JPS63270868A - Production of yarn like heat generator - Google Patents

Production of yarn like heat generator

Info

Publication number
JPS63270868A
JPS63270868A JP10200787A JP10200787A JPS63270868A JP S63270868 A JPS63270868 A JP S63270868A JP 10200787 A JP10200787 A JP 10200787A JP 10200787 A JP10200787 A JP 10200787A JP S63270868 A JPS63270868 A JP S63270868A
Authority
JP
Japan
Prior art keywords
heating element
yarn
synthetic resin
thread
core yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200787A
Other languages
Japanese (ja)
Inventor
裕平 前田
岡 研一郎
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10200787A priority Critical patent/JPS63270868A/en
Publication of JPS63270868A publication Critical patent/JPS63270868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、可撓性に富み、長期の使用に耐える電気的に
発熱する糸状発熱体の製造方法に関するものであゆ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an electrically heated filamentous heating element that is highly flexible and durable for long-term use.

[従来の技術] 従来から、機器類の保温ないし加熱用に金属細線から成
る可撓性の発熱線が使用されているが、特に電気毛布、
電気カーペット等民生用にも広く普及し、その便利さか
ら今後益々商品に多様化が促進される趨勢にある。
[Prior Art] Flexible heating wires made of thin metal wires have been used to keep equipment warm or heated, but electric blankets, electric blankets, etc.
It has become widely used in consumer products such as electric carpets, and due to its convenience, there is a trend that products will become more diversified in the future.

従来、これらの発熱体には、ステンレス線、ニクロム線
等の金属細線から成る抵抗体が使用されているが、前記
の各製品に可撓性であることを要求される場合には、可
撓性の芯糸に極細い抵抗線をスパイラル状に捲き付けた
もの、布帛上にカーボンを樹脂バインダーにより固着さ
せたもの等が使用されている。
Conventionally, resistors made of thin metal wires such as stainless steel wires and nichrome wires have been used for these heating elements, but if the above products are required to be flexible, flexible Used materials include those in which ultra-thin resistance wire is wound in a spiral shape around a polyester core thread, and those in which carbon is fixed to a fabric using a resin binder.

しかしながら、これらは何れも、耐屈曲性、耐摩耗性等
の点で要求する性能を満ずことができず、また、可撓性
が不足しており、改善が要求されている。
However, none of these can meet the required performance in terms of bending resistance, abrasion resistance, etc., and also lacks flexibility, so improvements are required.

この問題を解決しようと試みたものに、実公昭38−1
470号公報がある。これは、糸状発熱体のまわりに導
電性微粒子を配合したゴムまたはプラスチック層を設け
ることにより、発熱体の可撓性を高めたものである。し
かし、その製造方法は電線製造のそれであり、導電性ゴ
ムまたはプラスチックの加熱溶融部、保温配管部、溶融
被覆部からなる大掛かりな装置を使用する。溶融被覆部
には芯糸の導入・導出のための11nIR以下の径をも
つ2つの細孔が設けられ、ゴムまたはプラスチックが流
動性をもつ程度の高温に保温されている。したがって、
芯糸を前記2つの細孔に通す作業は非常に操作性が悪い
An attempt was made to solve this problem by
There is a publication No. 470. This increases the flexibility of the heating element by providing a rubber or plastic layer containing conductive fine particles around the filamentous heating element. However, the manufacturing method is that of electric wire manufacturing, and uses large-scale equipment consisting of a heating and melting section of conductive rubber or plastic, a heat-insulating piping section, and a melt-coating section. Two pores with a diameter of 11 nIR or less are provided in the melt-coated portion for introducing and extracting the core yarn, and the temperature is maintained at a high temperature that allows the rubber or plastic to have fluidity. therefore,
The operation of passing the core thread through the two pores is very difficult to operate.

しかも得られた発熱体の可撓性レベルは金属細線に比べ
て向上したものの衣料分野におけるライダースーツ、ダ
イパー服、インナー服、手袋、靴など、あるいは電気毛
布のように高度の屈曲耐久性を要求される分野には、そ
のレベルは極めて低いものであり、現状では実用化に至
っていない。
Moreover, although the flexibility level of the obtained heating element is improved compared to thin metal wire, it is used in the clothing field such as rider suits, diaper clothing, innerwear, gloves, shoes, etc., and requires a high degree of bending durability such as electric blankets. In the field where it is used, its level is extremely low, and it has not yet been put into practical use.

また、実公昭39−37689M公報には導電性微粒子
を配合した樹脂を溶液とし、芯糸に塗布後説溶媒固着さ
せる方法が開示されている。
Further, Japanese Utility Model Publication No. 39-37689M discloses a method in which a resin containing conductive fine particles is prepared as a solution, applied to a core thread, and then fixed in a solvent.

塗布とはすなわち、芯糸を溶液中に浸漬した後、細孔や
スリット等で過剰溶液を取除く方法であり、前述の溶融
被覆方法に比べて装置は簡略化され、操作性も若干良い
。しかしこの方法で1qられる発熱体は、溶液が均一に
塗布できないために通電したときに温度ムラが生じ、火
傷、火災を引起こす可能性さえ存在する。したがって、
糸状発熱体の適切な製造方法とは認められない。
Coating is a method in which the core yarn is immersed in a solution and then excess solution is removed through pores, slits, etc., and the equipment is simpler and the operability is slightly better than in the above-mentioned melt coating method. However, in the heating element heated by this method, the solution cannot be applied uniformly, so that temperature unevenness occurs when electricity is applied, and there is even a possibility of causing burns or fire. therefore,
This is not recognized as an appropriate manufacturing method for filamentous heating elements.

