JPH0358104B2 - - Google Patents

Info

Publication number
JPH0358104B2
JPH0358104B2 JP56212730A JP21273081A JPH0358104B2 JP H0358104 B2 JPH0358104 B2 JP H0358104B2 JP 56212730 A JP56212730 A JP 56212730A JP 21273081 A JP21273081 A JP 21273081A JP H0358104 B2 JPH0358104 B2 JP H0358104B2
Authority
JP
Japan
Prior art keywords
carbon atoms
general formula
copolymer
alkyl group
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56212730A
Other languages
Japanese (ja)
Other versions
JPS58113933A (en
Inventor
Tsuneo Fujii
Hiroshi Inukai
Takayuki Deguchi
Toshihiko Amano
Masami Kakuchi
Hiroshi Asakawa
Osamu Kogure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Daikin Kogyo Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56212730A priority Critical patent/JPS58113933A/en
Priority to EP82111725A priority patent/EP0090089B1/en
Priority to CA000418004A priority patent/CA1207099A/en
Priority to US06/450,726 priority patent/US4539250A/en
Priority to DE8282111725T priority patent/DE3279090D1/en
Publication of JPS58113933A publication Critical patent/JPS58113933A/en
Priority to US06/710,190 priority patent/US4686168A/en
Publication of JPH0358104B2 publication Critical patent/JPH0358104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高エネルギー線リソグラフイ用ポジ型
レジスト材料およびそれを用いる微細レジストパ
ターンの形成方法に関する。 従来、マスキング、半導体製造などの技術分野
においてパターンの形成材料として可視光線また
は近紫外線を用いるフオトレジストが使用されて
おり、数μmオーダーの開口をうるにはそうした
レジストで充分であつた。しかし、近年、電子部
品の軽量化、大容量化に伴なつてパターンの微細
化が進み、数μmオーダー以下、とくに1μm以
下の開口をうる必要性が生じてきた。 そのような数μmないしサブミクロンオーダー
の微細パターンを形成するためには、従来のフオ
トレジスト材料では対応することができず、そこ
でさらに短波長の遠紫外線、X線、電子線などの
高エネルギー線を利用したレジスト材料が開発さ
れ、サブミクロンオーダーの微細パターンの形成
が可能になつてきた。 そのようなレジスト材料としてもつとも広く用
いられているものとしてはポリメタクリレート
(以下、PMMAという)がある。PMMAはきわ
めて高い解像度を有するが、感度が低く(たとえ
ば、軟X線であるMoのL線では1300mJ/cm2
電子線では1×10-4C/cm2)、したがつて、パタ
ーンの形成に長時間を必要とする。 そのほかある種のポリフルオロアルキルメタク
リレートを高エネルギー線用レジスト材料として
用いる試みもなされているが(特公昭55−24088
号公報参照)、それらのレジスト材料はPMMAの
欠点である感度は改善されているが、シリコンな
どのある種の基板に対し現像の際、レジストパタ
ーンとの間に現像液が浸透してレジストパターン
が剥離したりパターンが浮き上がつたりし、その
結果、エツチングなどによつてえられる基板上の
パターンの寸法が所定の寸法よりも大きくなるな
ど、精度の低下をきたすという密着性不良が生ず
ることがある。そのような欠点はポストベーキン
グによつても回復することが充分にはできないば
あいがある。 本発明者らはこれら従来のレジスト材料の欠点
を克服すべく鋭意研究を重ねた結果、一般式
() (式中、R1は炭素数1〜6個を有する2価の炭
化水素基を表わし、Rfは少なくとも1つの水素
原子がフツ素原子で置換された炭素数1〜15個を
有するアルキル基を表わす)で表わされるフルオ
ロアルキルメタクリレートと一般式(): (式中、R2は水素原子、または炭素数1〜5の
アルキル基、好ましくは、メチル基を表わす)で
表わされるα−シアノアクリレートとの共重合し
てえられる共重合体が、高い感度と解像度を有
し、しかもすぐれた密着性を有する微細パターン
形成用のポジ型レジスト材料としてきわめてすぐ
れたものでだることを見出した。 前記一般式()で表わされる化合物として
は、具体的にはつぎの化学式で示されるものがあ
けられる。 CH2=C(CH3)COOCH2CF2CHF2 CH2=C(CH3)COOCH2CF2CF2CF2CHF2 CH2=C(CH3)COOCH2CH2CF2CF2CF3 CH2 =C(CH3)COOCH2CH2(CF2CF22CF3 本発明にかかわる共重合体における一般式
()で表わされる化合物と一般式()で表わ
される化合物との割合(モル比)は60:40〜
99.9:0.1なかんづく80:20〜99.9:0.1とするの
が好ましい。該共重合体の密着性は一般式()
で表わされる化合物の割合を増加させればさせる
ほど向上するが、感度および解像度は逆に低下す
る。前記の割合の範囲では、感度および解像度が
実用上問題となるまで低下せず、密着性も充分な
範囲である。また、重量平均分子量は、10000〜
20000000、好ましくは50000〜10000000のものが
使用される。分子量は、高くなればなるほど高エ
ネルギー線の照射部分と非照射部分との溶媒に対
する溶解度差が大となつて感度および解像度が向
上する。 本発明に用いる共重合体は製造は、一般式
()で表わされる化合物と一般式()で表わ
される化合物を通常の重合触媒の存在下にバルク
重合、溶液重合、乳化重合、懸濁重合などあらゆ
る重合法により共重合することによつて行なうこ
とができる。 重合度は重合触媒の添加量、反応温度などを変
化させて調整することができる。 基板上に前記共重合体のレジスト被膜を形成せ
しめる方法は、一般的なレジスト被膜形成法によ
つて行ないうる。すなわち該共重合体を脂肪族ケ
トン、脂肪族アルコール、脂肪族エステル、脂肪
族エーテル、芳香族炭化水素、脂還式ケトン、ハ
ロゲン化炭化水素またはそれらの混合物などの溶
