JPS63270869A - Production of yarn like heat generator - Google Patents

Production of yarn like heat generator

Info

Publication number
JPS63270869A
JPS63270869A JP10200887A JP10200887A JPS63270869A JP S63270869 A JPS63270869 A JP S63270869A JP 10200887 A JP10200887 A JP 10200887A JP 10200887 A JP10200887 A JP 10200887A JP S63270869 A JPS63270869 A JP S63270869A
Authority
JP
Japan
Prior art keywords
synthetic resin
yarn
heating element
core yarn
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200887A
Other languages
Japanese (ja)
Inventor
裕平 前田
洋 高橋
岡 研一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10200887A priority Critical patent/JPS63270869A/en
Publication of JPS63270869A publication Critical patent/JPS63270869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は可撓性に富み、長期の使用に耐える電気的に発
熱する糸状発熱体の効率的な製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an efficient method for producing an electrically heated filamentous heating element that is highly flexible and durable for long-term use.

[従来の技術] 従来から計器類の保温ないし加熱用に金属細線から成る
可撓性の発熱線が使用されているが、特に電気毛イ5、
電気カーペット等民生用にも広く普及し、その便利さか
ら今後益々商品に多用化が促進される趨勢にある。
[Prior Art] Flexible heat-generating wires made of thin metal wires have been used for keeping instruments warm or heating them, but in particular electric wool wires5,
It has become widely used in consumer products such as electric carpets, and due to its convenience, it is likely to be used in more and more products in the future.

従来これらの発熱体には、ステンレス線、ニクロム線等
の金属細線から成る抵抗体が使用されていたが、前記の
各製品に可撓性であることを要求される場合には、可撓
性の芯糸に極細い抵抗線をスパイラル状に捲き付けたも
の、布帛上にカーボンを樹脂バインダーにより固着させ
たもの等が使用されている。
Conventionally, resistors made of fine metal wires such as stainless steel wires and nichrome wires have been used in these heating elements, but if the above-mentioned products are required to be flexible, flexible Some examples include those in which ultra-thin resistance wire is spirally wound around a core yarn, and those in which carbon is fixed to a fabric using a resin binder.

しかしながら、これらは何れも、耐屈曲性、耐摩耗性等
の点で要求する性能を満すことができず、また、可撓性
が不足しており、改善が要求されている。
However, none of these materials can satisfy the required performance in terms of bending resistance, abrasion resistance, etc., and also lacks flexibility, so improvements are required.

この問題を解決しようと試みたものに、実公昭38−1
471公報がある。これは、芯糸のまわりに導電性微粒
子を配合したゴムまたはプラスチック層を設けることに
より、発熱体の可撓性を高めたものでおる。しかし、そ
の製造方法は電線製造のそれでおり、導電性ゴムまたは
プラスチックの加熱溶融部、保温配管部、溶融被覆部か
らなる大掛かりな装置を使用する。
An attempt was made to solve this problem by
There is a 471 publication. This increases the flexibility of the heating element by providing a rubber or plastic layer containing conductive fine particles around the core yarn. However, the manufacturing method is that of electric wire manufacturing, and uses large-scale equipment consisting of a conductive rubber or plastic heating and melting section, a heat-insulating piping section, and a melt-coating section.

溶融被覆部には芯糸の導入導出のための1m以下の径を
もつ2つの細孔が設けられ、かつゴムまたはプラスチッ
クが流動性をもつ程度の高温に保温されている。したが
って、芯糸を前記2つ細孔に通す作業は非常に操作性が
悪い。しかも得られた発熱体の可撓性レベルは金属細線
に比べて向上したものの衣料分野におけるライダースー
ツ、ダイパー服、インナースーツ、手袋、靴など、ある
いは電気毛布のように高度の耐屈曲性を要求される分野
には、そのレベルは極めて低いものであり、現状では実
用化に至っていない。
The melt-coated portion is provided with two pores each having a diameter of 1 m or less for introducing and extracting the core yarn, and is kept at a high temperature that allows the rubber or plastic to have fluidity. Therefore, the operation of passing the core yarn through the two pores is very difficult to operate. Moreover, although the flexibility level of the obtained heating element is improved compared to thin metal wire, it is used in the clothing field such as rider suits, diaper suits, inner suits, gloves, shoes, etc., and requires a high degree of bending resistance such as electric blankets. In the field where it is used, its level is extremely low, and it has not yet been put into practical use.