その他、可撓性に富む糸状の発熱体を1ワる試みとして
、例えば、特開昭51−109321号公報がある。こ
れは、ナイロンのコンジュゲートフィラメントを加熱に
より軟化させるかあるいは膨潤剤により膨潤させて、カ
ーボン粒子をフィラメント表層部に固着させる糸状の発
熱体としたものである。この発熱体は、長さ当りの抵抗
値が高すぎ、発熱素子として用いるには適さないもので
ある。また、カーボン粒子を均一に固着させるのは難し
く、したがって抵抗値にバラツキが大きく、要求される
抵抗値のものを工業的に安定して製造することができな
い。
In addition, for example, Japanese Patent Application Laid-Open No. 51-109321 is an attempt to improve the flexibility of thread-like heating elements. This is a filament-like heating element in which a nylon conjugate filament is softened by heating or swollen by a swelling agent to fix carbon particles to the surface layer of the filament. This heating element has too high a resistance value per length and is not suitable for use as a heating element. Furthermore, it is difficult to uniformly fix the carbon particles, and therefore the resistance value varies widely, making it impossible to industrially and stably manufacture the required resistance value.

[発明が解決しようとする問題点] 本発明は、かかる従来の問題点を解決し、抵抗ICのバ
ラツキが小さく、可撓性に富み、導電層と芯糸との接着
性が良好で屈曲、摩耗等により剥離し難く、長期間安定
して使用し得る糸状発熱体を高品質で安定して製造する
方法を提供するものである。
[Problems to be Solved by the Invention] The present invention solves these conventional problems, and provides a resistor IC with small variations, high flexibility, good adhesion between the conductive layer and the core yarn, and bendable, The object of the present invention is to provide a method for stably producing a high-quality filamentous heating element that is difficult to peel off due to wear or the like and can be stably used for a long period of time.

[問題点を解決するための手段] 上記の問題点を解決しようとするために、本発明の糸状
発熱体の製造方法は、次の構成を有する。すなわち、導
電性微粒子を懸濁した合成樹脂溶液を計量装置により計
量しつつ相異なる方向から付着するように設けられた複
数の糸道ガイドのそれぞれの吐出孔から該芯糸に供給し
、しかるのちに乾燥固着させて導電性微粒子を分散含有
する合成樹脂の導電層を前記芯糸上に形成させることを
特徴とする糸状発熱体の製造l法でおる。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a filamentous heating element of the present invention has the following configuration. That is, a synthetic resin solution in which conductive fine particles are suspended is metered by a measuring device and supplied to the core yarn from each discharge hole of a plurality of yarn guides provided so as to adhere from different directions. This is a method for manufacturing a filamentous heating element, which is characterized in that a conductive layer of a synthetic resin containing conductive fine particles dispersed therein is formed on the core yarn by drying and fixing the conductive particles.

本発明の最も重要な点は、該合成樹脂溶液を相異なる方
向から付着するように設けられた複数の糸道ガイドのそ
れぞれの吐出孔から該芯糸に供給することである。
The most important point of the present invention is that the synthetic resin solution is supplied to the core yarn from each discharge hole of a plurality of yarn guides provided so as to be applied from different directions.

まず°、本発明において付着装置として糸道ガイドを用
いる。後述するように、前記発明のうち長ざ当たりの抵
抗値を均一にするために計量付着が本発明には必須であ
るが、計量をした合成樹脂溶液を芯糸にムラなくしかも
良好な操作性のもとて付着させる方法について検討した
が、例えば、前述の電線製造方法に類似の装置では確実
に被覆することはできるが、芯糸の糸道し性が不良であ
る。また、液を噴霧状として付着させる方法では、付着
ムラが生じる。付着ムラが生じると問題になるのは第1
図に示したような製品としたときである。第1図は、糸
状発熱体を用いて得た布帛状の発熱体製品の図である。
First, in the present invention, a thread guide is used as the attachment device. As will be described later, among the above-mentioned inventions, measured adhesion is essential to the present invention in order to make the resistance value uniform during long contact. For example, although it is possible to reliably coat the wire using a device similar to the above-mentioned electric wire manufacturing method, the thread guiding properties of the core yarn are poor. Furthermore, in the method of applying a liquid in the form of a spray, uneven adhesion occurs. The first problem when uneven adhesion occurs is
This is when the product is as shown in the figure. FIG. 1 is a diagram of a fabric-like heating element product obtained using a filamentous heating element.

布帛状の発熱体15の電気系統は外部から電気を供給す
るリード線19、各糸状発熱体8に並列に電気を供給す
る経糸である電極線16および糸状発熱体8から構成さ
れている。ここで糸状の発熱体に被覆ムラが存在する場
合には一部の糸状発熱体は電気が供給されなかったり、
接点不良となり、製品の温度ムラや火災の原因となる。
The electrical system of the fabric-like heating element 15 is composed of a lead wire 19 that supplies electricity from the outside, an electrode wire 16 that is a warp that supplies electricity to each thread-like heating element 8 in parallel, and the thread-like heating element 8 . If there is uneven coating on the filamentous heating element, electricity may not be supplied to some of the filamentous heating elements, or
Failure to do so may result in contact failure, resulting in uneven product temperature or fire.

本発明はこの点を改良したものであり、これにJこり長
さ当たり抵抗値が均一で芯糸が完全に被覆されている。
The present invention has improved this point, and has a uniform resistance value per length of J stiffness, and the core yarn is completely covered.

糸状発熱体発熱体を操業性良好のもとに装造することが
できる。
A filamentous heating element can be installed with good operability.

