JPS63270827A - Yarn-shaped heat generator and its production - Google Patents

Yarn-shaped heat generator and its production

Info

Publication number
JPS63270827A
JPS63270827A JP10041987A JP10041987A JPS63270827A JP S63270827 A JPS63270827 A JP S63270827A JP 10041987 A JP10041987 A JP 10041987A JP 10041987 A JP10041987 A JP 10041987A JP S63270827 A JPS63270827 A JP S63270827A
Authority
JP
Japan
Prior art keywords
heating element
yarn
core yarn
synthetic resin
filamentous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10041987A
Other languages
Japanese (ja)
Inventor
裕平 前田
岡 研一郎
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10041987A priority Critical patent/JPS63270827A/en
Publication of JPS63270827A publication Critical patent/JPS63270827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Resistance Heating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、可撓性に富み、長期の使用に耐える電気的に
発熱する糸状発熱体およびその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrically heat-generating filamentous heating element that is highly flexible and durable for long-term use, and a method for manufacturing the same.

[従来の技術] 従来から、搬器類の保温ないし加熱用に金属細線から成
る可撓性の発熱線が使用されているが、特に電気毛布、
電気カーペット等民生用にも広く普及し、その便利さか
ら今後盤々商品に多様化が促進される趨勢にある。
[Prior Art] Flexible heat-generating wires made of thin metal wires have traditionally been used to insulate or heat carriers, but electric blankets, electric blankets, etc.
It has become widely used in consumer products such as electric carpets, and due to its convenience, there is a trend that it will be increasingly diversified into products in the future.

従来、これらの発熱体には、ステンレス線、ニクロム線
等の金属細線から成る抵抗体が使用されていたが、前記
の各製品に可撓性であることを要求される場合には、可
撓性の芯糸に極細い抵抗線をスパイラル状に捲き付けた
もの、布帛上にカーボンを樹脂バインダーにより固着さ
せたもの等が使用されている。
Conventionally, resistors made of thin metal wires such as stainless steel wires and nichrome wires have been used for these heating elements, but when each of the above products is required to be flexible, flexible Used materials include those in which ultra-thin resistance wire is wound in a spiral shape around a polyester core thread, and those in which carbon is fixed to a fabric using a resin binder.

しかしながら、これらは何れも、耐屈曲性、耐摩耗性等
の点で要求する性能を満たすことができず、また、可撓
性が不足してあり、改善が要求されている。
However, none of these can meet the required performance in terms of bending resistance, abrasion resistance, etc., and also lacks flexibility, so improvements are required.

この問題を解決しようと試みたものに、特公昭38−1
470号公報がおる。これは、芯糸のまわりに導電性微
粒子を配合したゴムまたはプラスチック層を設けること
により、発熱体の可撓性を高めたものでおる。この発明
により可撓性のレベルは金属細線に比べて向上したもの
の、衣料分野におけるライダースーツ、ダイパー服、イ
ンナースーツ、手袋、靴など、あるいは電気毛布のよう
に高度の屈曲耐久性を要求される分野には、可撓性レベ
ルは極めて低いものであり、現状では実用化に至ってい
ない。
One of the attempts to solve this problem was
There is a publication No. 470. This increases the flexibility of the heating element by providing a rubber or plastic layer containing conductive fine particles around the core yarn. Although this invention has improved the level of flexibility compared to fine metal wire, it is used in the clothing field such as rider suits, diaper suits, inner suits, gloves, shoes, etc., and electric blankets that require a high degree of bending durability. In this field, the level of flexibility is extremely low, and it has not yet been put into practical use.

さらにこの製造方法は電線製造のそれでおり、導電性ゴ
ムまたはプラスチックの加熱溶融部、保温配管部、溶融
被覆部からなる大規模な装置を必要とする。溶融被覆部
には芯糸の導入・導出のための1mm以下の径をもつ2
つの細孔が設けられ、かつゴムまたはプラスチックが流
動性をもつ程度の高温に保温されている。したがって、
芯糸を前記2つの細孔に通す作業は非常に操作性が悪い
Furthermore, this manufacturing method is similar to that of electric wire manufacturing, and requires large-scale equipment consisting of a conductive rubber or plastic heating and melting section, a heat-insulating piping section, and a melt-coating section. The melt-coated part has a diameter of 1 mm or less for introducing and extracting the core yarn.
It has two pores and is kept at a high enough temperature to make the rubber or plastic fluid. therefore,
The operation of passing the core thread through the two pores is very difficult to operate.

また、実公昭39−37687@公報には導電性微粒子
を配合した樹脂を溶液とし、芯糸に塗布後、脱溶媒し、
固着ざぜる方法が開示されている。塗布とはすなわち、
芯糸を溶液中に浸漬した後、細孔ヤスリット等で過剰溶
液を取り除く方法であり、前述の溶融被覆方法に比べて
装置は簡略化され、操作性も幾分改善される。
In addition, in Utility Model Publication No. 39-37687@, a solution of resin containing conductive fine particles is applied to the core thread, and then the solvent is removed.
A method of fixing is disclosed. The application means,
This is a method in which the core yarn is immersed in a solution and then the excess solution is removed using a fine-hole file slit or the like, and the equipment is simplified and the operability is improved somewhat compared to the above-mentioned melt coating method.

しかし、この方法で得られる発熱体は、溶液が均一に塗
布できないために通電したときに温度ムラが生じ、火傷
、火災を引き起こす恐れさえ存在する。したがって、こ
の方法は糸状発熱体の適切な製造方法とは認められない
のでおる。
However, in the heating element obtained by this method, since the solution cannot be applied uniformly, temperature unevenness occurs when electricity is applied, and there is even a risk of causing burns or fire. Therefore, this method is not recognized as an appropriate method for producing filamentous heating elements.

その他、可撓性に富む糸状の発熱体を得る試みとして、
特開昭51−109321号公報がある。これは、ナイ
ロンのコンジュゲートフィラメントを加熱により軟化さ
せるかあるいは膨潤剤により膨潤させて、カーボン粒子
をフィラメント表層部に固着させて糸状の発熱体とした
ものである。この発熱体は、長さあたりの抵抗値が高す
ぎ、発熱素子として用いるには適ざないものでおる。ま
た、カーボン粒子を均一に固着させるのは難かしく、し
たがって抵抗値にバラツキが大きく、要求される抵抗値
のものを工業的に安定して供給することができない。
In addition, in an attempt to obtain a highly flexible thread-like heating element,
There is Japanese Unexamined Patent Publication No. 109321/1983. In this method, a nylon conjugate filament is softened by heating or swollen by a swelling agent, and carbon particles are fixed to the surface layer of the filament to form a filamentous heating element. This heating element has too high a resistance value per length, making it unsuitable for use as a heating element. Further, it is difficult to uniformly fix carbon particles, and therefore the resistance value varies widely, making it impossible to stably supply the required resistance value industrially.