また、実公昭39−37687%公報には導電性微粒子
を配合した樹脂を溶液とし、芯糸に塗布後説溶媒固着さ
せる方法が開示されている。
Further, Japanese Utility Model Publication No. 39-37687 discloses a method in which a solution of a resin containing conductive fine particles is applied to a core yarn and then fixed in a solvent.

塗布とはすなわち芯糸を溶液中に浸漬した後、細孔やス
リット等で過剰溶液を取除く方法であり、前述の溶融被
覆方法に比べて装置は簡略化され、操作性も若干良い。
Coating is a method in which the core yarn is immersed in a solution and then excess solution is removed through pores, slits, etc., and the equipment is simpler and the operability is slightly better than in the melt coating method described above.

しかしこの方法で得られる発熱体は、溶液が均一に塗布
できないために通電したときに温度ムラが生じ、火傷、
火災を引起こす可能性さえ存在する。したがって糸状発
熱体の適切な製造方法は認められない。
However, the heating element obtained by this method has uneven temperature when energized because the solution cannot be applied uniformly, resulting in burns and
There is even a possibility of starting a fire. Therefore, an appropriate method for producing filamentous heating elements is not recognized.

その他、可撓性に富む発熱体を)qる試みとして、特開
昭51−109321号公報がある。
In addition, Japanese Patent Application Laid-Open No. 109321/1984 is an attempt to create a highly flexible heating element.

これは、ナイロンのコンジュゲートフィラメントを加熱
により軟化させるかあるいは膨潤剤により膨潤させて、
カーボン粒子をフィラメント表層部に固着させて糸状の
発熱体としたものである。この発熱体は、長さ当りの抵
抗値が高すぎ、発熱素子として用いるには適さないもの
である。また、カーボン粒子を均一に固着させるのは難
しく、したがって抵抗値にバラツキが大きく、要求され
る抵抗値のものを工業的に安定して供給することができ
ない。
This is done by softening the nylon conjugate filament by heating or swelling it with a swelling agent.
Carbon particles are fixed to the surface layer of a filament to form a thread-like heating element. This heating element has too high a resistance value per length and is not suitable for use as a heating element. Further, it is difficult to uniformly fix carbon particles, and therefore the resistance value varies widely, making it impossible to stably supply the required resistance value industrially.

[発明が解決しようとする問題点] 本発明は、かかる従来の問題点を改善し、抵抗値のバラ
ツキが小さく、可撓性に富み、導電層と芯糸との接着性
が良好で屈曲、摩耗等により剥離し難く、長期間安定し
て使用し得る糸状の発熱体を操作性良好に高効率に製造
する方上記の問題点を解決するために、本発明の糸状発
熱体は、次の構成を有する。すなわち導電性微粒子を懸
濁した合成樹脂溶液を計量装置により計量しつつ芯糸に
付着させ、次いで凝固浴にて凝固させたのち乾燥固着さ
せて導電性微粒子を分散含有する合成樹脂の導電層を前
記芯糸上に形成させることを特徴とする糸状発熱体の製
み方法である。
[Problems to be Solved by the Invention] The present invention improves these conventional problems, and provides a fabric with small variations in resistance value, high flexibility, good adhesion between the conductive layer and the core yarn, and bendable, To efficiently manufacture a thread-like heating element with good operability and which is difficult to peel off due to wear etc. and can be used stably for a long period of time.In order to solve the above problems, the thread-like heating element of the present invention has the following features. It has a configuration. That is, a synthetic resin solution in which conductive fine particles are suspended is adhered to the core thread while being measured using a metering device, then coagulated in a coagulation bath, and then dried and fixed to form a conductive layer of synthetic resin containing conductive fine particles dispersed therein. This is a method for manufacturing a filamentous heating element, characterized in that it is formed on the core yarn.

本発明の最大のポイントは凝固浴を用いることにより脱
溶媒を促進し、乾燥工程を含めたトータルの乾燥効率を
向上し、生産速度を高めることである。
The main point of the present invention is to promote solvent removal by using a coagulation bath, improve the total drying efficiency including the drying process, and increase the production rate.

本発明に好適に用いられる全体プロセスを例を挙げて具
体的に説明する。
The overall process suitably used in the present invention will be specifically explained by giving an example.

