JPS63270866A - Production of yarn like heat generator - Google Patents
Production of yarn like heat generatorInfo
- Publication number
- JPS63270866A JPS63270866A JP10164687A JP10164687A JPS63270866A JP S63270866 A JPS63270866 A JP S63270866A JP 10164687 A JP10164687 A JP 10164687A JP 10164687 A JP10164687 A JP 10164687A JP S63270866 A JPS63270866 A JP S63270866A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- synthetic resin
- core
- yarn
- resin solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 56
- 229920003002 synthetic resin Polymers 0.000 claims description 34
- 239000000057 synthetic resin Substances 0.000 claims description 34
- 239000010419 fine particle Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 9
- 239000000243 solution Substances 0.000 description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- 239000010410 layer Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 238000001035 drying Methods 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 210000002445 nipple Anatomy 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 235000019241 carbon black Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- -1 polyphenylene triazole Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000012210 heat-resistant fiber Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、可撓性に富み、長期の使用に耐える電気的に
発熱する糸状発熱体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an electrically heated filamentous heating element that is highly flexible and durable for long-term use.
従来から、機器類の保温ないし加熱用に金属細線から成
る可撓性の発熱線が使用されているが、特に電気毛布、
電気カーペット等民生用にも広く普及し、その便利さか
ら今後益々商品に多様化が促進される趨勢にある。Traditionally, flexible heating wires made of thin metal wires have been used to keep equipment warm or heated, but electric blankets,
It has become widely used in consumer products such as electric carpets, and due to its convenience, there is a trend that products will become more diversified in the future.
従来、これらの発熱体には、ステンレス線、ニクロム線
等の金属細線から成る抵抗体が使用されていたが、前記
の各製品に可撓性であることを要求される場合には、可
撓性の芯糸に極細い抵抗線をスパイラル状に捲きつけた
もの、布帛上にカーボンを樹脂バインダーにより固着さ
せたもの等が使用されている。Conventionally, resistors made of thin metal wires such as stainless steel wires and nichrome wires have been used for these heating elements, but when each of the above products is required to be flexible, flexible Some examples include those in which ultra-thin resistance wire is spirally wound around a synthetic core thread, and those in which carbon is fixed to a fabric using a resin binder.
しかしながら、これらは何れも、耐屈曲性、耐摩耗性等
の点で要求する性能を満すことができず、また、可撓性
が不足しており、改善が要求されている。However, none of these materials can satisfy the required performance in terms of bending resistance, abrasion resistance, etc., and also lacks flexibility, so improvements are required.
この問題を解決しようと試みたものに、特公昭、38−
1470号公報がある。これは、芯糸のまわりに導電性
微粒子を配合したゴムまたはプラスチック層を設けるこ
とにより、発熱体の可撓性を高めたものでおる。この製
造方法は電線製造のそれであり、導電性ゴムまたはプラ
スチックの加熱溶融部、保温配管部、溶融被覆部からな
る大規模な装置を必要とする。溶融被覆部には芯糸の導
入・導出のための11以下の径をもつ2つの細孔が設け
られ、かつゴムまたはプラスチックが流動性をもつ程度
の高温に保温されている。したがって、芯糸を前記2つ
の細孔に通す作業は非常に操作性が悪い。また、この発
明により可撓性のレベルは金属細線に比べて向上したも
のの、衣料分野におけるライダースーツ、ダイパー服、
インナースーツ、手袋、靴など、あるいは電気毛布のよ
うに高度の屈曲耐久性を要求される分野には、可撓性レ
ベルは極めて低いものであり、現状では実用化に至って
いない。Tokkosho, 38-
There is a publication No. 1470. This increases the flexibility of the heating element by providing a rubber or plastic layer containing conductive fine particles around the core yarn. This manufacturing method is that of electric wire manufacturing, and requires large-scale equipment consisting of a conductive rubber or plastic heating and melting section, a heat-insulating piping section, and a melt-coating section. The melt-coated portion is provided with two pores each having a diameter of 11 or less for introducing and extracting the core yarn, and is kept at a high temperature to the extent that rubber or plastic has fluidity. Therefore, the operation of passing the core yarn through the two pores is very difficult. Although this invention has improved the level of flexibility compared to thin metal wires, it also
The flexibility level is extremely low for fields that require a high degree of bending durability, such as inner suits, gloves, shoes, and electric blankets, and it has not yet been put to practical use.
また、実公昭39−37687号公報には導電性微粒子
を配合した樹脂を溶液とし、芯糸に塗布後、脱溶媒し、
固着させる方法が開示されている。塗布とはすなわち、
芯糸を溶液中に浸漬した後、細孔やスリット等で過剰溶
液を取り除く方法であり、前述の溶融被覆方法に比べて
装置は簡略化され、操作性も幾分改善される。In addition, Japanese Utility Model Publication No. 39-37687 discloses that a resin containing conductive fine particles is made into a solution, applied to a core yarn, and then the solvent is removed.
A method of fixing is disclosed. The application means,
This is a method in which the core yarn is immersed in a solution and then excess solution is removed using pores, slits, etc., and the equipment is simplified and the operability is improved somewhat compared to the above-mentioned melt coating method.