[発明が解決しようとする問題点] 本発明は、かかる従来の問題点を改善し、抵抗値のバラ
ツキが小さく、可撓性に富み、導電層と芯糸との接着性
が良好で屈曲、摩耗等により剥離し難く、長期間安定し
て使用し得る糸状の発熱体およびその製造方法を提供す
るものである。
[Problems to be Solved by the Invention] The present invention improves these conventional problems, and provides a fabric with small variations in resistance value, high flexibility, good adhesion between the conductive layer and the core yarn, and bendable, The present invention provides a filamentous heating element that is difficult to peel off due to wear and the like and can be used stably for a long period of time, and a method for manufacturing the same.

[問題を解決しようとするための手段]上記の問題点を
解決するために、本発明の糸状発熱体は、次の構成を有
する。すなわち、芯糸と該芯糸を被覆する導電性微粒子
を分散含有する合成樹脂の導電層と気泡とからなり、か
つ糸軸方向の重量バラツキCV(%)が下記式を満足す
る糸状発熱体である。
[Means for Solving the Problems] In order to solve the above problems, the filamentous heating element of the present invention has the following configuration. That is, a filamentous heating element consisting of a core yarn, a conductive layer of a synthetic resin containing dispersed conductive fine particles covering the core yarn, and air bubbles, and whose weight variation CV (%) in the yarn axis direction satisfies the following formula. be.

C■≦6.0 (CV (%):糸軸方向に25cmずつ40本の重量
を連続して測定したときのCV(%))上記構成のうち
、芯糸は糸状発熱体に可撓性をもたせ、繰返し折りや摩
耗に対する耐久性をもたせる。この際、芯糸を被覆する
導電性合成樹脂層には気泡が存在することが重要である
C ≦ 6.0 (CV (%): CV (%) when the weight of 40 yarns of 25 cm each in the yarn axis direction is continuously measured) Among the above configurations, the core yarn is a flexible filament heating element. It provides durability against repeated folding and abrasion. At this time, it is important that air bubbles exist in the conductive synthetic resin layer covering the core thread.

気泡の存在により前記柔軟性や繰返し耐久性を飛躍的に
向上させることができる。
The presence of air bubbles can dramatically improve the flexibility and repeat durability.

また、糸軸方向の重量バラツキC■を6.0%以下とす
ることにより製品としたときの発熱性能が従来の金属細
線からなる製品と同等の水準を満足する。特に重量バラ
ツキC■は4.0%以下が好ましい。すなわち、抵抗値
バラツキを実用化レベルとするために必要な構成要件で
ある。測定を25cm間隔で連続測定することは、この
長さが通常製品としたときの一電極間隔に略等しく、こ
のため製品の大きざを考慮した有効な測定方法である。
Furthermore, by setting the weight variation C2 in the yarn axis direction to 6.0% or less, the heat generation performance of the product satisfies the same level as products made of conventional thin metal wires. In particular, the weight variation C■ is preferably 4.0% or less. In other words, this is a necessary structural requirement to reduce resistance value variation to a practical level. Continuous measurement at 25 cm intervals is approximately equal to the distance between electrodes in a normal product, and is therefore an effective measurement method that takes into account the size of the product.

又、本発明の糸状発熱体の好ましい一製造方法は次の構
成を有する。すなわち、導電性微粒子を懸濁した合成樹
脂溶液を計量装置により計量しつつ芯糸に付着させ、し
かるのちに乾燥固着させて導電性微粒子を分散含有する
合成樹脂の導電層を前記芯糸上に形成させることを特徴
とする糸状発熱体の製造方法である。
Further, a preferred method for manufacturing the filamentous heating element of the present invention has the following configuration. That is, a synthetic resin solution in which conductive fine particles are suspended is attached to the core yarn while being measured using a metering device, and then dried and fixed to form a conductive layer of synthetic resin containing dispersed conductive fine particles on the core yarn. This is a method for producing a filamentous heating element, characterized by forming a filamentous heating element.

本発明に用いる芯糸の素材としては、合成繊維または天
然繊維の糸条を用いる。これは発熱体として通常使用さ
れる温度、すなわち、20〜100℃の範囲で長期間安
定した性能を維持するものであり、導電層との接着性が
良好であれば良い。ポリアミド、ポリエステル、ポリオ
レフィンなどの熱可塑性合成繊維は、非吸湿性、耐薬品
性が良好であり、また上記温度範囲での熱劣化が少ない
ほか、万一局部的に異常加熱が生じた場合には溶断する
というヒユーズ機能を有するので好ましい。また、芳香
族ポリアミド、ポリベンズイミダゾール、ポリフェニレ
ントリアゾール、ポリオキサジアゾール、ポリイミド、
熱硬化性樹脂繊維などの耐熱性繊維を用いれば使用可能
な温度範囲を高くできる、製品寿命を著しく延ばすこと
ができるなどの利点があり好ましい。
As the material for the core thread used in the present invention, synthetic fiber or natural fiber thread is used. This material maintains stable performance for a long period of time at a temperature normally used as a heating element, that is, in the range of 20 to 100° C., and has good adhesion to the conductive layer. Thermoplastic synthetic fibers such as polyamide, polyester, and polyolefin have good non-hygroscopicity and chemical resistance, and are less susceptible to thermal deterioration in the above temperature range. This is preferable because it has a fuse function of blowing. In addition, aromatic polyamide, polybenzimidazole, polyphenylene triazole, polyoxadiazole, polyimide,
It is preferable to use heat-resistant fibers such as thermosetting resin fibers because they have advantages such as increasing the usable temperature range and significantly extending the product life.