剤に溶解させてレジスト溶液として該レジスト溶
液をスピンコーターなどを用いて基板上にコーテ
イングせしめ、ついで風乾、加熱乾燥などによつ
て溶媒を完全に蒸発させることによつてレジスト
被膜を形成することができる。 使用しうる基板はとくに限定されず、たとえば
クロムマスク基板、シリコン、酸化ケイ素、シリ
ケートグラスまたはチツ化ケイ素、アルミニウ
ム、チタン、金など各種の基板が本発明に使用で
き、いずれも基板においても本発明によつてえら
れるレジスト被膜は高い密着性を示す。 該レジスト被膜上に高エネルギー線を照射して
パターンを描画し、ついで現像液を用いて現像す
ることにより微細レジストパターンを形成せしめ
ることができる。 パターンの描画に用いる高エネルギー線として
は、電子線、300nm以下の紫外線、遠紫外線ま
たはX線を用いることができる。 現像液としては前記共重合体からなるレジスト
被膜において、高エネルギー線の照射により低分
子量化された部分と高エネルギー線が照射されて
いない本来の高分子量部分におけるそれの溶解速
度がいちじるしく異なる溶剤が用いられる。 そのような溶媒としては、 (A) 炭素数2〜8個のアルコールの1種もしくは
2種以上、または (B) ()メチルエチルケトン、メチルイソブチ
ルケトンなどのケトン類、アルキル基の炭素数
が1〜5個であるアルキルセロソルブおよびア
ルキル基の炭素数が1〜5個であり、アルカネ
ート基の炭素数が1〜5個であるアルキルカル
カネートよりなる群から選ばれた有機溶媒の1
種もしくは2種以上と()炭素数3〜8個の
アルコールの1種もしくは2種以上とからなる
混合物などがあげられる。(B)の中でも好ましい
ものは、()がメチルイソプチルケトン、メ
チルセロソルブ、エチルセルロソルブ、メチル
セロソルブアセテートまたはエチルセロソルブ
アセテートであり、()がイソプロピルアル
コールまたはノルマルプロピルアルコールであ
る。(B)の()にあげた溶媒と()にあげた
溶媒の混合比は共重合体の分子量や所望の感度
によつて適宜選択して決められる。また、現像
温度および時間は現像液の種類や共重合体の分
子量により適宜定めればよい。 最後に現像後被照射体を乾燥および焼成する
ことにより所望の微細レジストパターンが形成
される。 つぎに参考例および実施例をあげて本発明をさ
らに詳細に説明するが、本発明はそれらの実施例
のみに限定されるものではない。 参考例 1 メタクリル酸クロライド12部(重量部、以下同
様)および2,2,3,4,4,4−ヘキサフル
オロブチルアルコール60部に重合禁止剤としてハ
イドオキノンジメチルエーテル0.1部を加え、90
〜100℃で3時間加熱した。反応生成混合物を蒸
留して、2,2,3,4,4,4−ヘキサフルオ
ロブチルメタクリレート(以下、HFBMAとい
う)を15部をえた(沸点:60〜63℃/20mmHg)。 つぎにHFBMA99部(97.8モル)にメチルα−
シアノアクリレート(以下、CN−MAという)
1部(2.2モル部)、アゾビスイソブチロニトリル
(以下、AIBNという)0.1部を加えて混合し、脱
気したのちこの混合物を70℃で24時間共重合させ
た。反応生成混合物にアセトンを加えて均一溶液
としたのち、石油エーテルを加えて沈澱させるこ
とにより共重合体87部をえた。 この共重合体は、熱分解ガスクロマトグラフイ
ーにより分析した結果、CN−MAのモノマー単
位を2.1モル%含有し、ほぼ仕入比で共重合して
いることが確認された。この共重合体をメチルエ
チルケトン溶液として、35℃で求めた極限粘度
(η〕は1.39であつた。またゲルバーミエーシヨ
ンクロマトグラフイーにより求めた重量平均分子
量は、約120000であつた。 実施例 1 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調整した。該レジスト溶液をシリコンウエハ上に
スピンコーテイング法によつて被膜の膜厚が0.8μ
mとなるようにコーテイングし、ついで、140℃
で30分間加熱して溶液を蒸発させ、そののち常温
にまで冷却してレジスト被膜を形成した。 つぎにCRE−302型電子線描画装置(エリオニ
クス社製)を用いて該レジスト被膜を有するそれ
ぞれの試料に加速電圧20KV(電流:1×10-9A)
の電子線をそれぞれ0.08秒間(電子線量1.9×
10-9C/cm2)〜125秒間(電子線量2.9×10-4C/
cm2)で数点照射して描画した。これらの試料を23
℃ メチルイソブチルケトン−イソプロパノール混
合溶媒(容量比1.5:98.5)に90秒間浸漬してレ
ジストパターンを現像した。このものはただちに
23℃のイソプロパノールい60秒間浸して洗浄し
た。 以上によつてえられるレジストパターンのレジ
スト被膜の残存膜厚は膜厚測定器(タリステツプ
(英国ボブソン社製))によつて測定した。 第1図に照射時間(秒)と残存膜厚(μm)の
関係を表わす特性図を示す。第1図より該レジス
トの感度1.20×10-6C/cm2、γ値4.05が読みとれ
る。 ついで、1.20×10-6C/cm2の電子線でラインア
ンドスペース2、3および5μmで描画し、同様
に現像、洗浄および乾燥してえられたレジストパ
ターンを400倍の光学顕微鏡で観察して密着性を
評価した。その結果、いずれのパターンも完全に
密着しているのが観察された。 参考例 2 原料モノマーとして2,2,3,3−ヘキサフ
ルオロ−1,1−ジメチルプロピルメタクリレー
ト95部およびエチルα−シアノアクリレート5部
を用いたほかは実施例1と同様にして実験を行な
い共重合体をえた。 実施例 2 使用共重合体を参考例2でえたものに代え、現
像液をメチルセロソルブアセテート−イソプロピ
ルアルコール混合溶媒(容量比15:85)に代えた
ほかは実施例1と同様にして実験を行なつた。そ
の結果感度は1.6×10-5C/cm2であり、γ値は2.5
であつた。また密着性は非常にすぐれているもの
であつた。 参考例 3 メチルメタクリレート(以下、MMAという)
97.6部(97.8モル%)にメチルα−シアノアクリ
レート2.4部(2.2モル%)およびAIBN0.1部を加
えて混合し、ついで脱気したのち、この混合物を
60℃で24時間共重合させた。反応生成物にアセト
ンを加えて均一溶液としたのち石油エーテル中に
注ぎ、析出した重合体を回収し、真空乾燥を行な
い、重合体87部をえた。この共重合体をメチルエ
チルケトン溶液として、35℃で求めた極限粘度
[η]は、1.0であつた。また、ゲルパーミエーシ
ヨンクロマトグラフイーにより求めた重量平均分
子量は約500000であつた。 参考例 4 MMA100部にAIBN0.1部を加えて混合し、つ
いで脱気したのち、この混合物を60℃で24時間重
合させた。反応生成物にアセトンを加えて均一溶
液としたのち石油エーテル中に注ぎ、析出した重
合体を回収し、真空乾燥を行ない、重合体90部を
えた。 えられた重合体をメチルエチルケトン溶液とし
て、35℃で求めた極限粘度[η]は1.0であつた。
また、ゲルパーミエーシヨンクロマトグラフイー
により求めた重量平均分子量は約500000であつ
た。 実施例 3 参考例1でえられた共重合体4部にメチルイソ
ブチルケトン46部を加えて均一なレジスト溶液を
調製した。該レジスト溶液をシリコンウエハー上