しかし、この方法で得られる発熱体は、溶液が均一に塗
布できないために通電したときに温度ムラが生じ、火傷
、火災を引き起こす恐れさえ存在する。したがって、こ
の方法は糸状発熱体の適切な製造方法とは認められない
のでおる。However, in the heating element obtained by this method, since the solution cannot be applied uniformly, temperature unevenness occurs when electricity is applied, and there is even a risk of causing burns or fire. Therefore, this method is not recognized as an appropriate method for producing filamentous heating elements.
可撓性に富む糸状の発熱体を得る試みとして、例えば、
特開昭51−109321号公報がある。これは、ナイ
ロンのコンジュゲートフィラメントを加熱により軟化さ
せるかあるいは膨潤剤により膨潤させて、カーボン粒子
をフィラメント表層部に固着させる糸状の発熱体とその
製造法を提案したものである。この発熱体は、長さあた
りの抵抗値が高すぎ、発熱素子として用いるには適さな
いし、製造法が複雑である。また、カーボン粒子を均一
に固着させるのは難かしく、したがって抵抗値のバラツ
キが大きく、要求される抵抗値のものを工業的に安定し
て製造することができない。In an attempt to obtain a highly flexible filamentous heating element, for example,
There is Japanese Unexamined Patent Publication No. 109321/1983. This proposed a filament-like heating element and its manufacturing method in which carbon particles were fixed to the surface layer of the filament by softening the nylon conjugate filament by heating or swelling it with a swelling agent. This heating element has too high a resistance value per length, is not suitable for use as a heating element, and has a complicated manufacturing method. Furthermore, it is difficult to uniformly fix the carbon particles, and therefore the resistance value varies widely, making it impossible to industrially and stably manufacture the required resistance value.
本発明は、かかる従来の問題点を解決し、可撓性に富み
、導電層と芯糸との接着性が良好で屈曲、摩耗等により
剥離し難く、長時間安定して使用し得る糸状発熱体を安
定した操業性で製造する方法を提供するものである。The present invention solves these conventional problems and provides a filament-like heat generating material that is highly flexible, has good adhesiveness between the conductive layer and the core yarn, is difficult to peel off due to bending or abrasion, and can be used stably for a long time. The present invention provides a method for manufacturing a body with stable operability.
〔問題を解決しようとするための手段〕上記の問題点を
解決するために、本発明の糸状発熱体の製造法は、次の
構成を有する。すなわち、導電性微粒子を懸濁した合成
樹脂溶液を計量装置により計量しつつ芯糸を被覆装置の
細孔に導き該細孔出口で、該合成樹脂溶液と合流付着さ
せ、しかるのちに乾燥固着させて導電性微粒子を分散含
有させる合成樹脂溶液の導電層を前記芯糸上に形成させ
ることを特徴とする糸状発熱体の製造方法で必る。[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a filamentous heating element of the present invention has the following configuration. That is, a synthetic resin solution in which conductive fine particles are suspended is measured by a metering device, and the core yarn is introduced into the pores of a coating device, and at the outlet of the pores, it joins and adheres to the synthetic resin solution, and is then dried and fixed. A method for producing a filamentous heating element is characterized in that a conductive layer of a synthetic resin solution containing conductive fine particles dispersed therein is formed on the core yarn.
導電性微粒子を懸濁した合成樹脂溶液を計量すること、
計」された該合成樹脂溶液を芯糸の周囲より芯糸に被覆
せしめることは、糸状発熱体としての安定したバラツキ
の少ない抵抗値の確保のため重要である。Measuring a synthetic resin solution in which conductive fine particles are suspended,
It is important to cover the core yarn with the measured synthetic resin solution from the periphery of the core yarn in order to ensure a stable resistance value with little variation as a filamentous heating element.
被覆する被覆装置としては、芯糸が走行する芯金にニッ
プル)と樹脂溶液を導く口金(ダイ)から成る装置が好
ましい。As the coating device for coating, it is preferable to use a device consisting of a core metal nipple through which the core thread runs and a die that guides the resin solution.
ニップルの内径D1とダイの内径D2は下式を満足する
様に設定してかつ芯金と口金が実質的に中心線を同じく
するように組合せた装置とする方が好ましい。It is preferable that the inner diameter D1 of the nipple and the inner diameter D2 of the die be set so as to satisfy the following formula, and that the device is combined so that the core metal and the cap have substantially the same center line.
d+0.05 ≦D1≦d+0.4
ただし、
(単位はすべて!M1)
なお、dは芯糸の見掛は直径であり、マルチフィラメン
トの場合はトータルデニールが同一のモノフィラメント
を想定して計算した。ニップルの内径D1がd+0.0
5より小さすぎると芯糸の糸通し性や、芯糸が毛羽だち
しやすくなるし、d+0.4より大きすぎると合成樹脂
溶液が、ニップル部分に逆流しやすくなり好ましくない
。d+0.05 ≦D1≦d+0.4 (All units are M1) Note that d is the apparent diameter of the core yarn, and in the case of multifilament, the calculation was performed assuming monofilament with the same total denier. The inner diameter D1 of the nipple is d+0.0
If it is too small than 5, the threadability of the core thread will deteriorate and the core thread will tend to become fluffy, and if it is too large than d+0.4, the synthetic resin solution will tend to flow back into the nipple area, which is not preferable.