本発明に用いる芯糸の形態は、導電層との接着性が良好
で、剥離し難いものが好ましく用いられる。たとえば紡
績糸や表層部に短繊維を有するダブルストラクチヤード
ヤーンなどは繊維表面に毛羽がおるため合成樹脂をよく
吸収し、糸状発熱体となったあとで導電層が芯糸の表面
や毛羽にからまり接着性が良好となる。また、この目的
のためには、芯糸として実質的に非集束性の繊維を用い
ることがより好ましい。この場合、芯糸に付着した合成
樹脂溶液は芯糸の非集束性のために芯糸の内部にまで浸
透しそのまま乾燥固着する。得られた糸状発熱体は、そ
の断面を見ると芯糸が導電性微粒子を分散含有した合成
樹脂導電層に分散した状態で被覆されたものとなる。嵩
高加工糸は捲縮を有するために、樹脂溶液との接触面積
が大きく、さらに繊維表面に毛羽が少ないために乾燥固
着後の糸軸方向に毛羽由来の太細部や突起がなくなり、
高次加工性が良好となる点からも特に好ましい。芯糸に
用いる繊維の単糸断面は異形とすればさらに好ましい。
The form of the core yarn used in the present invention is preferably one that has good adhesion to the conductive layer and is difficult to peel off. For example, spun yarn and double-structured yarn with short fibers on the surface layer have fuzz on the fiber surface, so they absorb synthetic resin well, and after becoming a thread-like heating element, the conductive layer is attached to the surface of the core yarn and the fuzz. Good tangle adhesion. Moreover, for this purpose, it is more preferable to use substantially non-bundling fibers as the core yarn. In this case, the synthetic resin solution adhering to the core yarn penetrates into the interior of the core yarn due to the non-binding nature of the core yarn, and is dried and fixed as it is. When looking at the cross section of the obtained filamentous heating element, the core yarn is coated with a synthetic resin conductive layer dispersed therein containing conductive fine particles. Because the bulky processed yarn has crimps, the contact area with the resin solution is large, and since there is little fluff on the fiber surface, there are no thick parts or protrusions due to fluff in the yarn axis direction after drying and fixation.
It is particularly preferred also from the viewpoint of good high-order workability. It is more preferable that the single fiber cross section of the fiber used for the core yarn is irregularly shaped.

なお、糸状発熱体に用いた芯糸は、合成樹脂溶液の溶媒
に糸状発熱体を浸漬し、超音波処理で適当な時間処理す
ることで、付着前の形態を復元することが可能であり、
この方法を芯糸の確認法として用いることができる。
The core yarn used in the filamentous heating element can be restored to its original form by immersing the filamentous heating element in a synthetic resin solution solvent and treating it with ultrasonic waves for an appropriate period of time.
This method can be used to confirm the core thread.

また前記した非集束性の繊維とは次の方法で測定したC
F値が10以下となる繊維をいう。
In addition, the above-mentioned non-focusing fiber is C measured by the following method.
Refers to fibers with an F value of 10 or less.

ロツシール社製(スイス)自動交絡度測定装置を用い、
繊維の平均移動距離Ω信を求め、この値から CF値=100/Ω と計算し、このCF値を非集束性を示す特性値とした。
Using an automatic entanglement degree measurement device manufactured by Rotsiel (Switzerland),
The average moving distance Ω of the fibers was determined, and from this value, the CF value was calculated as 100/Ω, and this CF value was taken as a characteristic value indicating non-focusing property.

予め導電性微粒子含有合成樹脂と芯糸の両方に親和性の
高い物質で、芯糸を処理しておくことも好ましい。
It is also preferable to treat the core yarn in advance with a substance that has high affinity for both the conductive fine particle-containing synthetic resin and the core yarn.

本発明に用いる導電性微粒子を分散含有する合成樹脂は
、温度に対して安定した性能を保ち、接着性、耐屈曲性
、耐摩耗性等に優れた合成樹脂ならば、特辷限定しない
が、好適に使用され得る樹脂としては、ポリウレタン系
樹脂、アクリル系樹脂、ブチラール樹脂等が挙げられ、
特に可撓性のものが好ましく選択される。
The synthetic resin containing dispersed conductive fine particles used in the present invention is not particularly limited as long as it maintains stable performance against temperature and has excellent adhesiveness, bending resistance, abrasion resistance, etc. Examples of resins that can be suitably used include polyurethane resins, acrylic resins, butyral resins, etc.
Particularly flexible ones are preferably selected.

本発明に用いられる導電性微粒子としては、たとえば、
カーボン粒子、金属粒子が代表的なものとして挙げられ
る。たとえば、カーボン粒子としては、通常各種のカー
ボンブラックを使用することができ、粒子径としては、
通常1〜500mμであり、10〜200mμのものが
好ましく使用される。
As the conductive fine particles used in the present invention, for example,
Representative examples include carbon particles and metal particles. For example, various types of carbon black can usually be used as carbon particles, and the particle size is as follows:
It is usually 1 to 500 mμ, and preferably 10 to 200 mμ.

また、カーボン粒子として黒鉛を使用することができ、
黒鉛としては天然黒鉛すなわちりん状黒鉛、りん片状黒
鉛、土状黒鉛、あるいは人造黒鉛の1〜100μmの大
きざのものが好ましく使用されるが、りん状黒鉛あるい
はりん片状黒鉛の5〜50μmの大きざのものが好まし
く使用される。さらに前記カーボン粒子としてカーボン
ブラックと黒鉛とを混合使用することも好ましい。カー
ボン粒子の使用量は所望する抵抗値により適宜変更され
る。たとえば、発熱素子として適当な抵抗値とするため
には、通常、前記樹脂溶液中、5〜25重量%、好まし
くは7〜15重量%のカーボン粒子が使用される。
Also, graphite can be used as carbon particles,
As graphite, natural graphite, ie, phosphorous graphite, flaky graphite, earthy graphite, or artificial graphite with a size of 1 to 100 μm is preferably used, but phosphorous graphite or flaky graphite with a size of 5 to 50 μm is preferably used. It is preferable to use one with a size of . Furthermore, it is also preferable to use a mixture of carbon black and graphite as the carbon particles. The amount of carbon particles used can be changed as appropriate depending on the desired resistance value. For example, in order to obtain an appropriate resistance value for a heating element, carbon particles are usually used in an amount of 5 to 25% by weight, preferably 7 to 15% by weight in the resin solution.

この程度の量の導電性微粒子を懸濁した合成樹脂溶液は
、放置して置くと構造粘性を示すために粘度が数倍に上
昇する。このため、後述する計量装置の効率が悪化し、
該合成樹脂溶液の付着ムラが発生する。したがって、こ
の改善処置として、計量前に貯留している該合成樹脂溶
液が常に流動状態を保つように該合成樹脂溶液を攪拌し
て置くことが好ましい。
When a synthetic resin solution in which such a large amount of conductive particles is suspended exhibits structural viscosity, its viscosity increases several times when it is left standing. For this reason, the efficiency of the weighing device described below deteriorates,
Uneven adhesion of the synthetic resin solution occurs. Therefore, as a remedy for this problem, it is preferable to stir the stored synthetic resin solution before measurement so that the synthetic resin solution always remains in a fluid state.

本発明の糸状発熱体の抵抗値は、前記合成樹脂中に分散
含有されるカーボン粒子の含有量、積層する層の厚さ等
により適宜設定することができる。たとえば、前記配合
の場合では、1〜100に07mの抵抗値を得ることが
できる。
The resistance value of the filamentous heating element of the present invention can be appropriately set depending on the content of carbon particles dispersed in the synthetic resin, the thickness of the laminated layers, etc. For example, in the case of the above formulation, a resistance value of 1 to 100.07 m can be obtained.