にスピンコーテイング法によつて被膜の膜厚が
0.8μmとなるようにコーテイングし、ついで140
℃、30分間のプリペーキングを行なつて溶液を蒸
発させ、そののち室温まで冷却してレジスト被膜
を形成させた。つぎに実施例1と同一の電子線照
射装置を用いて1.2×10-6C/cm2の電子線照射量
で、一辺が1.0μm、2.0μm、3.0μm、5.0μmの正
方形パターンが各々400個形成されるように電子
線描画を行ない、それをメチルイソブチルケト
ン/イソプロパノール混合溶液(容量比1.5:
98.5)で90秒間現像し(23℃)、さらにリンス
(23℃でノルマヘプタン中60秒間)し、乾燥させ
たものを光学顕微鏡で観察し、形成された各大き
さのパターンの残存率((残存していたパターン
の個数/400個)×100)を求めたところ、全ての
パターンが残存しており残存率100%であつた。 比較例 1〜3 第1表に示す重合体10部を酢酸エチルセロソル
ブ90部に溶解させて均一溶液としたのち、シリコ
ンウエハー上に約1μmとなる条件でコーテイン
グし、200℃〜30分間のプリベーキングを行ない、
0.8μmの厚さのレジスト被膜をえた。現像液(現
像条件は23℃、120秒間)、リンス液を第1表に示
すものに代えた他は実施例3と同様にして実験を
行ない、各レジストについて各大きさのパターン
ごとの残存率を求めた。結果を第1表に示す。
The present invention relates to a positive resist material for high-energy beam lithography and a method for forming a fine resist pattern using the same. Conventionally, photoresists using visible light or near ultraviolet light have been used as pattern forming materials in technical fields such as masking and semiconductor manufacturing, and such resists have been sufficient to form openings on the order of several μm. However, in recent years, as electronic components have become lighter and larger in capacity, patterns have become finer, and it has become necessary to have openings on the order of several μm or less, particularly 1 μm or less. In order to form such fine patterns on the order of several μm or submicron, conventional photoresist materials cannot be used. Resist materials have been developed that utilize this technology, and it has become possible to form fine patterns on the submicron order. One of the most widely used resist materials is polymethacrylate (hereinafter referred to as PMMA). Although PMMA has extremely high resolution, it has low sensitivity (for example, 1300 mJ/cm 2 for Mo L-ray, which is a soft X-ray,
(1×10 −4 C/cm 2 ) for electron beams, and therefore requires a long time to form a pattern. In addition, attempts have been made to use certain polyfluoroalkyl methacrylates as resist materials for high-energy rays (Japanese Patent Publication No. 55-24088
Although these resist materials have improved sensitivity, which is a drawback of PMMA, when developing certain types of substrates such as silicon, the developer may penetrate between the resist pattern and the resist pattern. The pattern may peel off or the pattern may float, resulting in poor adhesion, such as a pattern on the substrate obtained by etching becoming larger than the predetermined size, resulting in a decrease in precision. Sometimes. Such defects may not be fully recovered even by post-baking. As a result of intensive research to overcome the drawbacks of these conventional resist materials, the inventors found that the general formula () (In the formula, R 1 represents a divalent hydrocarbon group having 1 to 6 carbon atoms, and R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. fluoroalkyl methacrylate represented by ) and the general formula (): (In the formula, R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a methyl group). It has been found that this resist material is extremely excellent as a positive resist material for forming fine patterns, having high resolution and excellent adhesion. Specific examples of the compound represented by the general formula () include those represented by the following chemical formula. CH 2 =C(CH 3 )COOCH 2 CF 2 CHF 2 CH 2 =C(CH 3 )COOCH 2 CF 2 CF 2 CF 2 CHF 2 CH 2 =C(CH 3 )COOCH 2 CH 2 CF 2 CF 2 CF 3 CH 2 =C(CH 3 )COOCH 2 CH 2 (CF 2 CF 2 ) 2 CF 3General formula in the copolymer according to the present invention ( ) The ratio (molar ratio) of the compound represented by formula () to the compound represented by general formula () is 60:40~