以下ざらに詳細に説明する。A detailed explanation will be given below.

複数の糸道ガイドのそれぞれの吐出孔は、芯糸が該溶液
に完全に被覆されるように設置される必要がある。「相
異なる方向から」とは、この目的が達成されるように設
置することを意味する。該糸道ガイドにより、糸道が屈
曲されている場合でも、同様の意味である。
The discharge holes of each of the plurality of yarn guides must be installed so that the core yarn is completely covered with the solution. "From different directions" means that the arrangement is such that this purpose is achieved. The same meaning applies even when the yarn path is bent by the yarn path guide.

該溶液を付着された芯糸は引続き乾燥工程に送られるが
、糸道ガイド付近の芯糸は、芯糸のトルク、解舒撚りゃ
該乾燥工程の熱収縮等により、糸軸方向に回転しつつ走
行している場合が多い。この際、複数の糸道ガイドが離
れて設置されていると該回転のムラにより、完全被覆が
達せられない。また、組成の異なる溶液を上塗りするよ
うな特殊な場合以外は、糸道ガイドは2個あれば完全被
覆は可能であることがら、糸道ガイドの設置は完全被覆
と設備簡略化の面がら実質的に対向し、互いに接近した
2個の糸道ガイドにより該芯糸に該溶液を付着させるこ
とが好ましい。第2図にその配置の一例を示した。
The core yarn coated with the solution is then sent to the drying process, but the core yarn near the yarn guide is rotated in the yarn axis direction due to the torque of the core yarn, heat shrinkage during untwisting and drying process, etc. There are many cases where the driver is running while driving. At this time, if a plurality of thread guides are installed apart from each other, complete coverage cannot be achieved due to uneven rotation. In addition, except in special cases such as overcoating with a solution of a different composition, complete coverage is possible with just two thread guides, so installing thread guides is not practical in terms of complete coverage and equipment simplification. It is preferable that the solution is applied to the core thread by means of two thread guides that face each other and are close to each other. FIG. 2 shows an example of the arrangement.

侵述の上下の糸道ガイド1,2は実質的に対向し、両ガ
イド間(L)は20s以下に接近して設置される。
The upper and lower thread guides 1 and 2 of the intrusion are substantially opposed to each other, and the distance (L) between the guides is 20 seconds or less.

付着装置は、合成樹脂溶液を芯糸に連続して一定量ずつ
付着させるために、該合成樹脂溶液の吐出孔から芯糸が
付着装置から離れるまでの距離が短いことが必要であり
、そのために芯糸の糸道ガイドに吐出孔の穿たれたもの
が用いられる。また、付着装置内で芯糸の糸道が動かな
いために、V字溝、U字溝、平溝いずれかの糸道溝が存
在し該糸道溝の凹部に吐出孔が穿たれた糸道ガイドを用
いることが好ましい。第3図に糸道ガイドを上から見た
図を一例として示す。
In order for the adhesion device to continuously adhere a certain amount of the synthetic resin solution to the core thread, it is necessary that the distance from the discharge hole of the synthetic resin solution to the time when the core thread leaves the adhesion device is short. A core thread guide with a discharge hole is used. In addition, since the thread path of the core yarn does not move within the attachment device, there is a thread guide groove such as a V-shaped groove, a U-shaped groove, or a flat groove, and a discharge hole is bored in the recessed part of the thread guide groove. Preferably, a trail guide is used. FIG. 3 shows an example of a top view of the thread guide.

破線で示した部分が計量された合成樹脂溶液の移送路で
ある。(a>がV字溝、(b)がU字溝、(C)が平溝
の糸道溝の図である。
The part indicated by the broken line is the transfer path for the measured synthetic resin solution. (a> is a V-shaped groove, (b) is a diagram of a U-shaped groove, and (C) is a diagram of a flat groove.

本発明に用いる芯糸の素材としては、合成繊℃の範囲で
長期間安定した性能を維持するものであり、導電層との
接着性が良好であれば良い。
The material for the core yarn used in the present invention may be a synthetic fiber that maintains stable performance over a long period of time within the temperature range and has good adhesion to the conductive layer.

ポリアミド、ポリエステル、ポリオレフィンなどの熱可
塑性合成繊維は、非吸湿性、耐薬品性であり、上記温度
範囲での熱劣化が少ないほか、万一局部的異常加熱が生
じた場合には溶融し、溶断するというヒユーズ機能を有
するので好ましい。また、芳香族ポリアミド、ポリベン
ズイミダゾール、ポリフェニレントリアゾール、ポリオ
キサジアゾール、ポリイミド、熱硬化性樹脂繊維などの
耐熱性繊維を用いれば使用可能な温度範囲を高くできる
。また、製品寿命を著しく延ばすことができるなどの利
点があり好ましい。
Thermoplastic synthetic fibers such as polyamides, polyesters, and polyolefins are non-hygroscopic and chemical resistant, and are less susceptible to thermal deterioration in the above temperature range, and will melt and break if localized abnormal heating occurs. This is preferable because it has the fuse function of Furthermore, if heat-resistant fibers such as aromatic polyamide, polybenzimidazole, polyphenylene triazole, polyoxadiazole, polyimide, and thermosetting resin fibers are used, the usable temperature range can be increased. Further, it is preferable because it has the advantage that the product life can be significantly extended.