このときの樹脂の体積抵抗率は糸の太さによるがおよそ
0.01〜10Ω・Cll1である。
The volume resistivity of the resin at this time is approximately 0.01 to 10 Ω·Cll1, depending on the thickness of the thread.

用途によって導電性微粒子ならびにそれと混用する合成
樹脂を選択することができる。この糸状発熱体を更に複
数本撚り合せ太くすることにより、抵抗値を小ざくする
ことも可能である。
The conductive fine particles and the synthetic resin used in combination with the conductive fine particles can be selected depending on the purpose. It is also possible to reduce the resistance value by further twisting a plurality of filamentous heating elements to make them thicker.

本発明は前記のとおり気泡入りの発熱層を有するもので
あるが、その手段としては、例えばアゾビスイソブチロ
ニトリル(AIBN)のような発泡剤を前記懸濁液に混
入する方法、例えばメチルエチルケトンのような低沸点
溶媒を使用しコーティングしてから通常に溶媒蒸散(乾
燥)させる温度より高い周囲温度として溶媒蒸気が発熱
層内に取り囲まれるような条件で乾燥する方法等によっ
て実現することができる。なお、前記AIBNを使用し
て発泡させる場合には、例えばジメチルホルムアミドに
溶解した樹脂にあらかじめAIBNを混合してあき、1
50℃で乾燥させると熱分解によって発泡させることが
できる。
As described above, the present invention has a heat generating layer containing bubbles, and the method thereof includes, for example, a method of mixing a blowing agent such as azobisisobutyronitrile (AIBN) into the suspension, for example, a method of mixing a blowing agent such as azobisisobutyronitrile (AIBN) into the suspension, This can be achieved by coating with a low-boiling point solvent such as and then drying at an ambient temperature higher than the temperature at which the solvent is normally evaporated (drying), so that the solvent vapor is surrounded in a heat-generating layer. . In addition, when foaming is performed using the above-mentioned AIBN, for example, AIBN is mixed in advance with a resin dissolved in dimethylformamide, and then 1
When dried at 50°C, it can be foamed by thermal decomposition.

前記気泡の混入量には限定はなく、少なければ得られる
糸状発熱体の柔軟性が素材の水準となり、多くなれば柔
軟性を増すが、多過ぎると機械的強度、表面の平滑性が
低くなる。したがって、糸状発熱体を構成する各素材の
物性から経験的ないし実験的に定めるのが好ましい。
There is no limit to the amount of air bubbles mixed in; if the amount is small, the flexibility of the filament-like heating element obtained will be at the level of the material, and if it is large, the flexibility will increase, but if it is too large, the mechanical strength and surface smoothness will decrease. . Therefore, it is preferable to determine it empirically or experimentally from the physical properties of each material constituting the filamentous heating element.

本発明の糸状発熱体の発熱層は、一層でもよいが、電気
抵抗値の調整、表面の平滑化等の目的で複数層積層する
ことができる。前記積層する数には特に限定はなく、通
常1〜3回程度の積層で目的を達し得る。その際、各発
熱層内に分散されたカーボン粒子の濃度は、例えば、糸
状発熱体の表面の平滑性を高める目的で変化させること
ができる。その−例を示すと、最内層から順次12重量
%、10重量%、最外層を5重量%とする等として実施
できる。
The heating layer of the filamentous heating element of the present invention may be a single layer, but may be laminated in multiple layers for the purpose of adjusting the electrical resistance value, smoothing the surface, etc. The number of layers to be laminated is not particularly limited, and the purpose can usually be achieved by laminating about 1 to 3 times. At this time, the concentration of carbon particles dispersed in each heating layer can be changed, for example, in order to improve the smoothness of the surface of the filamentous heating element. For example, the content may be 12% by weight, 10% by weight from the innermost layer, 5% by weight from the outermost layer, etc.

ただし、1回で計量付着させることは可能であり、設備
的に1回で付着させることがより好ましい。
However, it is possible to make the metering deposit in one time, and it is more preferable to make it deposit in one time in terms of equipment.

本発明の糸状発熱体およびその製造方法の一例を挙げて
次に示す。
An example of the filamentous heating element of the present invention and its manufacturing method will be shown below.

く準備工程〉 芯糸の準備:結び玉のない糸条を用意する。Preparation process> Preparation of core thread: Prepare thread without knots.

導電性微粒子の樹脂懸濁液の準備:適切な溶媒に、樹脂
および導電性微粒子を溶解、懸濁させ合成樹脂溶液を作
る。この際、合成樹脂溶液の粘度を1〜1000ポイズ
に調整することが、均一付着および計量装置の吐出効果
の面から好ましく、2〜200ポイズに調整することが
より好ましい。また合成樹脂溶液の固形分すなわち溶媒
以外の重量割合は10〜50重量%に調整することが、
付着後の乾燥工程でのエネルギー面約および懸濁・溶解
工程の作業性の面から好ましい。該合成樹脂溶液は溶媒
の蒸発を防ぐために密閉容器に封入する。
Preparation of resin suspension of conductive fine particles: A synthetic resin solution is prepared by dissolving and suspending the resin and conductive fine particles in an appropriate solvent. At this time, it is preferable to adjust the viscosity of the synthetic resin solution to 1 to 1000 poise, from the viewpoint of uniform adhesion and the discharge effect of the metering device, and more preferably to 2 to 200 poise. In addition, the solid content of the synthetic resin solution, that is, the weight ratio of components other than the solvent, can be adjusted to 10 to 50% by weight.
It is preferable from the viewpoint of energy consumption in the drying process after adhesion and workability in the suspension/dissolution process. The synthetic resin solution is sealed in a closed container to prevent evaporation of the solvent.

く計量・付着工程〉 導電性微粒子を懸濁させた前記合成樹脂溶液を攪拌しな
がら前記密閉容器から配管を通して計量装置に移送する
。計量装置は公知の計量ポンプ、特に歯車ポンプが好適
に用いられる。本発明の目的の一つは素線の抵抗値のバ
ラツキを小さくすることにあるが、計量装置により合成
樹脂溶液を計量しつつ芯糸に付着させることで、素線の
糸軸方向の付着量バラツキを極めて小さくすることが可
能となる。
Measuring and Adhesion Step> The synthetic resin solution in which conductive fine particles are suspended is transferred from the sealed container to a measuring device through piping while being stirred. As the metering device, a known metering pump, particularly a gear pump, is suitably used. One of the purposes of the present invention is to reduce the variation in the resistance value of the strands, but by measuring the synthetic resin solution using a measuring device and making it adhere to the core yarn, the amount of adhesion in the axial direction of the strands can be reduced. It is possible to make the variation extremely small.