It is preferable to set it to 99.9:0.1, especially 80:20 to 99.9:0.1. The adhesion of the copolymer is expressed by the general formula ()
As the proportion of the compound represented by is increased, the improvement is improved, but the sensitivity and resolution are conversely reduced. Within the above ratio range, the sensitivity and resolution do not deteriorate to the extent that they become a practical problem, and the adhesion is also within a sufficient range. In addition, the weight average molecular weight is 10000~
20,000,000, preferably 50,000 to 1,000,000 is used. The higher the molecular weight, the greater the difference in solubility in a solvent between the irradiated part and the non-irradiated part with the high-energy rays, resulting in improved sensitivity and resolution. The copolymer used in the present invention can be produced by bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc. of the compound represented by the general formula () and the compound represented by the general formula () in the presence of a conventional polymerization catalyst. This can be carried out by copolymerization using any polymerization method. The degree of polymerization can be adjusted by changing the amount of polymerization catalyst added, reaction temperature, etc. A method for forming a resist film of the copolymer on the substrate can be performed by a general resist film forming method. That is, the copolymer is dissolved in a solvent such as an aliphatic ketone, an aliphatic alcohol, an aliphatic ester, an aliphatic ether, an aromatic hydrocarbon, an alicyclic ketone, a halogenated hydrocarbon, or a mixture thereof to prepare a resist solution. A resist film can be formed by coating the resist solution onto a substrate using a spin coater or the like, and then completely evaporating the solvent by air drying, heating drying, or the like. The substrate that can be used is not particularly limited, and various substrates such as a chrome mask substrate, silicon, silicon oxide, silicate glass, silicon titanium, aluminum, titanium, and gold can be used in the present invention, and any of the substrates can be used in the present invention. The resist film obtained by this method shows high adhesion. A fine resist pattern can be formed by irradiating the resist film with high-energy rays to draw a pattern and then developing it using a developer. As the high-energy beam used for pattern drawing, an electron beam, ultraviolet rays of 300 nm or less, deep ultraviolet rays, or X-rays can be used. The developing solution is a solvent in which the dissolution rate of the resist film made of the above-mentioned copolymer is significantly different between the part whose molecular