ダイの内径D2は、ニップルの内径D1以下だと芯糸が
ダイの内壁に接触しやすく、出口でしごかれ含浸した樹
脂溶液がしぼりだされダイ出口周辺に堆積しやすいし、
芯糸が毛羽だちやすい。また内径D2が2.O#より大
きすぎると合成樹脂溶液のダイからの吐出斑が発生しや
すく被覆厚さバラツキ、すなわち、抵抗値バラツキを引
きおこしやすい。If the inner diameter D2 of the die is less than the inner diameter D1 of the nipple, the core thread will easily come into contact with the inner wall of the die, and the impregnated resin solution will be squeezed out at the exit and will tend to accumulate around the die exit.
The core yarn tends to become fluffy. Also, the inner diameter D2 is 2. If it is too large than O#, uneven discharge of the synthetic resin solution from the die tends to occur, which tends to cause variations in coating thickness, that is, variations in resistance value.
本発明に用いる芯糸の素材としては、合成繊維または天
然繊維の糸状を用いる。発熱体として通常使用される温
度、すなわち、20〜100℃の範囲で長期間安定した
性能を維持するものでおり、導電層との接着性が良好で
おれば良い。As the material for the core thread used in the present invention, thread-like synthetic fibers or natural fibers are used. It is sufficient that it maintains stable performance for a long period of time at the temperature normally used as a heating element, that is, in the range of 20 to 100°C, and that it has good adhesion to the conductive layer.
ポリアミド、ポリエステル、ポリオレフィンなどの熱可
塑性合成繊維は、非吸湿性、耐薬品性であり、上記温度
範囲での熱劣化が少ないほか、万一局部的異常加熱が生
じた場合には加熱により溶出するというヒユーズ機能を
有するので好ましい。また、芳香族ポリアミド、ポリベ
ンズイミダゾール、ポリフェニレントリアゾール、ポリ
オキサジアゾール、ポリイミド、熱硬化性樹脂繊維など
の耐熱性繊維を用いれば使用可能な温度範囲を高くでき
、また製品寿命を著しく延ばすことができるなどの利点
があり好ましい。Thermoplastic synthetic fibers such as polyamides, polyesters, and polyolefins are non-hygroscopic and chemical resistant, and are less prone to thermal deterioration in the above temperature range, as well as being eluted by heating in the event of localized abnormal heating. This is preferable because it has a fuse function. Furthermore, by using heat-resistant fibers such as aromatic polyamide, polybenzimidazole, polyphenylene triazole, polyoxadiazole, polyimide, and thermosetting resin fibers, the usable temperature range can be increased and the product life can be significantly extended. It is preferable because it has advantages such as:
本発明に用いる芯糸の形態は、導電層との接湾性が良好
で、剥離し難いものが好ましく用いられる。たとえば紡
績糸や表層部に短繊維を有するダブルストラクチヤード
ヤーンなどは繊維表面に毛羽があるため合成樹脂をよく
吸収し、糸状発熱体となったあとで導電層が芯糸の表面
や毛羽にからまり接着性が良好となる。また、この目的
のためには、芯糸として嵩高加工糸を用いることがより
好ましい。さらに嵩高加工糸を交絡処理したり、加熱し
てもさしつかえない。The form of the core yarn used in the present invention is preferably one that has good contact with the conductive layer and is difficult to peel off. For example, spun yarn and double-structured yarn with short fibers on the surface layer have fluff on the fiber surface, so they absorb synthetic resin well, and after becoming a thread-like heating element, the conductive layer is attached to the surface of the core yarn and the fluff. Good tangle adhesion. Moreover, for this purpose, it is more preferable to use a bulky textured yarn as the core yarn. Furthermore, the bulky textured yarn may be subjected to interlacing treatment or heated.
この場合、芯糸に付着した合成樹脂溶液は芯糸の嵩高性
のために芯糸の内部まで浸透しそのまま乾燥固着する。In this case, the synthetic resin solution adhering to the core yarn penetrates into the interior of the core yarn due to the bulkiness of the core yarn, and is dried and fixed as it is.
嵩高加工糸は捲縮を有するために、樹脂溶液との接触面
積が大きく、ざらに繊維表面に毛羽が少ないために乾燥
固着後の糸軸方向に毛羽由来の太細部や突起がなくなり
、高次加工性が良好となる点からも好ましい。Because the bulky processed yarn has crimps, the contact area with the resin solution is large, and since there is little fluff on the fiber surface, there are no thick parts or protrusions derived from fluff in the yarn axis direction after drying and fixation, resulting in high-quality It is also preferable from the viewpoint of good workability.
予め導電性微粒子含有合成樹脂と芯糸の両方に親和性の
高い物質で、芯糸を処理しておくことも好ましい。It is also preferable to treat the core yarn in advance with a substance that has high affinity for both the conductive fine particle-containing synthetic resin and the core yarn.
本発明に用いる導電性微粒子を分散含有する合成樹脂は
、耐熱安定性を有し、かつ接着性、耐屈曲性、耐摩耗性
等に優れた合成樹脂ならば、特に限定しないが、好適に
使用され得る樹脂としては、ポリウレタン系樹脂、アク
リル系樹脂、ブチラール樹脂等が挙げられ、特に可撓性
のものが好ましく選択される。The synthetic resin containing dispersed conductive fine particles used in the present invention is not particularly limited, but is preferably used as long as it has heat resistance stability and excellent adhesiveness, bending resistance, abrasion resistance, etc. Examples of resins that can be used include polyurethane resins, acrylic resins, butyral resins, and particularly flexible resins are preferably selected.