本発明に用いる芯糸の形態は、合成樹脂との接着性、合
成樹脂溶液の吸収性が良好なこと、吸収後乾燥固着した
ときの糸状発熱体の表面特性、すなわち突起や太細のな
いスムーズな表面、偏平でない糸の断面が達せられるこ
と、さらには糸としたときの外力に対する抵抗力、たと
えば引張り強度、伸度、初期ヤング率、耐屈曲性、耐摩
耗性に優れていることなどを考慮して用途に応じて適宜
選択することができる。具体的には、紡績糸、毛焼きし
た紡績糸、フラットヤーン、嵩高加工糸、あるいはその
撚糸、双糸、玉子など、あるいは流体加工処理した高交
絡糸、タスラン糸、合成繊維のバイメタル複合繊維や非
対称冷却系などが挙げられる。
The form of the core yarn used in the present invention is such that it has good adhesion with synthetic resin, good absorption of synthetic resin solution, and the surface characteristics of the filament heating element when dried and fixed after absorption, i.e., smooth without protrusions or thick and thin. It is possible to achieve a smooth surface, a non-flat yarn cross section, and when made into a yarn, it has excellent resistance to external forces, such as tensile strength, elongation, initial Young's modulus, bending resistance, and abrasion resistance. It can be selected as appropriate depending on the purpose. Specifically, spun yarns, burnt spun yarns, flat yarns, bulky processed yarns, twisted yarns, double yarns, eggs, etc., fluid-processed highly entangled yarns, taslan yarns, bimetal composite fibers of synthetic fibers, etc. Examples include asymmetric cooling systems.

予め導電性微粒子含有合成樹脂と芯糸の両方に親和性の
高い物質で、芯糸を処理しておくことも好ましい。
It is also preferable to treat the core yarn in advance with a substance that has high affinity for both the conductive fine particle-containing synthetic resin and the core yarn.

本発明に用いる導電性微粒子を分散含有する合成樹脂は
、熱的に安定であり、接着性、耐屈曲性、耐摩耗性等に
優れた合成樹脂ならば、特に限定しないが、好適に使用
され得る樹脂としては、ポリウレタン系樹脂、アクリル
系樹脂、ブチラール樹脂等が挙げられ、特に可撓性のも
のが好ましく選択される。
The synthetic resin containing conductive fine particles dispersed therein used in the present invention is preferably used, but is not particularly limited, as long as it is thermally stable and has excellent adhesiveness, bending resistance, abrasion resistance, etc. Examples of the resin to be obtained include polyurethane resins, acrylic resins, butyral resins, and particularly flexible ones are preferably selected.

本発明に用いられる導電性微粒子としては、たとえば、
カーボン粒子、金属粒子が代表的なものとしてあげられ
る。たとえば、カーボン粒子としては、通常のカーボン
ブラックを使用することができ、粒子径としては、1〜
500mμのものが好ましく、20〜200mμのもの
がより好ましく使用される。
As the conductive fine particles used in the present invention, for example,
Carbon particles and metal particles are representative examples. For example, ordinary carbon black can be used as the carbon particles, and the particle size is 1 to 1.
A material having a diameter of 500 mμ is preferable, and a material having a diameter of 20 to 200 mμ is more preferably used.

またカーボン粒子としては黒鉛も使用することができる
。黒鉛としては天然黒鉛すなわちりん状黒鉛、りん片状
黒鉛、生状黒鉛、あるいは人造黒鉛の1〜100μmの
大きざのものが好ましく使用されるが、特にりん状黒鉛
あるいはりん片状黒鉛の5〜50μmの大きさのものが
好ましく使用される。ざらに前記カーボン粒子としては
カーボンブラックと黒鉛とを混合使用することも好まし
い。カーボン粒子の使用量は所望する抵抗値により適宜
変更される。たとえば、発熱素子として適当な抵抗値と
するためには、前記樹脂溶液中、5〜25重量%、好ま
しくは7〜15重量%のカーボン粒子が使用される。
Furthermore, graphite can also be used as the carbon particles. As the graphite, natural graphite, ie, phosphorous graphite, flaky graphite, raw graphite, or artificial graphite with a size of 1 to 100 μm is preferably used, but in particular, phosphorous graphite or flaky graphite with a size of 5 to 100 μm A size of 50 μm is preferably used. It is also preferable to use a mixture of carbon black and graphite as the carbon particles. The amount of carbon particles used can be changed as appropriate depending on the desired resistance value. For example, in order to obtain a resistance value suitable for a heating element, carbon particles are used in an amount of 5 to 25% by weight, preferably 7 to 15% by weight in the resin solution.

本発明の糸状発熱体の抵抗値は、前記合成樹脂中に分散
含有されるカーボン粒子の含有量、積層する層の厚さ等
により適宜設定することができる。たとえば、前記配合
の場合では、1〜100に07mの抵抗値を1qること
ができる。
The resistance value of the filamentous heating element of the present invention can be appropriately set depending on the content of carbon particles dispersed in the synthetic resin, the thickness of the laminated layers, etc. For example, in the case of the above-mentioned combination, the resistance value of 07m can be set to 1q between 1 and 100.

このときの樹脂の体積抵抗率は糸の太さによるがおよそ
0.01〜10Ω・cmである。用途によって導電性微
粒子ならびにそれと混用する合成樹脂を選択することが
できる。この糸状発熱体を更に複数本撚り合せ、太くす
ることにより、抵抗値を小さくすることも可能である。
The volume resistivity of the resin at this time depends on the thickness of the thread, but is approximately 0.01 to 10 Ω·cm. The conductive fine particles and the synthetic resin used in combination with the conductive fine particles can be selected depending on the purpose. It is also possible to reduce the resistance value by further twisting a plurality of filamentous heating elements to make them thicker.