weight has been reduced by irradiation with high-energy rays and the originally high-molecular-weight part which has not been irradiated with high-energy rays. used. Such solvents include (A) one or more alcohols having 2 to 8 carbon atoms, or (B) ketones such as methyl ethyl ketone and methyl isobutyl ketone, and alkyl groups having 1 to 8 carbon atoms. An organic solvent selected from the group consisting of an alkyl cellosolve in which the number of carbon atoms in the alkyl group is 1 to 5 and an alkyl carcanate in which the number of carbon atoms in the alkyl group is 1 to 5.
Examples include a mixture of a species or two or more species and one or two or more alcohols having 3 to 8 carbon atoms. Among (B), preferred are methyl isobutyl ketone, methyl cellosolve, ethyl cellulosolve, methyl cellosolve acetate or ethyl cellosolve acetate, and () is isopropyl alcohol or normal propyl alcohol. The mixing ratio of the solvents listed in () and the solvents listed in () of (B) can be appropriately selected and determined depending on the molecular weight of the copolymer and the desired sensitivity. Further, the developing temperature and time may be appropriately determined depending on the type of developer and the molecular weight of the copolymer. Finally, the desired fine resist pattern is formed by drying and baking the irradiated object after development. Next, the present invention will be explained in more detail with reference to reference examples and examples, but the present invention is not limited only to these examples. Reference Example 1 0.1 part of hydroquinone dimethyl ether as a polymerization inhibitor was added to 12 parts of methacrylic acid chloride (parts by weight, same hereinafter) and 60 parts of 2,2,3,4,4,4-hexafluorobutyl alcohol, and 90 parts of hydroquinone dimethyl ether was added as a polymerization inhibitor.
Heated at ~100°C for 3 hours. The reaction product mixture was distilled to obtain 15 parts of 2,2,3,4,4,4-hexafluorobutyl methacrylate (hereinafter referred to as HFBMA) (boiling point: 60-63°C/20mmHg). Next, 99 parts (97.8 mol) of HFBMA was added to methyl α-
Cyanoacrylate (hereinafter referred to as CN-MA)
1 part (2.2 mol parts) and 0.1 part of azobisisobutyronitrile (hereinafter referred to as AIBN) were added and mixed, and after degassing, this mixture was copolymerized at 70°C for 24 hours. Acetone was added to the reaction product mixture to make a homogeneous solution, and then petroleum ether was added for precipitation to obtain 87 parts of a copolymer. As a result of analysis by pyrolysis gas chromatography, this copolymer was confirmed to contain 2.1 mol% of CN-MA monomer units, and was copolymerized at approximately the purchasing ratio. The intrinsic viscosity (η) of this copolymer determined as a methyl ethyl ketone solution at 35°C was 1.39.The weight average molecular weight determined by gel vermi-ation chromatography was approximately 120,000.Example 1 A uniform resist solution was prepared by adding 46 parts of methyl isobutyl ketone to 4 parts of the copolymer obtained in Reference Example 1.The resist solution was spin-coated onto a silicon wafer until the film thickness was 0.8μ.
