子
線描画を行ない、それをイソプロピルアルコー
ル/ノルマルヘプタン混合溶液(容量比25:10)
で90秒間現像し(23℃)、さらにリンス(23℃で
ノルマルヘプタン中60秒間)し、乾燥させたもの
を光学顕微鏡で観察し、形成された各大きさのパ
ターンの残存率((残存していたパターンの個
数/400個)×100)を求めたところ、全てのパタ
ーンが残存しており残存率100%であつた。 実施例 9〜13 共重合体、現像液、リンス液および電子線照射
量を第3表に示すものに代えた他は実施例8と同
様にして実験を行ない、各々のレジストについて
各大きさのパターンごとの残存率を求めた。結果
を第3表に示す。 比較例 2 比較例1で用いたHFBMAの同族重合体
([η]0.8、重量平均分子量約800000)を用いて、
この重合体4部にメチルイソブチルケトン46部を
加えて均一溶液を調製した。該レジスト溶液をシ
リコンウエハー上にスピンコーテイング法によつ
て被膜の膜厚が0.8μmになるようにコーテイング
し、ついで140℃で30分間のプリベーキングを行
ない溶剤を蒸発させ、室温まで冷却してレジスト
被膜を形成させた。つぎに現像液、リンス液およ
び電子線照射量を第3表に記載のものにかえた他
は実施例8と同様にして実験を行ない、各大きさ
のパターンごとの残存率を求めた。結果を第3表
に示す。 比較例 3〜4 第3表に示す重合体10部を酢酸エチルセロソル
ブ90部に溶解させて均一溶液としたのち、シリコ
ンウエハー上に約1μmとなる条件でコーテイン
グし、200℃で30分間のプリベーキングを行ない、
0.8μmの厚さのレジスト被膜をえた。現像液(現
像条件は23℃、120秒間)、リンス液を第3表に示
すものに代えた他は実施例8と同様にして実験を
行ない、各レジストについて各大きさのパターン
ごとの残存率を求めた。結果を第3表に示す。
[Table] Reference example 7 Methyl methacrylate (hereinafter referred to as MMA)
22 parts (25 mol%) of methacrylic acid and 0.1 part of AIBN were added to 78 parts (75 mol%) and mixed, and after degassing, this mixture was copolymerized at 60° C. for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, and the precipitated polymer was collected and vacuum dried to obtain 83 parts of the polymer. The resulting polymer was dissolved in dimethylformamide and analyzed by neutralization titration with potassium hydroxide, which confirmed that it contained 25 mol% of methacrylic acid monomer units and was copolymerized at approximately the same charging ratio. did. The intrinsic viscosity [η] of this copolymer was determined at 35°C as a solution in methyl ethyl ketone.
It was 1.1. In addition, the weight average molecular weight determined by gel permeation chromatography is approximately
It was 600,000. Reference Example 8 0.1 part of AIBN was added to 100 parts of MMA and mixed. After degassing, this mixture was polymerized at 60°C for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, and the precipitated polymer was collected and vacuum dried to obtain 90 parts of the polymer. The intrinsic viscosity [η] of the obtained polymer was determined to be 1.0 at 35°C as a solution in methyl ethyl ketone.
Furthermore, the weight average molecular weight determined by gel permeation chromatography was approximately 500,000. Example 8 46 parts of methyl isobutyl ketone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The thickness of the film is increased by spin coating the resist solution onto a silicon wafer.
Coating to 0.8μm, then 140μm
C. for 30 minutes to evaporate the solvent, and then cooled to room temperature to form a resist film. Next, using the same electron beam irradiation equipment as in Example 1, 400 square patterns with sides of 1.0 μm, 2.0 μm, 3.0 μm, and 5.0 μm were each formed at an electron beam irradiation dose of 2.5×10 -6 C/cm 2 . Electron beam lithography is performed to form individual particles, and then the isopropyl alcohol/n-heptane mixed solution (volume ratio 25:10) is used.
(23℃), rinsed (60 seconds in n-heptane at 23℃), dried, and observed with an optical microscope to determine the survival rate ((residual When the number of patterns that had been removed/400) x 100) was calculated, all the patterns remained, giving a survival rate of 100%. Examples 9 to 13 Experiments were conducted in the same manner as in Example 8, except that the copolymer, developer, rinse solution, and electron beam irradiation amount were changed to those shown in Table 3. The survival rate for each pattern was determined. The results are shown in Table 3. Comparative Example 2 Using the homologous polymer of HFBMA used in Comparative Example 1 ([η] 0.8, weight average molecular weight approximately 800000),
A homogeneous solution was prepared by adding 46 parts of methyl isobutyl ketone to 4 parts of this polymer. The resist solution was coated onto a silicon wafer by spin coating to a film thickness of 0.8 μm, and then prebaked at 140°C for 30 minutes to evaporate the solvent, cooled to room temperature, and coated with the resist solution. A film was formed. Next, an experiment was conducted in the same manner as in Example 8, except that the developer, rinse solution, and electron beam irradiation amount were changed to those listed in Table 3, and the survival rate for each pattern of each size was determined. The results are shown in Table 3. Comparative Examples 3 to 4 10 parts of the polymer shown in Table 3 was dissolved in 90 parts of ethyl cellosolve acetate to make a homogeneous solution, and then coated on a silicon wafer to a thickness of approximately 1 μm, and pretreated at 200°C for 30 minutes. Perform baking;
A resist film with a thickness of 0.8 μm was obtained. The experiment was conducted in the same manner as in Example 8, except that the developer (development conditions were 23°C for 120 seconds) and rinse liquid were replaced with those shown in Table 3. I asked for The results are shown in Table 3.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1でえられたレジスト被膜にお