計量された合成樹脂溶液はさらに配管中を付着装置まで
移送され、芯糸に付着される。付着装置は公知の付着装
置でよいが、芯糸に連続して一定量ずつ付着させるため
には合成樹脂溶液の吐出孔から芯糸が付着装置から離れ
るまでの距離が短かいことが好ましい。そのためには芯
糸の糸道ガイドに吐出孔の穿たれたものが好ましく用い
られる。また、付着装置内で芯糸の糸道が動かないため
に、7字溝、U字溝、平溝のいずれかの糸道溝が存在し
該糸道溝の凹部に吐出孔が穿たれた糸道ガイドを付着装
置として用いることが特に好ましい。第1図に糸道ガイ
ドを上から見た図を一例として示す。破線で示した部分
が計量された合成樹脂溶液の移送路である。(a)が7
字溝、(b)がU字溝、CG’)が平溝の糸道溝の図で
ある。糸道ガイドの他の態様として、糸道に複数の吐出
孔を設けたものが好適に用いられる。これを第2図に示
すが、このガイドは、合成樹脂溶液を芯糸に均一付与で
きる点で有利でおる。
The measured synthetic resin solution is further transferred through piping to an adhesion device, and is adhered to the core yarn. The adhering device may be a known adhering device, but in order to continuously adhere a constant amount to the core yarn, it is preferable that the distance from the discharge hole of the synthetic resin solution to the point where the core yarn leaves the adhering device is short. For this purpose, it is preferable to use a core thread guide having discharge holes. In addition, since the thread path of the core yarn does not move within the attachment device, there is a thread guide groove such as a 7-shaped groove, a U-shaped groove, or a flat groove, and a discharge hole is bored in the recessed part of the thread guide groove. Particular preference is given to using a thread guide as an attachment device. FIG. 1 shows an example of a top view of the thread guide. The part indicated by the broken line is the transfer path for the measured synthetic resin solution. (a) is 7
CG') is a diagram of a thread guide groove, where (b) is a U-shaped groove, and CG' is a flat groove. As another embodiment of the yarn path guide, one in which a plurality of discharge holes are provided in the yarn path is preferably used. This is shown in FIG. 2, and this guide is advantageous in that the synthetic resin solution can be uniformly applied to the core yarn.

付着量バラツキを小さくするために、付着装置に芯糸を
定速で供給することが好ましい。そのためには付着装置
の前および後述の乾燥工程の後の糸をローラにより供給
、引取する方法が好ましく用いられる。適度な張力で付
着させるためには、前後ローラにより糸を緊張状態とす
ることも好ましい。
In order to reduce variations in the amount of adhesion, it is preferable to feed the core yarn to the adhesion device at a constant speed. For this purpose, a method is preferably used in which the yarn is fed and taken up by rollers before the adhering device and after the drying step described below. In order to attach the yarn with appropriate tension, it is also preferable to tension the yarn using front and rear rollers.

く乾燥工程〉 計量・付着工程を経て引き出された芯糸は、次の乾燥工
程に移送される。乾燥は、通常の通気乾燥で良いが、生
産性の向上等を考慮して乾燥空気の加温、赤外線ランプ
による加熱等、乾燥を促進するために通常用いられる各
種の手段を併用することができる。
Drying process> The core yarn drawn out after the measuring and attaching process is transferred to the next drying process. For drying, normal ventilation drying may be used, but in order to improve productivity, various methods commonly used to accelerate drying may be used, such as heating the drying air or heating with an infrared lamp. .

かくして得られた本発明の糸状発熱体は、合成樹脂溶液
が均一付着するため、糸軸方向の樹脂付着量バラツキの
極めて低いものであり、また、乾燥固着方式を採ってい
るため、糸状発熱体内部に気泡が存在し可撓性に富み、
耐屈曲性、耐摩耗性等の機械的性質が優れ、発熱線単位
長さ当りの抵抗値が均一であり、各種の発熱体製品の発
熱素材として有利に利用できる。
The thus obtained filamentous heating element of the present invention has extremely low variation in the amount of resin deposited in the direction of the filament axis because the synthetic resin solution is uniformly adhered thereto.Also, since the filamentous heating element employs a dry fixation method, the filamentous heating element It has air bubbles inside and is highly flexible.
It has excellent mechanical properties such as bending resistance and abrasion resistance, and has a uniform resistance value per unit length of heating wire, so it can be advantageously used as a heating material for various heating element products.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本発明における粘度、CF値、耐久性の測定は次
の方法によった。
In addition, the viscosity, CF value, and durability in the present invention were measured by the following methods.

(粘 度) 試料を500mΩの円筒容器に採取し、温度30℃±1
℃の条件でBM型回転粘度計(東京計器製)により製造
直後の粘度を測定する。
(Viscosity) A sample was collected in a 500mΩ cylindrical container, and the temperature was 30℃±1.
The viscosity immediately after production is measured using a BM type rotational viscometer (manufactured by Tokyo Keiki) at ℃.

尚、測定に先立ち試料はプロペラミキサーまたはホモミ
キサーにて十分攪拌する。
In addition, prior to measurement, the sample is sufficiently stirred using a propeller mixer or a homomixer.

(CF値) 前記した装置、方法によるが、詳細は次の方法とし、N
数を20とした。
(CF value) Depends on the equipment and method described above, but the details are as follows.N
The number was set to 20.

第4図は装置の概略を示す図である。測定手順は、 (1)  糸条9を動滑車10に掛ける。FIG. 4 is a diagram schematically showing the apparatus. The measurement procedure is (1) Hang the yarn 9 on the movable pulley 10.

(2)  糸条9を構成する繊維間に糸軸方向に実質的
に直角に固定針4を刺す。
(2) The fixed needle 4 is inserted between the fibers constituting the yarn 9 substantially at right angles to the yarn axis direction.

<3>  (2)の状態の固定針4を壁に固定する。<3> Fix the fixed needle 4 in the state of (2) to the wall.

(4)  糸条9の両端に荷重5,6を取り付ける。(4) Attach loads 5 and 6 to both ends of yarn 9.

(5)  荷重5必るいは荷重6のいずれかの一方の側
に補助荷重7を取り付ける。
(5) Attach auxiliary load 7 to either side of load 5 or load 6.

(6)  補助荷重によって糸9が固定針4に抗して移
動し、しかる後動滑車10の回転が停止した後の指針8
の位置を壁に固定した目盛盤11上の目盛で読む。
(6) The needle 8 after the thread 9 moves against the fixed needle 4 due to the auxiliary load and the rotation of the movable pulley 10 stops.
The position of is read on a scale on a scale plate 11 fixed to the wall.

(7)次に補助荷重7を一方の荷重のほうに付は替える (8)  <6>と同様、移動、回転が停止した後、指
針8の位置を目盛盤11上の目盛で読む。(6ンで読ん
だ目該とこの目盛から全移動距離Ω(Cm)の値を求め
測定を完了する。
(7) Next, switch the auxiliary load 7 to one of the loads (8) As in <6>, read the position of the pointer 8 on the scale on the dial 11 after the movement and rotation have stopped. (Find the value of the total travel distance Ω (Cm) from the scale read at step 6 and complete the measurement.