coated so that it becomes m, and then heated at 140℃
The solution was heated for 30 minutes to evaporate the solution, and then cooled to room temperature to form a resist film. Next, using a CRE-302 electron beam lithography system (manufactured by Elionix Co., Ltd.), each sample with the resist film was applied at an accelerating voltage of 20 KV (current: 1 × 10 -9 A).
electron beam for 0.08 seconds each (electron dose 1.9×
10 -9 C/cm 2 ) to 125 seconds (electronic dose 2.9×10 -4 C/
cm 2 ) and was drawn by irradiating several points. 23 of these samples
The resist pattern was developed by immersion in a mixed solvent of methyl isobutyl ketone and isopropanol (volume ratio 1.5:98.5) for 90 seconds. This thing immediately
Washed by soaking in isopropanol at 23°C for 60 seconds. The remaining film thickness of the resist film of the resist pattern obtained in the above manner was measured using a film thickness measuring device (Talystep (manufactured by Bobson, UK)). FIG. 1 shows a characteristic diagram showing the relationship between irradiation time (seconds) and residual film thickness (μm). From FIG. 1, it can be seen that the resist has a sensitivity of 1.20×10 −6 C/cm 2 and a γ value of 4.05. Next, lines and spaces of 2, 3, and 5 μm were drawn using an electron beam of 1.20×10 −6 C/cm 2 , and the resulting resist pattern was similarly developed, washed, and dried, and the resulting resist pattern was observed under a 400x optical microscope. Adhesion was evaluated. As a result, it was observed that both patterns were completely adhered to each other. Reference Example 2 The experiment was carried out in the same manner as in Example 1, except that 95 parts of 2,2,3,3-hexafluoro-1,1-dimethylpropyl methacrylate and 5 parts of ethyl α-cyanoacrylate were used as raw material monomers. I got a polymer. Example 2 An experiment was conducted in the same manner as in Example 1, except that the copolymer used was replaced with that obtained in Reference Example 2, and the developer was replaced with a mixed solvent of methyl cellosolve acetate and isopropyl alcohol (volume ratio 15:85). Summer. As a result, the sensitivity was 1.6×10 -5 C/cm 2 and the γ value was 2.5.
It was hot. Also, the adhesion was very good. Reference example 3 Methyl methacrylate (hereinafter referred to as MMA)
2.4 parts (2.2 mol%) of methyl α-cyanoacrylate and 0.1 part of AIBN were added to 97.6 parts (97.8 mol%), mixed, and then degassed.
Copolymerization was carried out at 60°C for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, and the precipitated polymer was collected and vacuum dried to obtain 87 parts of the polymer. The intrinsic viscosity [η] of this copolymer determined as a methyl ethyl ketone solution at 35° C. was 1.0. Furthermore, the weight average molecular weight determined by gel permeation chromatography was approximately 500,000. Reference Example 4 0.1 part of AIBN was added to 100 parts of MMA, mixed, and then degassed, and the mixture was polymerized at 60° C. for 24 hours. Acetone was added to the reaction product to make a homogeneous solution, which was then poured into petroleum ether, and the precipitated polymer was collected and vacuum dried to obtain 90 parts of the polymer. The intrinsic viscosity [η] determined at 35° C. of the resulting polymer as a methyl ethyl ketone solution was 1.0.
Furthermore, the weight average molecular weight determined by gel permeation chromatography was approximately 500,000. Example 3 46 parts of methyl isobutyl ketone was added to 4 parts of the copolymer obtained in Reference Example 1 to prepare a uniform resist solution. The resist solution is applied onto a silicon wafer by spin coating to reduce the thickness of the film.
Coating to 0.8μm, then 140μm
The solution was evaporated by pre-paking at 30° C. for 30 minutes, and then cooled to room temperature to form a resist film. Next, using the same electron beam irradiation device as in Example 1, 400 square patterns with sides of 1.0 μm, 2.0 μm, 3.0 μm, and 5.0 μm were each made at an electron beam irradiation dose of 1.2×10 -6 C/cm 2 . Electron beam lithography is performed to form individual particles, and then a mixed solution of methyl isobutyl ketone/isopropanol (volume ratio 1.5:
98.5) for 90 seconds (23℃), rinsed (60 seconds in normal heptane at 23℃), dried, and observed with an optical microscope to determine the survival rate of each pattern size (( When the number of remaining patterns/400)×100) was calculated, all the patterns remained, giving a survival rate of 100%. Comparative Examples 1 to 3 10 parts of the polymer shown in Table 1 was dissolved in 90 parts of ethyl cellosolve acetate to make a homogeneous solution, and then coated on a silicon wafer to a thickness of approximately 1 μm, and pretreated at 200°C for 30 minutes. Perform baking;
A resist film with a thickness of 0.8 μm was obtained. An experiment was conducted in the same manner as in Example 3, except that the developer (development conditions were 23°C for 120 seconds) and rinse solution were replaced with those shown in Table 1. I asked for The results are shown in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子線照射時間と残存膜厚の関係を表
わす特性図である。
FIG. 1 is a characteristic diagram showing the relationship between electron beam irradiation time and residual film thickness.