本発明では、糸状発熱体に可撓性をもたせ、繰返し折り
や摩耗に対する耐久性をもたせるため、導電性合成樹脂
に、次の手段などで気泡を発生させ・ることができる。
In the present invention, in order to make the filamentous heating element flexible and durable against repeated folding and abrasion, bubbles can be generated in the conductive synthetic resin by the following means.

その手段としては、例えばアゾビスイソブチロニトリル
(AIBN)のような発泡剤を前記懸濁液に混入する方
法、例えばメチルエチルケトンのような低沸点溶媒を使
用しコーティングしてから通常に溶媒蒸散(乾燥)させ
る温度より高い周囲温度として溶媒蒸気が発熱層内に取
り込まれるような条件で乾燥する方法等によって実現す
ることができる。
This can be achieved by mixing a blowing agent such as azobisisobutyronitrile (AIBN) into the suspension, coating with a low boiling point solvent such as methyl ethyl ketone, and then conventional solvent evaporation ( This can be achieved by a method of drying under conditions such that the ambient temperature is higher than the temperature at which solvent vapor is taken into the heat generating layer.

なお、前記AIBNを使用して発泡させる場合には、例
えばジメチルホルムアミドに溶解した樹脂にあらかじめ
AIBN@混合しておき、150℃で乾燥させると熱分
解によって発泡させることができる。
In addition, when foaming is performed using the above-mentioned AIBN, for example, AIBN@ is mixed in advance with a resin dissolved in dimethylformamide, and if the resin is dried at 150° C., foaming can be achieved by thermal decomposition.

前記気泡の混入滑には限定はなく、少なければ得られる
糸状発熱体の柔軟性が素材の水準となり、多くなれば柔
軟性を増すが、多過ぎると機械的強度、表面の平滑性が
低くなる。したがって、糸状発熱体を構成する各素材の
物性から経験的ないし実験的に定めるのが好ましい。
There is no limit to the amount of air bubbles mixed in, and if there is a small amount, the flexibility of the filamentous heating element obtained will be at the level of the material, and if there is a large number, the flexibility will increase, but if there is too many, the mechanical strength and surface smoothness will decrease. . Therefore, it is preferable to determine it empirically or experimentally from the physical properties of each material constituting the filamentous heating element.

本発明の糸状発熱体の発熱層は、一層でもよいが、電気
抵抗値の調整、表面の平滑化等の目的で複数層積層する
ことができる。前記積層する数には特に限定はなく、通
常1〜3回程度の積層で目的を達し得る。その際、各発
熱層内に分散されたカーボン粒子の濃度は、例えば、糸
状発熱体の表面の平滑性を高める目的で変化させること
ができる。その−例を示すと、最内層から順次12重量
%、10重量%、最外層を5重量%とする等として実施
できる。
The heating layer of the filamentous heating element of the present invention may be a single layer, but may be laminated in multiple layers for the purpose of adjusting the electrical resistance value, smoothing the surface, etc. The number of layers to be laminated is not particularly limited, and the purpose can usually be achieved by laminating about 1 to 3 times. At this time, the concentration of carbon particles dispersed in each heating layer can be changed, for example, in order to improve the smoothness of the surface of the filamentous heating element. For example, the content may be 12% by weight, 10% by weight from the innermost layer, 5% by weight from the outermost layer, etc.

当然、計量付着・乾燥工程を1回で行なうことも可能で
おり、むしろ設備的には1回で付着させることが好まし
い。
Naturally, it is also possible to carry out the measurement deposition and drying steps in one step, but it is preferable to carry out the deposition in one step in terms of equipment.

本発明の糸状発熱体の製造方法の一例を次に示す。An example of the method for manufacturing the filamentous heating element of the present invention is shown below.

く準備工程〉 芯糸の準備: 結び玉のない糸条を用意する。Preparation process> Preparation of core yarn: Prepare thread without knots.

導電性微粒 の樹脂懸濁液の準備: 適切な溶媒に、樹脂および導電性微粒子を溶解、懸濁さ
せ合成樹脂溶液を作る。この際、合成樹脂溶液の粘度を
2〜200ポイズに調整することが、均−付合および計
量装置の吐出効率の面から好ましい。また合成樹脂溶液
の固形分すなわち溶媒以外の重量割合は10〜50重量
%に調整することが、付着後の乾燥工程での工ネルギー
節約および懸濁・溶解工程の作業性の面から好ましい。
Preparation of a resin suspension of conductive fine particles: A synthetic resin solution is prepared by dissolving and suspending the resin and conductive fine particles in an appropriate solvent. At this time, it is preferable to adjust the viscosity of the synthetic resin solution to 2 to 200 poise in terms of uniform adhesion and discharge efficiency of the metering device. In addition, it is preferable to adjust the solid content of the synthetic resin solution, that is, the weight ratio of components other than the solvent, to 10 to 50% by weight from the viewpoint of saving energy in the drying step after adhesion and workability in the suspending and dissolving steps.

該合成樹脂溶液は溶媒の蒸発を防ぐために密閉容器に封
入する。また、該合成樹脂溶液は溶液の均質性を維持す
るために、攪拌するのが望ましい。
The synthetic resin solution is sealed in a closed container to prevent evaporation of the solvent. Further, it is desirable to stir the synthetic resin solution in order to maintain the homogeneity of the solution.