ここで荷重5,6は15g、補助荷重7は(デニール数
/フィラメント数)9である。
Here, the loads 5 and 6 are 15 g, and the auxiliary load 7 is (denier number/filament number) 9.

(切断折れ回数) MIT対折対膜試験機用し、付加荷重0.5kg、測定
試長7cmで測定した。
(Number of Cutting and Folding) Measurements were made using an MIT double folding membrane testing machine with an additional load of 0.5 kg and a measurement sample length of 7 cm.

(切断摩耗回数) 糸−系対摩耗試験機を使用し、測定試長45cmで測定
した。
(Number of Cutting Wear) Measurements were made using a yarn-based abrasion tester with a sample length of 45 cm.

実施例1 ポリエステル型ポリウレタン樹脂(大日精化工業(株)
製)をメチルエチルケトンとジメチルホルムアミドとの
混合溶液(重量比80:20)に濃度16重量%となる
ように均一に溶解した後、平均粒径40mμのカーボン
ブラックおよび10μmの黒鉛をカーボン懸濁溶液に対
してそれぞれ7よび5重量%となるように合成樹脂溶液
を調整した。この溶液の粘度は25ポイズ、固形分26
重量%であった。芯糸はポリエステルを紡糸速度300
0m/分で紡糸したのち、常法により延伸仮ヨリ加工を
行ないその後、190℃で熱板により低トルク化し、1
50デニール72フイラメントの三葉断面の仮ヨリ加工
糸を得た。この糸を2本合糸し、芯糸とした。CF値は
5.5であった。
Example 1 Polyester type polyurethane resin (Dainichiseika Kagyo Co., Ltd.)
After uniformly dissolving methyl ethyl ketone and dimethyl formamide in a mixed solution (weight ratio 80:20) to a concentration of 16% by weight, carbon black with an average particle size of 40 mμ and graphite with a diameter of 10 μm were added to the carbon suspension solution. The synthetic resin solutions were adjusted to have a concentration of 7% and 5% by weight, respectively. The viscosity of this solution is 25 poise, and the solid content is 26
% by weight. The core yarn is polyester spun at a speed of 300
After spinning at 0 m/min, stretching and twisting was performed by a conventional method, and then the torque was reduced using a hot plate at 190°C.
A tentative twisted yarn with a trilobal cross section of 50 denier 72 filament was obtained. Two of these threads were combined to form a core thread. The CF value was 5.5.

前記合成樹脂溶液を密閉容器に封入、攪拌し、1回転0
.0170Cの容量の歯車ポンプを用いて密閉容器から
合成樹脂溶液を付着装置へと移送した。付着装置は第2
図を模した各吐出孔径0.5m、溝巾0.81rmの平
溝形セラミック製糸道ガイドを用い、吐出量0.273
cc/分で前記の芯糸に付着させた。芯糸は周速1m/
分のローラにより定速で付着装置に送り出した。付着装
置直前の糸張力は503であった。
The synthetic resin solution was sealed in a sealed container, stirred, and rotated once at zero.
.. A gear pump with a capacity of 0170C was used to transfer the synthetic resin solution from a closed container to the deposition device. The deposition device is the second
Using a flat groove ceramic yarn guide with each discharge hole diameter of 0.5 m and groove width of 0.81 rm as shown in the figure, the discharge amount was 0.273.
It was attached to the core thread at cc/min. The circumferential speed of the core yarn is 1m/
It was sent to the deposition device at a constant speed by a minute roller. The thread tension just before the applicator was 503.

付着装置後15cInの位置に設けた長さ1.25mの
加熱筒により溶媒を蒸発させた。この際、加熱筒内壁温
度を200℃とすることで溶剤の蒸発を早め発泡を促し
、かつ合成樹脂溶液の固形化を早めて気泡が発熱層内に
取り込まれるようにした。このようにして導層性微粒子
を分散含有した合成樹脂を芯糸に固着させ、周速1m/
分のローラにより引取った。
The solvent was evaporated using a 1.25 m long heating cylinder located 15 cIn after the deposition device. At this time, by setting the temperature of the inner wall of the heating cylinder to 200° C., the evaporation of the solvent was accelerated to promote foaming, and the solidification of the synthetic resin solution was accelerated so that air bubbles were taken into the heat generating layer. In this way, the synthetic resin containing conductive fine particles dispersed therein is fixed to the core yarn, and the circumferential speed is 1m/1.
It was picked up by a roller.

得られた糸は発熱体を糸軸方向に25ctnずつ40本
の重量を連続して測定したところ平均値0.026g/
25cm、標準偏差0.00070S標準偏差を平均値
で除したCV値は2.7%でめった。また、同じ糸の抵
抗値を測定したところ平均値3.44にΩ/ 25 c
m、標準偏差0.123、CV値は3゜6%であった。
The weight of the obtained yarn was measured continuously in the direction of the yarn axis of 40 yarns of 25 ctn each, and the average value was 0.026 g/
25 cm, standard deviation 0.00070S The CV value obtained by dividing the standard deviation by the average value was 2.7%. Also, when the resistance value of the same thread was measured, the average value was 3.44Ω/25 c
m, standard deviation was 0.123, and CV value was 3°6%.

このことから、本発明の方法により合成樹脂溶液が糸軸
方向に均一に固着することにより、糸状発熱体の抵抗値
のバラツキは極めて小さいものとなった。また、この糸
状発熱体の断面を第3図に示す。合成樹脂2が芯糸3内
部にまで浸透し、また芯糸3が合成樹脂2に分散してお
り接着性が良好であること、および気泡1の存在が確認
された。
From this, it was found that the method of the present invention allowed the synthetic resin solution to adhere uniformly in the yarn axis direction, and thus the variation in the resistance value of the filamentous heating element became extremely small. Further, a cross section of this filamentous heating element is shown in FIG. It was confirmed that the synthetic resin 2 had penetrated into the inside of the core yarn 3, that the core yarn 3 was dispersed in the synthetic resin 2, and that the adhesiveness was good, and that the presence of air bubbles 1 was observed.

この糸状発熱体及び比較にニクロム線及び市販コードヒ
ータを用いて切断折れ回数及び切断摩耗回数を測定した
結果を表1に示す。
Table 1 shows the results of measuring the number of cutting breaks and the number of cutting wear using this filamentous heating element and a nichrome wire and a commercially available cord heater for comparison.

(IX下余白) 表  1 表1から本発明の糸状発熱体が、従来の金属ヒーター線
に比し抜群の耐久性がめることがわかる。
(IX bottom margin) Table 1 Table 1 shows that the filamentous heating element of the present invention has outstanding durability compared to conventional metal heater wires.