Claims (1)

【特許請求の範囲】 1 一般式(): (式中、R1は炭素数1〜6個を有する2価の炭
化水素基を表わし、Rfは少なくとも1つの水素
原子がフツ素原子で置換された炭素数1〜15個を
有するアルキル基を表わす)で表わされるフルオ
ロアルキルメタクリレートと 一般式(): (式中、R2は水素原子または炭素数1〜5のア
ルキル基を表わす)で表わされるα−シアノアク
リレートとの共重合体からなるレジスト材料。 2 前記一般式()で表わされるフルオロアル
キルメタクリレートと前記一般式()で表わさ
れるα−シアノアクリレートとのモル比が60:40
〜99.9:0.1である共重合体からなる特許請求の
範囲第1項記載のレジスト材料。 3 前記一般式()で表わされるフルオロアル
キルメタクリレートと前記一般式()で表わさ
れるα−シアノアクリレートとのモル比が80:20
〜99.9:0.1である共重合体からなる特許請求の
範囲第1項記載のレジスト材料。 4 一般式(): (式中、R1は炭素数1〜6個を有する2価の炭
化水素基を表わし、Rfは少なくとも1つの水素
原子がフツ素原子で置換された炭素数1〜15個を
有するアルキル基を表わす)で表わされるフルオ
ロアルキルメタクリレートと 一般式(): (式中、R2は水素原子または炭素数1〜5のア
ルキル基を表わす)で表わされるα−シアノアク
リレートとを共重合してえられる共重合体からな
るレジスト被膜に高エネルギー線を照射したの
ち、現像することを特徴とする微細レジストパタ
ーン形成方法。 5 前記現像が炭素数2〜8個のアルコールの1
種または2種以上の混合物を現像液として用いて
行なうものである特許請求の範囲第4項記載の微
細レジストパターンの形成方法。 6 前記現像がメチルエチルケトン、メチルイソ
ブチルケトンなどのケトン類、アルキル基の炭素
数が1〜5個であるアルキルセロソルブおよびア
ルキル基の炭素数が1〜5個であり、アルカネー
ト基の炭素数が1〜5個であるアルキルセロソル
ブよりなる群から選ばれた有機溶媒の1種または
2種以上と炭素数3〜8個のアルコールの1種ま
たは2種以上とから成る混合物を現像液として用
いて行なうものである特許請求の範囲第4項記載
の微細レジストパターンの形成方法。 7 前記現像がメチルイソブチルケトン、メチル
セロソルブ、エチルセロソルブ、メチルセロソル
ブアセテートまたはエチルセロソルブアセテート
とイソプロピルアルコールまたはノルマルプロピ
ルアルコールとからなる混合物を現像液として用
いて行なうものである特許請求の範囲第4項記載
の微細レジストパターンの形成方法。
[Claims] 1 General formula (): (In the formula, R 1 represents a divalent hydrocarbon group having 1 to 6 carbon atoms, and R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. fluoroalkyl methacrylate represented by ) and the general formula (): A resist material made of a copolymer with α-cyanoacrylate represented by the formula (wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). 2 The molar ratio of the fluoroalkyl methacrylate represented by the general formula () to the α-cyanoacrylate represented by the general formula () is 60:40.
The resist material according to claim 1, comprising a copolymer having a ratio of 99.9:0.1. 3 The molar ratio of the fluoroalkyl methacrylate represented by the general formula () to the α-cyanoacrylate represented by the general formula () is 80:20.
The resist material according to claim 1, comprising a copolymer having a ratio of 99.9:0.1. 4 General formula (): (In the formula, R 1 represents a divalent hydrocarbon group having 1 to 6 carbon atoms, and R f represents an alkyl group having 1 to 15 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. fluoroalkyl methacrylate represented by ) and the general formula (): (In the formula, R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.) A resist film made of a copolymer obtained by copolymerizing α-cyanoacrylate represented by A method for forming a fine resist pattern, which is characterized in that it is then developed. 5 The development is an alcohol having 2 to 8 carbon atoms.