本発明に用いられる導電性微粒子としては、たとえば、
カーボン粒子、金属粒子が代表的なものとしてあげられ
る。カーボン粒子としては、各種のカーボンブラックを
使用することができ、粒子径としては、1〜5()Om
μのものが好ましく、特に10〜200 mμのものが
好ましく使用できる。また、カーボン粒子としては黒鉛
を使用することができ、黒鉛としては天然黒鉛すなわち
りん状黒鉛、りん片状黒鉛、玉状黒鉛、あるいは人造黒
鉛の1〜100μmの大きざのものが好ましく使用され
るが、特にりん状黒鉛、あるいはりん片状黒鉛の5〜5
0μmの大きざのものが好ましく使用される。ざらに前
記カーボン粒子としてカーボンブラックと黒鉛とを混合
使用することも好ま()い。カーボン粒子の使用伍は所
望する抵抗値により適宜変更される。たとえば、発熱素
子として適当な抵抗値とするためには、通常、前記樹脂
溶液中、5〜25重量%、好ましくは7〜15重旦%の
カーボン粒子が使用される。As the conductive fine particles used in the present invention, for example,
Carbon particles and metal particles are representative examples. Various carbon blacks can be used as the carbon particles, and the particle size is 1 to 5 () Om.
It is preferable to use a particle having a particle size of 10 to 200 μm. Further, graphite can be used as the carbon particles, and as the graphite, natural graphite, that is, phosphor graphite, flaky graphite, globular graphite, or artificial graphite with a size of 1 to 100 μm is preferably used. However, especially phosphorous graphite or scaly graphite 5 to 5
Those with a size of 0 μm are preferably used. It is also preferable to use a mixture of carbon black and graphite as the carbon particles. The type of carbon particles used can be changed as appropriate depending on the desired resistance value. For example, in order to obtain a resistance value suitable for a heating element, carbon particles are usually used in an amount of 5 to 25% by weight, preferably 7 to 15% by weight, in the resin solution.
本発明の糸状発熱体の抵抗値は、前記合成樹脂中に分散
含有されるカーボン粒子の含有量、積層する層の厚さ等
により適宜設定することができる。たとえば、前記配合
の場合では、1〜100に07mの抵抗値を得ることが
できる。このときの樹脂の体積抵抗率は糸の太さによる
が、およそ0.01〜10Ωである。用途によって導電
性微粒子ならびにそれと混用する合成樹脂を選択するこ
とができる。この糸状発熱体を更に複数本撚り合せ太く
することにより、抵抗値を小ざくすることも可能である
。本発明の糸状発熱体の発熱層は、1Mでもよいが、電
気抵抗値の調整、表面の平滑化等の目的で複数層積層す
ることができる。前記積層する数には特に制限はなり、
;通常1〜3回程度の積層で目的を遠し得る。その際、
各発熱層内に分散されたカーボン粒子の濃度は、例えば
、糸状発熱体の表面の平滑性を高める目的で変化させる
ことができる。The resistance value of the filamentous heating element of the present invention can be appropriately set depending on the content of carbon particles dispersed in the synthetic resin, the thickness of the laminated layers, etc. For example, in the case of the above formulation, a resistance value of 1 to 100.07 m can be obtained. The volume resistivity of the resin at this time depends on the thickness of the thread, but is approximately 0.01 to 10Ω. The conductive fine particles and the synthetic resin used in combination with the conductive fine particles can be selected depending on the purpose. It is also possible to reduce the resistance value by further twisting a plurality of filamentous heating elements to make them thicker. The heating layer of the filamentous heating element of the present invention may have a thickness of 1M, but may be laminated in multiple layers for the purpose of adjusting the electrical resistance value, smoothing the surface, etc. There is no particular restriction on the number of layers to be laminated,
; Normally, one to three layers of lamination may defeat the purpose. that time,
The concentration of carbon particles dispersed in each heating layer can be changed, for example, in order to improve the surface smoothness of the filamentous heating element.
その−例を示すと、最内層から順次12重量%、10重
量%、最外層を5重量%とする等として実施できる。For example, the content may be 12% by weight, 10% by weight from the innermost layer, 5% by weight from the outermost layer, etc.
ただし、1回で計量付着させることが工業的には好まし
い。However, it is industrially preferable to deposit the amount in one go.
本願発明の糸状発熱体の製造法では芯糸を被覆する導電
性合成樹脂層には気泡が存在することになる。気泡の存
在により前記柔軟性や繰返し耐久性を飛躍的に向上させ
ることができる。In the method for producing a filamentous heating element of the present invention, air bubbles are present in the conductive synthetic resin layer covering the core yarn. The presence of air bubbles can dramatically improve the flexibility and repeat durability.
また、本発明により糸軸方向の重量バラツキCvを6.
0%以下とすることができ、かつ芯糸が導電層のほぼ中
央部に位置する糸状発熱体ができ製品の可撓性にすぐれ
、かつ性能が従来の金属細線からなる製品と同等の水準
を満足する。Further, according to the present invention, the weight variation Cv in the yarn axis direction can be reduced to 6.
0% or less, and a thread-like heating element with the core thread located almost in the center of the conductive layer can be created, resulting in a product with excellent flexibility and performance comparable to products made of conventional thin metal wires. be satisfied.