く計量・付着工程〉 導電性微粒子を懸濁させた前記合成樹脂溶液を攪拌しな
がら前記密閉容器から配管を通して計量装置に移送する
。計量装置は公知の計量ポンプ、特に歯車ポンプが好適
に用いられる。本発明の目的の一つは素線の抵抗値のバ
ラツキを小さくすることにあるが、計量装置により合成
樹脂溶液を計量しつつ芯糸に付着させることで、素線の
糸軸方向の付着量バラツキを極めて小さくすることが可
能となる。
Measuring and Adhesion Step> The synthetic resin solution in which conductive fine particles are suspended is transferred from the sealed container to a measuring device through piping while being stirred. As the metering device, a known metering pump, particularly a gear pump, is suitably used. One of the purposes of the present invention is to reduce the variation in the resistance value of the strands, but by measuring the synthetic resin solution using a measuring device and making it adhere to the core yarn, the amount of adhesion in the axial direction of the strands can be reduced. It is possible to make the variation extremely small.

具体的には、糸軸方向の重量バラツキCv(%)を6.
OJX下とすることができ、このようにすることにより
、製品としたときの発熱性能を従来の金属細線からなる
製品と同等の水準にすることができる。
Specifically, the weight variation Cv (%) in the yarn axis direction was set to 6.
By doing so, the heat generation performance of the product can be made to the same level as products made of conventional thin metal wires.

計量された合成樹脂溶液はさらに配管中を被覆装置まで
移送され、下から上に走行する芯糸に周囲から付着され
る。
The measured synthetic resin solution is further transferred through the piping to the coating device, and is applied from the periphery to the core yarn running from bottom to top.

付着量バラツキを小さくするために、被覆装置に芯糸を
定速で供給することが好ましい。そのためには付着装置
の前および後述の乾燥工程の後の糸をローうにより供給
し、引取る方法が好ましく用いられる。適度な張力で付
着させるためには、前後のローラにより緊張状態とする
ことが好ましい。
In order to reduce variations in the amount of coating, it is preferable to feed the core yarn to the coating device at a constant speed. For this purpose, it is preferable to use a method in which the yarn is fed by a row before the adhering device and after the drying step described below, and then taken off. In order to adhere with appropriate tension, it is preferable to apply tension using front and rear rollers.

く乾燥工程〉 計量・付着工程から引き出された芯糸は、被覆装置の上
部に位置する乾燥装置に送られる。
Drying process> The core yarn pulled out from the weighing and adhering process is sent to a drying device located above the coating device.

乾燥は、通常の通気乾燥で良いが、生産性の向上等を考
慮して乾燥空気の加温、赤外線ランプによる加熱等、乾
燥を促進させるために通常用いられる各種の手段を併用
することができる。
Drying can be done by normal ventilation drying, but in order to improve productivity, various commonly used means to accelerate drying can be used in combination, such as heating the drying air or heating with an infrared lamp. .

かくして得られた本発明の糸状発熱体は、合成樹脂溶液
が均一付着するため、糸軸方向の樹脂付着量バラツキの
極めて低いものであり、また、乾燥固着式を採っている
ため、糸状発熱体内部に気泡が存在し可撓性に富み、耐
屈曲性、耐摩耗性等の機械的性質が優れ、発熱線の単位
長さ当たりの抵抗値が均一であり、各種の発熱体製品の
発熱素材として有利に利用できる。
The thus obtained filamentous heating element of the present invention has extremely low variation in the amount of resin deposited in the direction of the filament axis because the synthetic resin solution is uniformly adhered thereto.Also, since the filamentous heating element employs a dry fixation method, the filamentous heating element It has air bubbles inside, is highly flexible, has excellent mechanical properties such as bending resistance and abrasion resistance, and has a uniform resistance value per unit length of the heating wire, making it a suitable heating material for various heating element products. It can be used advantageously as

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本発明における各測定値は次の方法によった。In addition, each measurement value in this invention was based on the following method.

(粘 度) 試料を500mΩの円筒容器に採取し、温度30℃±1
℃の条件でBM形回転粘度計(東京計器製)により製造
直後の粘度を測定する。
(Viscosity) A sample was collected in a 500mΩ cylindrical container, and the temperature was 30℃±1.
The viscosity immediately after production is measured using a BM type rotational viscometer (manufactured by Tokyo Keiki) at ℃.

なお、測定に先立ち、試料はプロペラミキサーまたはホ
モミキサーにて十分攪拌する。
Note that, prior to measurement, the sample is sufficiently stirred using a propeller mixer or a homomixer.

(切断屈曲回数) MIT対折度試験機を使用し、付加荷重0.5kg、測
定試長7cmで測定した。
(Number of cutting and bending times) Measurement was performed using an MIT anti-folding tester with an additional load of 0.5 kg and a measurement sample length of 7 cm.

(切断摩耗回数) 糸−系対摩耗試験機を使用し、測定試長45cmで測定
した。
(Number of Cutting Wear) Measurements were made using a yarn-based abrasion tester with a sample length of 45 cm.

実施例1 ポリエステル型ポリウレタン樹脂(大日精化工業(株)
製)をメチルエチルケトンとジメチルホルムアミドとの
混合溶液(重量比80:20)に濃度13.5重量%と
なるように均一に溶解した後、平均粒径40mμのカー
ボンブラックおよび平均粒径10μmの黒鉛をカーボン
懸濁溶液に対して、それぞれ8.5および6重量%とな
るように合成樹脂溶液を調整した。この溶液の粘度は2
1ポイズ、固形分26重童%であった。芯糸はポリエス
テルを紡糸速度3000m/分で紡糸したのち、常法に
より延伸仮ヨリ加工を行ないその後、190℃で熱板に
より低トルク化し、150デニール72フィラメントの
三葉断面の仮ヨリ加工糸を得た。この糸を3本合撚し、
510デニールの芯糸として用いた。
Example 1 Polyester type polyurethane resin (Dainichiseika Kagyo Co., Ltd.)
After uniformly dissolving methyl ethyl ketone and dimethyl formamide in a mixed solution (weight ratio 80:20) to a concentration of 13.5% by weight, carbon black with an average particle size of 40 mμ and graphite with an average particle size of 10 μm were dissolved. The synthetic resin solutions were adjusted to have a concentration of 8.5 and 6% by weight, respectively, based on the carbon suspension solution. The viscosity of this solution is 2
The solid content was 1 poise and 26 poise. For the core yarn, polyester was spun at a spinning speed of 3,000 m/min, and then drawn and pre-twisted using a conventional method.Then, the torque was reduced using a hot plate at 190°C to create a 150-denier, 72-filament trilobal cross-section pre-twisted yarn. Obtained. Twist three of these threads together,
It was used as a core yarn of 510 denier.