5. The method for forming a fine resist pattern according to claim 4, wherein the method is carried out using a species or a mixture of two or more species as a developer. 6. The development is carried out using ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl cellosolves in which the alkyl group has 1 to 5 carbon atoms, and alkyl groups in which the alkyl group has 1 to 5 carbon atoms and the alkanate group has 1 to 5 carbon atoms. A mixture consisting of one or more organic solvents selected from the group consisting of 5 alkyl cellosolves and one or more alcohols having 3 to 8 carbon atoms as a developer. A method for forming a fine resist pattern according to claim 4. 7. Claim 4, wherein the development is carried out using a mixture of methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, or ethyl cellosolve acetate and isopropyl alcohol or n-propyl alcohol as a developer. A method for forming fine resist patterns.
JP56212730A 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it Granted JPS58113933A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56212730A JPS58113933A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it
EP82111725A EP0090089B1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
CA000418004A CA1207099A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/450,726 US4539250A (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
DE8282111725T DE3279090D1 (en) 1981-12-19 1982-12-17 Resist material and process for forming fine resist pattern
US06/710,190 US4686168A (en) 1981-12-19 1985-03-11 Fluoroalkyl acrylate resist material and process for forming fine resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212730A JPS58113933A (en) 1981-12-26 1981-12-26 Resist material and formation of resist micropattern using it

Publications (2)

Publication Number Publication Date
JPS58113933A JPS58113933A (en) 1983-07-07
JPH0358104B2 true JPH0358104B2 (en) 1991-09-04

Family

ID=16627477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212730A Granted JPS58113933A (en) 1981-12-19 1981-12-26 Resist material and formation of resist micropattern using it

Country Status (1)

Country Link
JP (1) JPS58113933A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026337A (en) * 1983-07-22 1985-02-09 Fujitsu Ltd Pattern forming method
JPS6029745A (en) * 1983-07-28 1985-02-15 Fujitsu Ltd Process for forming pattern
JPH0328851A (en) * 1988-05-24 1991-02-07 Toppan Printing Co Ltd Method for forming electron beam resist pattern
JPH02111988A (en) * 1988-10-21 1990-04-24 Toppan Printing Co Ltd Duplicating pattern for hologram, its production, and production of hologram
JP2001302726A (en) * 2000-02-16 2001-10-31 Shin Etsu Chem Co Ltd Polymeric compound, resist material and pattern-forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132678A (en) * 1976-04-28 1977-11-07 Fujitsu Ltd High-sensitive positive type electron beam formation
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5560509A (en) * 1978-10-27 1980-05-07 Chiyou Lsi Gijutsu Kenkyu Kumiai Highly radiation-sensitive composition and its solution
JPS5821739A (en) * 1981-07-31 1983-02-08 Toshiba Corp Manufacture of photomask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132678A (en) * 1976-04-28 1977-11-07 Fujitsu Ltd High-sensitive positive type electron beam formation
JPS5558243A (en) * 1978-10-24 1980-04-30 Nippon Telegr & Teleph Corp <Ntt> Highly sensitive positive resist composition
JPS5560509A (en) * 1978-10-27 1980-05-07 Chiyou Lsi Gijutsu Kenkyu Kumiai Highly radiation-sensitive composition and its solution
JPS5821739A (en) * 1981-07-31 1983-02-08 Toshiba Corp Manufacture of photomask

Also Published As

Publication number Publication date
JPS58113933A (en) 1983-07-07

Similar Documents

Publication Publication Date Title
EP0090089B1 (en) Resist material and process for forming fine resist pattern
JP2824350B2 (en) Device manufacturing method
EP0064222B1 (en) Process for forming resist patterns
US4476217A (en) Sensitive positive electron beam resists
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
US4279984A (en) Positive resist for high energy radiation
JP3221909B2 (en) Photoresist material and pattern forming method using the same
JPH0358104B2 (en)
JPH0358103B2 (en)
US4414313A (en) Sensitive positive electron beam resists
EP0064864B1 (en) Method of making sensitive positive electron beam resists
US4415653A (en) Method of making sensitive positive electron beam resists
JPH0358102B2 (en)
JPS62240953A (en) Resist
JP2988268B2 (en) Radiation-sensitive resin composition
US4568734A (en) Electron-beam and X-ray sensitive polymers and resists
US4617254A (en) Process for forming detailed images
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
JPH087441B2 (en) Positive type high sensitivity radiation sensitive resist
JP2020134683A (en) Resist pattern forming method
JPS6411936B2 (en)
JPH01154146A (en) Radiation sensitive resist having high sensitivity
JPH0721055B2 (en) Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative
JPH0381143B2 (en)
JP2002090997A (en) Resist composition