第1図において、芯糸1は駆動系2,3により各工程を
走行する。解舒された芯糸1はゲートテンサー4を通過
したのち、付着装置5により、導電性微粒子を懸濁した
合成樹脂溶液に被覆される。ざらに該被覆糸は凝固浴6
により脱溶媒される。該凝固浴には凝固液が満たされて
いる。
In FIG. 1, the core yarn 1 is run through each process by drive systems 2 and 3. After the unwound core yarn 1 passes through a gate tensor 4, it is coated by a coating device 5 with a synthetic resin solution in which conductive fine particles are suspended. The coated yarn is soaked in a coagulation bath 6.
The solvent is removed by The coagulation bath is filled with a coagulation liquid.

凝固浴は、複数個設置することができ、その際はスムー
ズな凝固を達成させるために下流側はど凝固゛浴濃度を
低くすることが好ましい。
A plurality of coagulation baths may be installed, and in that case, it is preferable to lower the coagulation bath concentration on the downstream side in order to achieve smooth coagulation.

凝固浴から上がった芯糸は乾燥工程前に圧空を用いた水
切り装置7により液体弁を除去される。凝固浴と該水切
り装置前に水洗浴を設けることもできる。
The liquid valve is removed from the core yarn that has come out of the coagulation bath by a draining device 7 using compressed air before the drying process. A washing bath can also be provided before the coagulation bath and the draining device.

本発明において乾燥工程8は必須である。前記工程を通
過した芯糸の周囲には、該合成樹脂溶液の固形分以外に
、若干の残存溶媒及び内部に拡散した凝固浴成分が含ま
れている。そのため、該芯糸の単位長さ当たりの抵抗値
は、該残存溶媒や該凝固浴成分の最に応じて、バラツキ
が極めて大きくまた自然乾燥により徐々に抵抗値が変化
するなど、生産管理ができないばかりか、温度ムラなと
最終製品のヒーターとしての性能にも問題を生ずる。
In the present invention, the drying step 8 is essential. The area around the core yarn that has passed through the above process contains, in addition to the solid content of the synthetic resin solution, some residual solvent and coagulation bath components that have diffused inside. Therefore, the resistance value per unit length of the core yarn varies greatly depending on the residual solvent and coagulation bath components, and the resistance value gradually changes due to natural drying, making it impossible to control production. Not only that, uneven temperature also causes problems in the performance of the final product as a heater.

上記目的のために、該乾燥工程8は公知の乾燥方法、例
えば、通常の通気乾燥などで該残存溶媒などを除去する
。乾燥工程8は、第1図のように水切り装置の後に設置
する場合の他に、凝固浴通過の後、乾燥工程を経ずに巻
取り、巻取糸9を乾燥機に投入し完全乾燥する方法を用
いることができ、さらに、両者を併用することにより、
乾燥がより確実となる。ただし、設備的にtよ巻取り前
に完全乾燥させることが好ましく、乾燥工程を経ずに巻
取る場合は、巻取系が粘着性をもたないことが要求され
る。
For the above purpose, in the drying step 8, the residual solvent is removed by a known drying method, such as ordinary ventilation drying. In the drying step 8, in addition to the case where the thread is installed after the draining device as shown in Fig. 1, after passing through the coagulation bath, the thread is wound without going through the drying step, and the wound thread 9 is put into a dryer and completely dried. Furthermore, by using both methods,
Drying becomes more reliable. However, in terms of equipment, it is preferable to completely dry the material before winding it up, and when winding it up without going through a drying process, the winding system is required to have no stickiness.

本発明に好適に用いられる他のプロセスの例を第2図に
示す。
An example of another process suitably used in the present invention is shown in FIG.

供給ローラ2及び引取りローラ3により芯糸は定速で走
行する。芯糸1は下方から付着装置5に入り、導電性微
粒子を懸濁した合成樹脂溶液を被覆し、吐出後直ちに凝
固浴6に引出される。前述の第1例と同様の条件で脱溶
媒され、引続き乾燥工程8に導かれる。第2図には芯糸
は垂直上方に引出す方法を示したが、横あるいは斜め上
方に引出すことも問題はない。
The core yarn runs at a constant speed by the supply roller 2 and the take-up roller 3. The core yarn 1 enters the adhesion device 5 from below, is coated with a synthetic resin solution in which conductive fine particles are suspended, and immediately drawn out into the coagulation bath 6 after being discharged. The solvent is removed under the same conditions as in the first example, and then the product is led to the drying step 8. Although FIG. 2 shows a method in which the core yarn is drawn out vertically upward, there is no problem in drawing it out horizontally or diagonally upward.