すなわち、抵抗値バラツキを実用化レベルとすることが
できる。That is, the resistance value variation can be brought to a practical level.
本発明の糸状発熱体の製造方法の一例を挙げて次に示す
。An example of the method for producing the filamentous heating element of the present invention will be described below.
〈準備工程〉 芯糸の準備: 結び玉のない糸条を用意する。<Preparation process> Preparation of core thread: Prepare thread without knots.
導電性微粒子の樹脂懸濁液の準備:
適切な溶媒に、樹脂および導電性微粒子を溶解、懸濁さ
せ合成樹脂溶液を作る。その際、合成樹脂溶液の粘度を
2〜200ボイスに調整することが、均−付着および計
量装置の吐出効果の面から好ましい。また合成樹脂溶液
の固形分すなわち溶媒以外のW量割合は10〜50重量
%に調整することが、付着後の乾燥工程でのエネルギー
節約および懸濁・溶解工程の作業性の面から好ましい。Preparation of resin suspension of conductive fine particles: A synthetic resin solution is prepared by dissolving and suspending the resin and conductive fine particles in an appropriate solvent. At this time, it is preferable to adjust the viscosity of the synthetic resin solution to 2 to 200 voices in terms of uniform adhesion and the discharge effect of the metering device. In addition, it is preferable to adjust the solid content of the synthetic resin solution, that is, the proportion of W other than the solvent, to 10 to 50% by weight from the viewpoint of energy saving in the drying process after deposition and workability in the suspension/dissolution process.
該合成樹脂溶液は溶媒の蒸発を防ぐために、密閉容器に
封入する。The synthetic resin solution is sealed in a closed container to prevent evaporation of the solvent.
該溶液は微粒子を多量に含んでおり、放置しておくと、
構造粘性のために該溶液粘度が急激に上昇し、ポンプ効
率を落すなどの悪影響を起こす。これを防ぐために、該
溶液を常に流動させておくこと、特に攪拌することが好
ましい。The solution contains a large amount of fine particles, and if left alone,
Due to the structural viscosity, the viscosity of the solution increases rapidly, causing adverse effects such as a decrease in pump efficiency. In order to prevent this, it is preferable to keep the solution constantly flowing, especially to stir it.
(計量付着工程〉
導電性微粒子を懸濁させた前記合成樹脂溶液を攪拌しな
がら前記密閉容器から配管を通して計量装置に移送する
。計量装置は公知の計量ポンプ、特に歯車ポンプが好適
に用いられる。本発明の目的の一つは素線の抵抗値のバ
ラツキを小さくすることにあるが、計量装置により合成
樹脂溶液を計量しつつ芯糸に付着させることで、素線の
糸軸方向の付着量バラツキを極めて小さくすることが可
能となった。(Measuring and adhering step) The synthetic resin solution in which conductive fine particles are suspended is transferred from the closed container to a measuring device through piping while stirring.A known metering pump, particularly a gear pump, is suitably used as the measuring device. One of the purposes of the present invention is to reduce the variation in the resistance value of the strands, but by measuring the synthetic resin solution using a measuring device and making it adhere to the core yarn, the amount of adhesion in the axial direction of the strands can be reduced. It has become possible to extremely reduce variations.
計量された合成樹脂溶液はざらに配管中を被覆装置まで
移送される。被覆装置は例えば第1図に開示したものを
用いるが、ここにおいて、芯糸4は細孔に導かれ、該細
孔出口で導入口1から導入された合成樹脂溶液と合流付
着される。被覆装置は芯糸が走行する芯金2と該樹脂液
を導く口金3から構成される。The measured synthetic resin solution is roughly transported through piping to the coating device. The coating device used is, for example, the one shown in FIG. 1, in which the core yarn 4 is introduced into the pores, and at the outlet of the pores, it joins and adheres to the synthetic resin solution introduced from the inlet 1. The coating device is composed of a core metal 2 through which the core thread runs and a cap 3 through which the resin liquid is introduced.
これにより、合成樹脂溶液が芯糸周囲を完全被覆普した
素線8が形成される。As a result, a strand 8 is formed in which the periphery of the core thread is completely covered with the synthetic resin solution.
付着量バラツキを小さくするために、付着装置に芯糸を
定速で供給することが好ましい。In order to reduce variations in the amount of adhesion, it is preferable to feed the core yarn to the adhesion device at a constant speed.
そのためには付着装置の前および後述の乾燥工程の後の
糸をローラにより供給、引取る方法が好ましく用いられ
る。適度な張力で付着させるためには、前後ローラによ
り緊張状態とすることも好ましい。For this purpose, a method is preferably used in which the yarn is fed and taken up by a roller before the adhering device and after the drying step described below. In order to adhere with appropriate tension, it is also preferable to use front and rear rollers to create a tensioned state.
〈乾燥工程〉
計量・付着工程から引き出された芯糸は、次の乾燥工程
に送られる。乾燥は、通常の通気乾燥で良いが、生産性
の向上等を考慮して乾燥空気の加温、赤外線ランプによ
る加熱等、乾燥を促進するために通常用いられる各種の
手段を併用することができる。<Drying process> The core yarn pulled out from the weighing and attaching process is sent to the next drying process. For drying, normal ventilation drying may be used, but in order to improve productivity, various methods commonly used to accelerate drying may be used, such as heating the drying air or heating with an infrared lamp. .