前記合成樹脂溶液を密閉容器に封入・撹拌し、1回転0
.017ccの容器の歯車ポンプを用いて密閉容器から
合成樹脂溶液を付着装置へと移送した。付着装置は第3
図(b)を模したものを用い、吐出孔径Q、5mm、凹
部半径0.5mのU字型セラミック製糸道ガイド2個を
第2図のように対向方向に5mmの間隔で設置し、各吐
出ff10.133cc/分で走行する芯糸に付着させ
た。芯糸は周速1m/分のローラにより定速で付着装置
に送り出した。付着装置直前の糸張力は70Qでめった
。付着装置後15αの位置に設けた長さ1.25mの加
熱筒により溶媒を蒸発させた。この際、加熱筒内壁温度
を200℃とすることで溶剤の蒸発を早め発泡を促し、
かつ合成樹脂溶液の固形化を早めて気泡が発熱層内に取
り込まれるようにした。このようにして導電性微粒子を
分散含有した合成繊維を芯糸に固着させ、周速1m/分
のローラにより引取った。
The synthetic resin solution was sealed in a sealed container, stirred, and rotated once at zero.
.. A gear pump in a 0.17 cc container was used to transfer the synthetic resin solution from the closed container to the deposition apparatus. The adhesion device is the third
Using a model similar to that shown in Figure (b), two U-shaped ceramic yarn guides with a discharge hole diameter Q of 5 mm and a concave radius of 0.5 m were installed in opposite directions at an interval of 5 mm as shown in Figure 2. It was attached to a core thread running at a discharge rate of 10.133 cc/min. The core yarn was fed to the adhesion device at a constant speed by a roller with a circumferential speed of 1 m/min. The thread tension just before the attachment device was 70Q. The solvent was evaporated using a heating cylinder with a length of 1.25 m installed at a position 15α behind the deposition device. At this time, by setting the inner wall temperature of the heating cylinder to 200°C, the evaporation of the solvent is accelerated and foaming is promoted.
In addition, the solidification of the synthetic resin solution is accelerated so that air bubbles are incorporated into the heat generating layer. In this way, the synthetic fiber containing conductive fine particles dispersed therein was fixed to the core thread, and then taken off by a roller at a circumferential speed of 1 m/min.

(qられた糸状発熱体を糸軸方向に25cmずつ40本
の重ωを連続して測定したところ平均値0.0327/
25ca、標準偏差0.00060、標準偏差を平均値
で除したCv値は1.9%でおった。また、同じ糸の抵
抗値を測定したところ、平均値2.76にΩ/25cm
、標準偏差0.105、CVVB28%でめった。この
ことから、本発明の方法により合成樹脂溶液が糸軸方向
に均一に固着することにより、糸状発熱体の抵抗値のバ
ラツキは極めて小さいものとなった。この糸状発熱体を
10mにわたって側面を観察したが、芯糸の露出は仝く
みられなかった。
(The average value of 40 weights ω of 25 cm each in the filament axis direction was continuously measured, and the average value was 0.0327/
25 ca, standard deviation 0.00060, and the Cv value obtained by dividing the standard deviation by the average value was 1.9%. In addition, when the resistance value of the same thread was measured, the average value was 2.76Ω/25cm.
, standard deviation 0.105, CVVB 28%. From this, it was found that the method of the present invention allowed the synthetic resin solution to adhere uniformly in the yarn axis direction, and thus the variation in the resistance value of the filamentous heating element became extremely small. When the side surface of this filamentous heating element was observed over a 10 m distance, no exposed core yarn was observed.

第1図によって前記糸状発熱体を用いて得た重席状の発
熱体について説明する。図の布帛状の発熱体15は、経
糸には銅線をすず鍍金した電極線16とポリエステル糸
条17とを用い、緯糸には前記糸状発熱体8と発熱量調
節用のポリエステル糸条18とを用い、通常の織機によ
って布帛状発熱体とした。さらに絶縁被覆する目的で布
帛両面をポリエチレン溶融物によりコーティングした。
A multi-layer heating element obtained using the filamentous heating element will be explained with reference to FIG. The fabric-like heating element 15 shown in the figure uses an electrode wire 16 made of tin-plated copper wire and a polyester thread 17 for the warp, and the thread-like heating element 8 and a polyester thread 18 for adjusting the amount of heat generated for the weft. A fabric-like heating element was made using an ordinary loom. Furthermore, both sides of the fabric were coated with a polyethylene melt for the purpose of insulating coating.

また、前記電極線16に電流を通ずるリード線19をハ
ンダ付け20によって接続した。この布帛状発熱体をベ
ストの裏地に縫い付けたものにN i −Cd電池から
電気を供給したところ、局所的な温度ムラがなく、極め
て柔軟であり、試着者に好評であった。
Further, a lead wire 19 through which current is passed was connected to the electrode wire 16 by soldering 20. When electricity was supplied from a Ni-Cd battery to this fabric-like heating element sewn onto the lining of a vest, it was found to be extremely flexible with no local temperature unevenness, and was well received by those who tried it on.