第5図によって前記糸状発熱体を用いて得た布帛状の発
熱体について説明する。図の布帛状の発熱体15は、経
糸には銅線を1ず鍍金した電極線16とポリエステル糸
条17とを用い、緯糸には前記糸状発熱体14と発熱量
調節用のポリエステル糸条18とを用い通常の織機によ
って布帛状発熱体とした。ざらに絶縁被覆する目的で布
帛両面をポリエチレン溶融体によりコーティングした。
A fabric-like heating element obtained using the thread-like heating element will be explained with reference to FIG. The fabric-like heating element 15 shown in the figure uses an electrode wire 16 plated with copper wire and a polyester thread 17 for the warp, and the thread-like heating element 14 and a polyester thread 18 for adjusting the amount of heat generated for the weft. A fabric-like heating element was made using an ordinary loom. Both sides of the fabric were coated with polyethylene melt for the purpose of providing a rough insulation coating.

また、前記電極線16に電流を通ずるリード線19をハ
ンダ付け20によって接続した。この布帛状発熱体をベ
ストの裏地に縫い付けたものにN i −Cd電池から
電気を供給したところ、局所的な温度ムラがなく、極め
て柔軟であり、試着者に好評であった。
Further, a lead wire 19 through which current is passed was connected to the electrode wire 16 by soldering 20. When electricity was supplied from a Ni-Cd battery to this fabric-like heating element sewn onto the lining of a vest, it was found to be extremely flexible with no local temperature unevenness, and was well received by those who tried it on.

なお、この糸状発熱体をジメチルホルムアミドに浸漬し
3o分間超音波処理したところ、合成樹脂が溶解され、
芯糸が残留したが、芯糸の形態は付着前と変化していな
いことを確認した。
In addition, when this filamentous heating element was immersed in dimethylformamide and subjected to ultrasonic treatment for 30 minutes, the synthetic resin was dissolved.
Although the core thread remained, it was confirmed that the shape of the core thread did not change from before attachment.

実施例2 合成樹脂、カーボン粒子量を変更して合成樹脂溶液の粘
度および固形分量を変更した以外は実施例1と同様の方
法で糸状発熱体を得た。結果を表2にまとめた。なお、
Nα3の糸状発熱体は再乾燥した。
Example 2 A filamentous heating element was obtained in the same manner as in Example 1, except that the synthetic resin and the amount of carbon particles were changed, and the viscosity and solid content of the synthetic resin solution were changed. The results are summarized in Table 2. In addition,
The filamentous heating element of Nα3 was re-dried.

表   2 表2から明らかなように、粘度および固形分量を変更し
ても、いずれも良好な重量均一性を示した。
Table 2 As is clear from Table 2, even when the viscosity and solid content were changed, good weight uniformity was exhibited.

実施例3 芯糸の種類を変更した以外は実施例1と同様の方法で糸
状発熱体を得た。結果を表3にまとめた。なお芯糸デニ
ールはいずれも約300デニールとした。
Example 3 A filamentous heating element was obtained in the same manner as in Example 1 except that the type of core yarn was changed. The results are summarized in Table 3. The core thread denier was approximately 300 denier in each case.

表3から明らかなように、芯糸様およびCF値を変更し
てもいずれも重量バラツキは小さく良好な均一性を示し
た。また、耐久性テストではいずれも前記した市販コー
ドヒーターに比べ良好であった。このうち、CF値10
以下の非集束性の繊維を芯糸として用いたものが特に良
好であった。
As is clear from Table 3, even when the core yarn type and CF value were changed, weight variations were small and good uniformity was exhibited. Furthermore, in the durability tests, all of the heaters were better than the commercially available cord heaters mentioned above. Of these, CF value 10
Particularly good results were obtained using the following non-bundling fibers as core threads.

比較実施例1 計量給液法ではなく、実施例1と同じ組成の合成樹脂溶
液を貯留せしめた槽に実施例1と同じ芯糸を浸漬し、0
.9mの径を有するノズルから引出す方法により糸状発
熱体を得た。重量バラツキC■が6.3%、抵抗値バラ
ツキC■が10.5%でおり、計量給液しない場合、重
量バラツキC■が高く、それに呼応して抵抗値の均一性
が悪く、糸状発熱体として不適当なものでおった。さら
に実施例1と同様に布帛状発熱体を製作し、ベストの裏
地に縫い付は電流を流したところ、局所的な温度ムラが
発生し、試着者に不評であった。
Comparative Example 1 Instead of using the metered liquid supply method, the same core yarn as in Example 1 was immersed in a tank in which a synthetic resin solution with the same composition as in Example 1 was stored.
.. A filamentous heating element was obtained by drawing it out from a nozzle having a diameter of 9 m. The weight variation C■ is 6.3%, and the resistance value variation C■ is 10.5%.If the liquid is not metered and dispensed, the weight variation C■ is high, and the uniformity of the resistance value is correspondingly poor, causing filamentous heat generation. It was something that was inappropriate for my body. Furthermore, when a fabric-like heating element was manufactured in the same manner as in Example 1 and a current was applied to the lining of a vest, local temperature unevenness occurred, which was unpopular with those who tried it on.

[発明の効果コ 本発明は、合成樹脂溶液の付着量バラツキが小さく抵抗
値バラツキが小さいため、製品としたときの温度ムラを
全く感じさせない程に小さく抑えることができる。また
、可撓性に富み、発熱体層と芯糸との接着が良好で屈曲
、摩耗等により剥離し難く、長期間安定して使用し得る
糸状の発熱体であり、これにより、製編織可能で、衣料
分野、埋装分野、農業、水産、土木分野など各種の用途
に適用できる発熱体を提供し得たものである。熱論、自
動車、電車などの車両や航空機、船舶、宇宙ロケットな
どあらゆる乗物にも適用され得る。
[Effects of the Invention] In the present invention, the variation in the amount of deposited synthetic resin solution is small and the variation in resistance value is small, so that when it is made into a product, temperature unevenness can be kept so small that it is not felt at all. In addition, it is a thread-like heating element that is highly flexible, has good adhesion between the heating element layer and the core yarn, and is difficult to peel off due to bending, abrasion, etc., and can be used stably for a long period of time, making it possible to knit and weave. With this, we have been able to provide a heating element that can be applied to various uses such as the clothing field, the embedded field, agriculture, fisheries, and civil engineering fields. It can also be applied to all types of vehicles, including cars, trains, aircraft, ships, and space rockets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は、本発明に用いる付着装置の一例である。 第3図は本発明の糸状発熱体の断面の一例でおる。図中
、1:気泡、2:合成樹脂、3:芯糸。 第4図はCF値測定装置の概略を示す図である。第5図
は糸状発熱体を製織して得た布帛状発熱体の説明図であ
る。 特許出願人  東 し 株 式 会 社(2Lン   
        (b)           (C)
第1図 第2図 図面の浄書 第6図 図面の浄書 第4図 第5図 手続補正書く方式) %式%( 1、事件の表示 昭和62年 特許願 第100419号2、発明の名称 える。
1 and 2 show an example of a deposition device used in the present invention. FIG. 3 shows an example of the cross section of the filamentous heating element of the present invention. In the figure, 1: air bubbles, 2: synthetic resin, 3: core yarn. FIG. 4 is a diagram schematically showing the CF value measuring device. FIG. 5 is an explanatory diagram of a fabric-like heating element obtained by weaving a thread-like heating element. Patent applicant Toshi Co., Ltd. (2L)
(b) (C)
Figure 1 Figure 2 Engraving Figure 6 Engraving of the drawing Figure 4 Figure 5 Procedural amendment writing method) % formula % (1. Indication of the case 1988 Patent Application No. 100419 2. Name of the invention.