ける電子線照射時間と残存膜厚の関係を表わす特
性図である。
FIG. 1 is a characteristic diagram showing the relationship between the electron beam irradiation time and the remaining film thickness in the resist film obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 一般式(): (式中、R1はメチル基を表わし、R2は炭素数1
〜6個を有する2価の炭化水素基を表わし、Rf
は少なくとも1つの水素原子がフツ素原子で置換
された炭素数1〜15個を有するアルキル基を表わ
す)で表わされるフルオロアルキルアクリレート
と一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリル酸類との共重
合体からなるレジスト材料。 2 前記一般式()で表わされるフルオロアル
キルアクリレートと前記一般式()で表わされ
るアクリル酸類とのモル比が60:40〜99.9:0.1
である共重合体からなる特許請求の範囲第1項記
載のレジスト材料。 3 前記一般式()で表わされるフルオロアル
キルアクリレートと前記一般式()で表わされ
るアクリル酸類とのモル比が80:20〜99.9:0.1
である共重合体からなる特許請求の範囲第1項記
載のレジスト材料。 4 前記共重合体の重量平均分子量が10000〜
20000000である特許請求の範囲第1項、第2項ま
たは第3項記載のレジスト材料。 5 前記共重合体の重量平均分子量が50000〜
10000000である特許請求の範囲第1項、第2項ま
たは第3項記載のレジスト材料。 6 一般式(): (式中、R1はメチル基を表わし、R2は炭素数1
〜6個を有する2価の炭化水素基を表わし、Rf
は少なくとも1つの水素原子がフツ素原子で置換
された炭素数1〜15個を有するアルキル基を表わ
す)で表わされるフルオロアルキルアクリレート
と一般式(): (式中、R3は水素原子、メチル基またはエチル
基を表わす)で表わされるアクリル酸類を共重合
してえられる共重合体からなるレジスト被膜に高
エネルギー線を照射したのち、現像することを特
徴とする微細レジストパターンの形成方法。 7 前記現像が炭素数2〜8個のアルコールの1
種または2種以上の混合物を現像液として用いて
行なうものである特許請求の範囲第6項記載の微
細レジストパターンの形成方法。 8 前記現像が () 炭素数2〜8個のアルコールの1種もしく
は2種以上の混合物と () 炭素数5〜11個の炭化水素の1種もしくは
2種以上の混合物または水 とからなる混合物を現像液として用いて行なうも
のである特許請求の範囲第6項記載の微細レジス
トパターンの形成方法。 9 前記現像が () イソプロピルアルコールまたはノルマルプ
ロピルアルコールと () ヘキサン、ヘプタン、オクタン、ノナン、
ベンゼン、シクロヘキサンまたは水 とからなる混合物を現像液として用いて行なうも
のである特許請求の範囲第6項記載の微細レジス
トパターンの形成方法。
[Claims] 1 General formula (): (In the formula, R 1 represents a methyl group, R 2 has 1 carbon number
Represents a divalent hydrocarbon group having ~6 atoms, R f
represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is replaced with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group.) A resist material made of a copolymer with an acrylic acid. 2 The molar ratio of the fluoroalkyl acrylate represented by the general formula () to the acrylic acid represented by the general formula () is 60:40 to 99.9:0.1.
The resist material according to claim 1, comprising a copolymer. 3 The molar ratio of the fluoroalkyl acrylate represented by the general formula () to the acrylic acid represented by the general formula () is 80:20 to 99.9:0.1.
The resist material according to claim 1, comprising a copolymer. 4 The weight average molecular weight of the copolymer is from 10,000 to
20000000. The resist material according to claim 1, 2 or 3. 5 The weight average molecular weight of the copolymer is 50,000 to 50,000.
10000000. The resist material according to claim 1, 2 or 3. 6 General formula (): (In the formula, R 1 represents a methyl group, R 2 has 1 carbon number
Represents a divalent hydrocarbon group having ~6 atoms, R f
represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is replaced with a fluorine atom) and a fluoroalkyl acrylate represented by the general formula (): (In the formula, R 3 represents a hydrogen atom, a methyl group, or an ethyl group.) A resist film made of a copolymer obtained by copolymerizing acrylic acids represented by R 3 is irradiated with high-energy rays and then developed. Features a method for forming fine resist patterns. 7. The developing agent is an alcohol having 2 to 8 carbon atoms.
7. The method for forming a fine resist pattern according to claim 6, wherein the method is carried out using a species or a mixture of two or more species as a developer. 8. A mixture in which the development is made of () one or a mixture of two or more alcohols having 2 to 8 carbon atoms and () a mixture of one or more hydrocarbons having 5 to 11 carbon atoms or water. 7. A method for forming a fine resist pattern according to claim 6, which is carried out using as a developer. 9 The development is performed using () isopropyl alcohol or n-propyl alcohol and () hexane, heptane, octane, nonane,
7. The method for forming a fine resist pattern according to claim 6, wherein the method is carried out using a mixture of benzene, cyclohexane, or water as a developer.
JP56205877A 1981-12-19 1981-12-19 Resist material and formation of resist micropattern using it Granted JPS58106536A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56205877A JPS58106536A (en) 1981-12-19 1981-12-19 Resist material and formation of resist micropattern using it
EP82111725A EP0090089B1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/450,726 US4539250A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
DE8282111725T DE3279090D1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
CA000418004A CA1207099A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/710,190 US4686168A (en) 1981-12-19 1985-03-11 Fluoroalkyl acrylate resist material and process for forming fine resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56205877A JPS58106536A (en) 1981-12-19 1981-12-19 Resist material and formation of resist micropattern using it