かくして得られた本発明の糸状発熱体は、合成樹脂溶液
が均一付着するため、糸軸方向の樹脂付着量バラツキの
極めて低いものであり、また、乾燥固着式を採っている
ため、糸状発熱体内部に気泡が存在し可撓性に富み、発
熱体層と芯糸との接着が良好で、耐屈曲性、耐摩耗性等
の機械的強度が優れ、発熱線単位の長さ当りの抵抗値が
均一であり、これにより、製編織可能で、衣料分野、連
装分野、農業、水産、土木分野など各種の発熱体製品の
発熱素材として有利に利用できる。無論、自動車、電車
などの車両や航空機、船舶、宇宙ロケットなどあらゆる
乗物にも適用され得る。The thus obtained filamentous heating element of the present invention has extremely low variation in the amount of resin deposited in the direction of the filament axis because the synthetic resin solution is uniformly adhered thereto.Also, since the filamentous heating element employs a dry fixation method, the filamentous heating element It has air bubbles inside and is highly flexible, has good adhesion between the heating element layer and core yarn, has excellent mechanical strength such as bending resistance and abrasion resistance, and has a high resistance value per unit length of heating wire. is uniform, and as a result, it can be knitted and woven, and can be advantageously used as a heat-generating material for various heat-generating products in the fields of clothing, clothing, agriculture, fisheries, and civil engineering. Of course, it can be applied to all vehicles such as cars, trains, aircraft, ships, and space rockets.
以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.
なお、本発明における粘度の測定は次の方法によった。Note that the viscosity in the present invention was measured by the following method.
(粘 度)
試料をsoo mQの円筒容器に採取し、温度30°C
±1℃の条件でBM型回転粘度計(東京計器製)により
製造直後の粘度を測定する。(Viscosity) A sample was collected in a soo mQ cylindrical container, and the temperature was 30°C.
The viscosity immediately after production is measured using a BM type rotational viscometer (manufactured by Tokyo Keiki) at ±1°C.
尚、測定に先立ち試料はプロペラミキサーまたはホモミ
キサーにて十分攪拌する。In addition, prior to measurement, the sample is sufficiently stirred using a propeller mixer or a homomixer.
実施例1
ポリエステル型ポリウレタン樹脂(大日精化工業(株)
f4)メチルエチルケトンとジメチルホルムアミドとの
混合溶液(重量比80:20)に濃度18重量%となる
ように均一に溶解した後、平均粒径40mμのカーボン
ブラックおよび平均粒径8.8μmの黒鉛をカーボン懸
濁溶液に対してそれぞれ7および5型組%となるように
合成樹脂溶液を調整した。この溶液の粘度は35ボイズ
、固形分27重量%であった。芯糸はポリエステルを紡
糸速度 3000m /分で紡糸したのち、常法により
延伸仮ヨリ加工を行ないその後、190℃で熱板により
低トルク化し、150デニール96フイラメントの三葉
断面の仮ヨリ加工糸を得た。Example 1 Polyester type polyurethane resin (Dainichiseika Kagyo Co., Ltd.)
f4) After uniformly dissolving in a mixed solution of methyl ethyl ketone and dimethyl formamide (weight ratio 80:20) to a concentration of 18% by weight, carbon black with an average particle size of 40 mμ and graphite with an average particle size of 8.8 μm were dissolved in carbon. The synthetic resin solutions were adjusted to have a mold content of 7% and 5%, respectively, based on the suspension solution. The viscosity of this solution was 35 voids and the solid content was 27% by weight. For the core yarn, polyester was spun at a spinning speed of 3000 m/min, and then drawn and pre-twisted using a conventional method.Then, the torque was reduced using a hot plate at 190°C to create a 150-denier, 96-filament trilobal cross-section pre-twisted yarn. Obtained.
この糸を4本合糸し、芯糸とした。芯糸の密度は1.3
85で芯糸の見掛は直径はd−0,25mである。Four of these threads were combined to form a core thread. The density of the core yarn is 1.3
85, the apparent diameter of the core yarn is d-0.25 m.
前記合成樹脂溶液を密閉容器に封入し、攪拌し、1回転
0.017ccの容量の歯車ポンプを用いて密閉容器か
ら合成樹脂溶液を付着装置へ移送した。付着装置は第1
図を用い、ニップルの内径0.4Mφ、ダイの内径を0
.55 mφとした。The synthetic resin solution was sealed in a sealed container, stirred, and transferred from the sealed container to a deposition device using a gear pump with a capacity of 0.017 cc per rotation. The deposition device is the first
Using the diagram, set the inner diameter of the nipple to 0.4Mφ and the inner diameter of the die to 0.
.. It was set to 55 mφ.
吐出量0.491CC/分で8ケ所の吐出孔からニップ
ルとダイの空隙に該溶液を充填供給し前記の芯糸に周囲
より付着させた。芯糸は周速2m/分のローラにより定
速で付着装置に送り出した。The solution was filled and supplied into the gap between the nipple and the die through eight discharge holes at a discharge rate of 0.491 CC/min, and adhered to the core yarn from the periphery. The core yarn was sent to the adhesion device at a constant speed by a roller with a circumferential speed of 2 m/min.