Claims (1)

【特許請求の範囲】 (1)芯糸と該芯糸を被覆する導電性微粒子を分散含有
する合成樹脂の導電層と気泡とからなり、かつ糸軸方向
の重量バラツキCV(%)が下記式を満足する糸状発熱
体。 CV≦6.0 (CV(%):糸軸方向に25cmずつ40本の重量を
連続して測定したときのCV(%))(2)芯糸が実質
的に非集束性の繊維であることを特徴とする特許請求の
範囲第(1)項記載の糸状発熱体。 (3)芯糸が嵩高加工糸であることを特徴とする特許請
求の範囲第(1)項記載の糸状発熱体。 (4)導電性微粒子を懸濁した合成樹脂溶液を計量装置
により計量しつつ芯糸に付着させ、しかるのちに乾燥固
着させて導電性微粒子を分散含有する合成樹脂の導電層
を前記芯糸上に形成させることを特徴とする糸状発熱体
の製造方法。 (5)合成樹脂溶液の粘度が1〜1000ポイズで、か
つ固形分量が10〜50重量%であることを特徴とする
特許請求の範囲第(4)項記載の糸状発熱体の製造方法
。 (6)芯糸の糸道ガイドに穿たれた吐出孔から該合成樹
脂溶液を該芯糸に付着させることを特徴とする特許請求
の範囲第(4)項記載の糸状発熱体の製造方法。 (7)糸道ガイドにおいてV字溝、U字溝、平溝のいず
れかの糸道溝が存在し該糸道溝の凹部に吐出孔が穿たれ
た糸道ガイドを用いることを特徴とする特許請求の範囲
第(6)項記載の糸状発熱体の製造方法。 (8)芯糸として実質的に非集束性の繊維を用いること
を特徴とする特許請求の範囲第(4)項記載の糸状発熱
体の製造方法。 (9)芯糸として嵩高加工糸を用いることを特徴とする
特許請求の範囲第(4)項記載の糸状発熱体の製造方法
[Scope of Claims] (1) Consists of a core yarn, a conductive layer of a synthetic resin containing dispersed conductive fine particles covering the core yarn, and air bubbles, and the weight variation CV (%) in the yarn axis direction is expressed by the following formula: A filamentous heating element that satisfies the following. CV≦6.0 (CV (%): CV (%) when the weight of 40 yarns of 25 cm each in the yarn axis direction is continuously measured) (2) The core yarn is a substantially non-bundling fiber. A filamentous heating element according to claim (1). (3) The filamentous heating element according to claim (1), wherein the core yarn is a bulky textured yarn. (4) A synthetic resin solution in which conductive fine particles are suspended is attached to the core yarn while being measured using a measuring device, and then dried and fixed to form a conductive layer of synthetic resin containing dispersed conductive fine particles on the core yarn. 1. A method for producing a filamentous heating element, characterized by forming a filamentous heating element. (5) The method for producing a filamentous heating element according to claim (4), wherein the synthetic resin solution has a viscosity of 1 to 1000 poise and a solid content of 10 to 50% by weight. (6) The method for manufacturing a filamentous heating element according to claim (4), characterized in that the synthetic resin solution is applied to the core yarn through a discharge hole bored in a yarn path guide for the core yarn. (7) The thread guide is characterized by having a thread guide groove such as a V-shaped groove, a U-shaped groove, or a flat groove, and in which a discharge hole is bored in the concave portion of the thread guide groove. A method for producing a filamentous heating element according to claim (6). (8) A method for producing a filamentous heating element according to claim (4), characterized in that substantially non-bundling fibers are used as the core yarn. (9) A method for producing a filamentous heating element according to claim (4), characterized in that a bulky textured yarn is used as the core yarn.
JP10041987A 1987-04-23 1987-04-23 Yarn-shaped heat generator and its production Pending JPS63270827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10041987A JPS63270827A (en) 1987-04-23 1987-04-23 Yarn-shaped heat generator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10041987A JPS63270827A (en) 1987-04-23 1987-04-23 Yarn-shaped heat generator and its production

Publications (1)

Publication Number Publication Date
JPS63270827A true JPS63270827A (en) 1988-11-08

Family

ID=14273458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10041987A Pending JPS63270827A (en) 1987-04-23 1987-04-23 Yarn-shaped heat generator and its production

Country Status (1)

Country Link
JP (1) JPS63270827A (en)

Similar Documents

Publication Publication Date Title
JPH0261794B2 (en)
US3958066A (en) Conductive synthetic fibers
US4756969A (en) Highly electrically conductive filament and a process for preparation thereof
US4532154A (en) Process for making a sized multifilament yarn of an aromatic polyamide
US2848390A (en) Method and apparatus for applying metal to glass
EP1581688A1 (en) Aramid filament yarn provided with a conductive finish
CN109402816A (en) A kind of nonmetallic electric heating function yarn
JPH03174044A (en) Reinforcing yarn for use in cloth for interlining or industrial application and its manufacture
JPS63270827A (en) Yarn-shaped heat generator and its production
US3269883A (en) Method for producing electrically-conductive elements
JPS59112018A (en) Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure
KR100754322B1 (en) Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method for carbon thread using the apparatus
JPS63270868A (en) Production of yarn like heat generator
JPS63270870A (en) Production of flexible yarn like heat generator
JPS63270867A (en) Production of yarn like heat generator
JPS63270869A (en) Production of yarn like heat generator
JP2870938B2 (en) Glass cloth for printed circuit boards
JPS63270866A (en) Production of yarn like heat generator
JPS6156334B2 (en)
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
JP2891476B2 (en) Conductive yarn
JPS62100971A (en) String heater element and manufacture of the same
JPS62100969A (en) String heater element
JPS63270829A (en) Yarn-shaped heat generator and its production
JPS6366889A (en) Filament heater