Publications (2)

Publication Number Publication Date
JPS58106536A JPS58106536A (en) 1983-06-24
JPH0358102B2 true JPH0358102B2 (en) 1991-09-04

Family

ID=16514204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56205877A Granted JPS58106536A (en) 1981-12-19 1981-12-19 Resist material and formation of resist micropattern using it

Country Status (1)

Country Link
JP (1) JPS58106536A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114673A (en) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd Back fixing agent for manufacturing tab tape carrier
JP6571199B2 (en) * 2015-09-30 2019-09-04 富士フイルム株式会社 Treatment liquid and pattern forming method
JP6647311B2 (en) * 2015-09-30 2020-02-14 富士フイルム株式会社 Treatment liquid and pattern forming method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5619044A (en) * 1979-06-29 1981-02-23 Nec Corp Positive type resist
JPS57173833A (en) * 1981-04-21 1982-10-26 Toshiba Corp Formation of radiation resist image
JPS5821739A (en) * 1981-07-31 1983-02-08 Toshiba Corp Manufacture of photomask
JPS5859442A (en) * 1981-10-06 1983-04-08 Toshiba Corp Positive type radiation sensitive resist material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5619044A (en) * 1979-06-29 1981-02-23 Nec Corp Positive type resist
JPS57173833A (en) * 1981-04-21 1982-10-26 Toshiba Corp Formation of radiation resist image
JPS5821739A (en) * 1981-07-31 1983-02-08 Toshiba Corp Manufacture of photomask
JPS5859442A (en) * 1981-10-06 1983-04-08 Toshiba Corp Positive type radiation sensitive resist material

Also Published As

Publication number Publication date
JPS58106536A (en) 1983-06-24

Similar Documents

Publication Publication Date Title
EP0090089B1 (en) Resist material and process for forming fine resist pattern
JP2824350B2 (en) Device manufacturing method
JP3748596B2 (en) Resist material and resist pattern forming method
JPS6048022B2 (en) electronic sensitive resist
EP0064222B1 (en) Process for forming resist patterns
JP2001072716A (en) Organometallic polymer and use
JP2000330287A (en) Resin for resist, resist composition and pattern forming method using same
WO2019150966A1 (en) Resist composition and resist film
JP3980201B2 (en) Resist composition and method for forming resist pattern using the same
US4279984A (en) Positive resist for high energy radiation
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
US4476217A (en) Sensitive positive electron beam resists
KR100198408B1 (en) Resist material and process for use
JPH0358104B2 (en)
JPH0358102B2 (en)
JPH0358103B2 (en)
EP0064864B1 (en) Method of making sensitive positive electron beam resists
US4415653A (en) Method of making sensitive positive electron beam resists
US4414313A (en) Sensitive positive electron beam resists
JPS62240953A (en) Resist
JPS6411936B2 (en)
JPH0381143B2 (en)
JPH0721055B2 (en) Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative
JPH0356469B2 (en)
JPH03226756A (en) Resist and production thereof and formation of resist pattern using same