比較実施例1 糸道ガイドを1個とし、吐出量を0.267CC/分と
した以外は実施例1と同様の方法で糸状発熱体を得た。
Comparative Example 1 A filamentous heating element was obtained in the same manner as in Example 1 except that the number of yarn guides was one and the discharge rate was 0.267 CC/min.

この糸状発熱体を10mにわたって側面を観察したとこ
ろ、糸軸方向に最も長い部分で長さ5cm、巾Q、’i
nnの芯糸露出部が3カ所存在していた。
When we observed the side surface of this filament heating element over 10 m, we found that the longest part in the filament axis direction was 5 cm long, and had a width Q, 'i
There were three core thread exposed parts of nn.

[発明の効果] 本発明により、製品としてときの温度バラツキが極めて
小さく、可撓性、耐屈曲性等の良好な長期間安定に使用
し得る糸状発熱体を、簡易な設備で操作性良く製造でき
る。これにより、製織編可能で、衣料分野、埋装分野、
農業、水産、土木分野など各種の用途に適用できる発熱
体を提供し得たものである。熱論、自動車・、電車など
の車両や航空機、船舶、宇宙ロケットなどあらゆる乗物
にも適用され得る。
[Effects of the Invention] According to the present invention, it is possible to manufacture a filamentous heating element that has extremely small temperature variations as a product, has good flexibility, bending resistance, etc., and can be stably used for a long period of time, using simple equipment and with good operability. can. This allows for weaving and knitting, which can be used in the clothing field, embedded materials field, etc.
This provides a heating element that can be used in various fields such as agriculture, fisheries, and civil engineering. It can be applied to all kinds of vehicles such as cars, trains, aircraft, ships, and space rockets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は糸状発熱体を製織して得た布帛状発熱体の説明
図である。 第2図は本発明の糸道ガイドの好適な配置の一例を示し
た図でおる。 第3図は本発明に用いる付着装置の一例である。 特許出願人  東 し 株 式 会 社第 1 図 [1(1))           (C)第3図 第Z図
FIG. 1 is an explanatory diagram of a fabric-like heating element obtained by weaving a thread-like heating element. FIG. 2 is a diagram showing an example of a preferred arrangement of the yarn path guide of the present invention. FIG. 3 is an example of a deposition device used in the present invention. Patent applicant Toshi Co., Ltd. Figure 1 [1 (1)) (C) Figure 3 Figure Z

Claims (1)

【特許請求の範囲】[Claims] 導電性微粒子を懸濁した合成樹脂溶液を計量装置により
計量しつつ相異なる方向から付着するように設けられた
複数の糸道ガイドのそれぞれの吐出孔から該芯糸に供給
し、しかるのちに乾燥固着させて導電性微粒子を分散含
有する合成樹脂の導電層を前記芯糸上に形成させること
を特徴とする糸状発熱体の製造法。
A synthetic resin solution in which conductive fine particles are suspended is metered by a metering device and supplied to the core yarn from each discharge hole of a plurality of yarn guides provided so as to adhere from different directions, and then dried. A method for producing a filamentous heating element, which comprises forming a conductive layer of a synthetic resin which is fixed and contains conductive fine particles dispersed thereon on the core yarn.
JP10200787A 1987-04-27 1987-04-27 Production of yarn like heat generator Pending JPS63270868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200787A JPS63270868A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200787A JPS63270868A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Publications (1)

Publication Number Publication Date
JPS63270868A true JPS63270868A (en) 1988-11-08

Family

ID=14315721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200787A Pending JPS63270868A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Country Status (1)

Country Link
JP (1) JPS63270868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528579A (en) * 2004-03-08 2007-10-11 ヴィー・エー・テー・オートモーティヴ・システムス・アクチェンゲゼルシャフト Flat heating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528579A (en) * 2004-03-08 2007-10-11 ヴィー・エー・テー・オートモーティヴ・システムス・アクチェンゲゼルシャフト Flat heating element

Similar Documents

Publication Publication Date Title
US3958066A (en) Conductive synthetic fibers
JPH0261794B2 (en)
US4756969A (en) Highly electrically conductive filament and a process for preparation thereof
IE902237A1 (en) Composite material the characteristics of which can be modulated by preimpregnation of a continuous fiber
JPS63270868A (en) Production of yarn like heat generator
US3269883A (en) Method for producing electrically-conductive elements
KR100754322B1 (en) Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method for carbon thread using the apparatus
JPS63270869A (en) Production of yarn like heat generator
JPS63270870A (en) Production of flexible yarn like heat generator
JPS63270827A (en) Yarn-shaped heat generator and its production
JPS63270867A (en) Production of yarn like heat generator
JPS63270866A (en) Production of yarn like heat generator
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
US20150004392A1 (en) Whisker-reinforced hybrid fiber by method of base material infusion into whisker yarn
JP2870938B2 (en) Glass cloth for printed circuit boards
JP2891476B2 (en) Conductive yarn
JPS6366889A (en) Filament heater
JPS62100971A (en) String heater element and manufacture of the same
JPS63270829A (en) Yarn-shaped heat generator and its production
JPS62100969A (en) String heater element
JPS6366886A (en) Filament heater
TW200422454A (en) Method and system for using zero-twisted yarns as fill yarns
US4721587A (en) Process of making heat-strengthened yarn
JPS63270874A (en) Production of yarn like heat generator
JPH11293535A (en) Manufacture of heat-fusible composite fiber