付着装置直前の糸張力は105gであった。付着装置後
15(Jの位置に設けた長さ2.5mの加熱筒により溶
媒を蒸発させた。この際、加熱筒内壁温度を190℃と
することで溶剤の蒸発を早め発泡を促し、かつ合成樹脂
溶液の固形化を早めて気泡が発熱層内に取り込まれるよ
うにした。このようにして導電性微粒子を分散含有した
合成樹脂を芯糸に固着させ、周速2m/分のローラによ
り引取った。The thread tension just before the applicator was 105 g. After the deposition device, the solvent was evaporated using a heating cylinder with a length of 2.5 m installed at position 15 (J).At this time, the temperature of the inner wall of the heating cylinder was set to 190°C to accelerate the evaporation of the solvent and promote foaming. The solidification of the synthetic resin solution was accelerated to allow air bubbles to be incorporated into the heat generating layer.In this way, the synthetic resin containing dispersed conductive particles was fixed to the core thread, and then pulled by a roller at a circumferential speed of 2 m/min. I took it.
得られた糸状発熱体を糸軸方向に25 Cmずつ40本
の型口を連続して測定したところ平均値0、034(J
/25CIn、標準偏差0.00051、標Q偏差を平
均値で除したCV値は1.5%でおった。また、同じ糸
の抵抗値を測定したところ平均値4.15にΩ/25c
m、標準偏差0.125、Cv値は3.0%であった。When the obtained filamentous heating element was continuously measured using 40 mold openings of 25 cm each in the filament axis direction, the average value was 0.034 (J
/25CIn, standard deviation 0.00051, and the CV value obtained by dividing the standard Q deviation by the average value was 1.5%. In addition, when the resistance value of the same thread was measured, the average value was 4.15Ω/25c.
m, standard deviation was 0.125, and Cv value was 3.0%.
このことから、本発明の方法により合成樹脂溶液が糸軸
方向に均一に固着することにより、糸状発熱体の抵抗値
のバラツキは極めて小さいものとなった。From this, it was found that the method of the present invention allowed the synthetic resin solution to adhere uniformly in the yarn axis direction, and thus the variation in the resistance value of the filamentous heating element became extremely small.
第2図によって前記糸状発熱体を用いて得た布帛状の発
熱体について説明する。図の布帛状の発熱体15は、経
糸には銅線をすず鍍金した電気電極線16とポリエステ
ル糸条17とを用い、緯糸には前記糸状発熱体8と発熱
量調節用のポリエステル糸条18とを用い通常の織薇に
よって布帛状発熱体とした。ざらに絶縁被覆する目的で
布帛両面をポリエチレンによりコーティングした。また
、前記電極線16に電流を通ずるリード線19をハンダ
付け20によって接続した。この布帛状発熱体をベスト
の裏地に縫い付けたものにNi −Cd電池から電気を
供給したところ、局所的な温度ムラがなく、極めて柔軟
でおり、試着者に好評でめった。A fabric-like heating element obtained using the thread-like heating element will be explained with reference to FIG. The fabric-like heating element 15 shown in the figure uses an electric electrode wire 16 made of tin-plated copper wire and a polyester thread 17 for the warp, and the thread-like heating element 8 and a polyester thread 18 for adjusting the amount of heat generated for the weft. A fabric-like heating element was made using ordinary weaving. Both sides of the fabric were coated with polyethylene for the purpose of providing a rough insulation coating. Further, a lead wire 19 through which current is passed was connected to the electrode wire 16 by soldering 20. When electricity was supplied from a Ni--Cd battery to this fabric-like heating element sewn onto the lining of a vest, it was found to be extremely flexible with no local temperature unevenness, and was well received by those who tried it on.
比較実施例1
実施例1のカーボン粒子を含む合成樹脂溶液に芯糸を浸
漬し、0.9mの径を有するノズルから引出す方法によ
り糸状発熱体を得た。重量バラツキCVが5.0%、抵
抗値バラツキC■が9.5%であり、計量給液した場合
に比べ、重量バラツキC■が高く、付着量のバラツキが
見られ、それに呼応して抵抗値の均一性が悪かった。Comparative Example 1 A filamentous heating element was obtained by immersing the core yarn in the synthetic resin solution containing the carbon particles of Example 1 and pulling it out from a nozzle having a diameter of 0.9 m. The weight variation CV is 5.0%, and the resistance value variation C■ is 9.5%. Compared to the case of metered liquid supply, the weight variation C■ is higher, and there is variation in the amount of adhesion. The uniformity of values was poor.
ざらに実施例1と同様に布帛状発熱体を製作し、ベスト
の裏地に縫い付は電流を流したところ、局所的な温度異
常が発生し、試着者に不評であった。A cloth-like heating element was manufactured in the same manner as in Example 1, and when it was sewn into the lining of a vest and a current was passed through it, local temperature abnormalities occurred, which was unpopular with those who tried it on.
実施例2
第1図に示した被覆装置に於いて、ニップルの内径D1
とダイの内径D2を表1の様に種々変化させた以外は、
実施例1と同様な方法で糸状発熱体を得た。表1に操業
性を示した。なお実験番号N、1,5,9.10を除い
たすべての水準とも、糸状発熱体としての重量バラツキ
、抵抗値バラツキはすべて実施例1と同じレベルで満足
できる均一な抵抗値の糸状発熱体であった。実験N、2
,3,4.6,7.8が操作性、操業性が安定しており
、糸状発熱体特性も良く、より好ましいものでおった。Example 2 In the coating device shown in FIG. 1, the inner diameter D1 of the nipple
and the inner diameter D2 of the die was varied as shown in Table 1.
A filamentous heating element was obtained in the same manner as in Example 1. Table 1 shows the operability. In addition, for all levels except experiment numbers N, 1, 5, and 9.10, the weight variation and resistance value variation as a thread-like heating element are all at the same level as Example 1, and the thread-like heating element has a uniform resistance value. Met. Experiment N, 2
, 3, 4.6, and 7.8 were more preferable because they had stable operability and operability, and had good filamentous heating element characteristics.
(以下余白)
表1
〔発明の効果〕
本発明の方法によれば、合成樹脂溶液付着量のバラツキ
が小ざく、かつ抵抗値のバラツキを小さく制御できるた
め、製品としたときの温度バラツキを全く感じさせない
程に小ざく押えることができる。(Margins below) Table 1 [Effects of the Invention] According to the method of the present invention, variations in the amount of synthetic resin solution deposited are small and variations in resistance value can be controlled to be small, so temperature variations when manufactured into products can be completely eliminated. You can press it so small that you won't feel it.
【図面の簡単な説明】
第1図は、本発明に用いる被覆装置の一例である。
第2図は糸状発熱体を製織して得た布帛状発熱体の説明
図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an example of a coating device used in the present invention. FIG. 2 is an explanatory diagram of a fabric-like heating element obtained by weaving a thread-like heating element.
Claims (2)
により計量しつつ芯糸を被覆装置の細孔に導き該細孔出
口で、該合成樹脂溶液と合流付着させ、しかるのちに乾
燥固着させて導電性微粒子を分散含有する合成樹脂の導
電層を前記芯糸上に形成させることを特徴とする糸状発
熱体の製造方法。(1) While measuring the synthetic resin solution in which conductive fine particles are suspended using a measuring device, the core thread is introduced into the pores of the coating device, where it joins and adheres to the synthetic resin solution at the exit of the pore, and is then dried and fixed. A method for producing a filamentous heating element, comprising: forming a conductive layer of a synthetic resin containing conductive fine particles dispersed thereon on the core yarn.
分の内径D_1と樹脂溶液を導く口金の出口部分の内径
D_2が下式を満足し、かつ芯金と口金が実質的に中心
線を同じくすることを特徴とする特許請求の範囲第(1
)項に記載の糸状発熱体の製造方法。 d+0.05≦D_1≦d+0.4 D_1<D_2≦2.0 ただし、 d=20√{(芯糸の繊度)/9π×10^5×(芯糸
の密度)}(単位はすべてmm)(2) In the coating device, the inner diameter D_1 of the exit portion of the core bar through which the core thread runs and the inner diameter D_2 of the outlet port of the cap that guides the resin solution satisfy the following formula, and the core bar and the cap are substantially centered on the center line. Claim No. 1 (1) characterized in that
) The method for producing a filamentous heating element according to item 1. d+0.05≦D_1≦d+0.4 D_1<D_2≦2.0 However, d=20√{(Fineness of core yarn)/9π×10^5×(Density of core yarn)} (All units are mm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10164687A JPS63270866A (en) | 1987-04-24 | 1987-04-24 | Production of yarn like heat generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10164687A JPS63270866A (en) | 1987-04-24 | 1987-04-24 | Production of yarn like heat generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63270866A true JPS63270866A (en) | 1988-11-08 |
Family
ID=14306142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10164687A Pending JPS63270866A (en) | 1987-04-24 | 1987-04-24 | Production of yarn like heat generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63270866A (en) |
-
1987
- 1987-04-24 JP JP10164687A patent/JPS63270866A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3958066A (en) | Conductive synthetic fibers | |
US4983814A (en) | Fibrous heating element | |
US4756969A (en) | Highly electrically conductive filament and a process for preparation thereof | |
WO2010134762A2 (en) | Silver yarn, plied yarn silver yarn, functional fabric using same, and method for producing same | |
CN101421197B (en) | Process and device for manufacturing a composite strand | |
CN111155201B (en) | Polyacrylonitrile/carbon nanotube composite fiber and preparation method and application thereof | |
US3019515A (en) | Metal coated glass fibers | |
US2848390A (en) | Method and apparatus for applying metal to glass | |
JPS63270866A (en) | Production of yarn like heat generator | |
KR100754322B1 (en) | Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method for carbon thread using the apparatus | |
JPS63270867A (en) | Production of yarn like heat generator | |
US3269883A (en) | Method for producing electrically-conductive elements | |
JPS63270868A (en) | Production of yarn like heat generator | |
JPS63270869A (en) | Production of yarn like heat generator | |
JPS63270827A (en) | Yarn-shaped heat generator and its production | |
JPS63270870A (en) | Production of flexible yarn like heat generator | |
JP2870938B2 (en) | Glass cloth for printed circuit boards | |
JPS62100971A (en) | String heater element and manufacture of the same | |
JP2541215B2 (en) | Filiform heating element and manufacturing method thereof | |
KR100942805B1 (en) | Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method | |
JPS6366889A (en) | Filament heater | |
JPS62100969A (en) | String heater element | |
JPS6366886A (en) | Filament heater | |
JPS63270829A (en) | Yarn-shaped heat generator and its production | |
JPH02300378A (en) | Electroconductive yarn |