本発明のもう一つの重要な点は、導電性微粒子を懸濁し
た合成樹脂溶液を芯糸に付着させる際、該合成樹脂溶液
を計量装置により計量しつつ付着させることである。こ
れにより、導電性微粒子を分散含有した合成樹脂層を芯
糸に均一に被覆することができ、糸状発熱体の糸長方向
の重量バラツキCv値を6%以下とすることができる。
Another important point of the present invention is that when attaching the synthetic resin solution in which conductive fine particles are suspended to the core yarn, the synthetic resin solution is measured while being attached using a metering device. Thereby, the core yarn can be uniformly coated with the synthetic resin layer containing conductive fine particles dispersed therein, and the weight variation Cv value in the yarn length direction of the filamentous heating element can be made 6% or less.

このことはひいては長さ当たりの抵抗値バラツキを小さ
いものとし、最終製品としたときの温度ムラを従来の金
属細線を用いたものと同程度のレベルとすることができ
るのである。
This in turn makes it possible to reduce the variation in resistance value per length, and when the product is made into a final product, the temperature unevenness can be made to the same level as that using conventional thin metal wires.

計量された該合成樹脂溶液は、計量装置から付着装置ま
で移送され、芯糸に付着される。付着装置は公知のもの
でよいが、芯糸に連続して一定量ずつ付着させるために
は合成樹脂溶液の吐出孔から芯糸が付着装置から離れる
までの距離が短かいことが好ましい。付着装置は、糸掛
は性が良好なことが@要であり、そのためには芯糸の糸
道ガイドに吐出孔の穿たれたものが好ましく用いられる
。また、付着装置内で芯糸の糸道が動かないために、V
字溝、U字溝、平溝のいずれかの糸道溝が存在し該糸道
溝の四分に吐出孔が穿たれた糸道ガイドを付着装置とし
て用いることが特に好ましい。第3図に糸道ガイドを上
から見た図を一例として示す。破線で示した部分が計量
された合成樹脂溶液の移送路である。第3図(a)がV
字溝、(b)がU字溝、(C)が平溝の糸道溝の図であ
る。より完全な被覆のためには、該糸道ガイドを芯糸に
相異なる方向から近接して複数個設置することが好まし
く用いられる。糸道ガイドの他の態様として、糸道に複
数の吐出孔を設けたものが好適に用いられる。これを第
4図に示すが、このガイドは、合成樹脂溶液を一つのガ
イドで芯糸に均一被覆できる点で有利である。
The measured synthetic resin solution is transferred from the measuring device to the adhering device and is applied to the core yarn. The attachment device may be a known one, but in order to continuously attach a constant amount to the core yarn, it is preferable that the distance from the discharge hole of the synthetic resin solution to the time when the core yarn leaves the attachment device is short. It is important for the attachment device to have good thread hooking properties, and for this purpose it is preferably used that has a discharge hole drilled in the thread guide for the core thread. In addition, since the thread path of the core thread does not move within the attachment device, V
It is particularly preferable to use a yarn guide as the adhering device, which has a yarn guide groove of any one of a groove, a U-shape, and a flat groove, and has discharge holes bored in every quarter of the yarn guide groove. FIG. 3 shows an example of a top view of the thread guide. The part indicated by the broken line is the transfer path for the measured synthetic resin solution. Figure 3(a) is V
(b) is a U-shaped groove, and (C) is a flat groove. For more complete coverage, it is preferable to install a plurality of yarn guides close to the core yarn from different directions. As another embodiment of the yarn path guide, one in which a plurality of discharge holes are provided in the yarn path is preferably used. This is shown in FIG. 4, and this guide is advantageous in that the synthetic resin solution can be uniformly coated on the core yarn with one guide.

以上述べた糸道ガイドの付着装置は第1図に示すプロセ
スに適している。第1,2図ともに適している付着装置
について次に説明する。それは、電線被覆装置の被覆部
分に類似の構造をもつものであり、第5図に示すように
ニップル12の細孔に芯糸1を導入し、該細孔出口で該
合成樹脂溶液10を合流被覆させ、ダイ13の吐出孔よ
り引出す方法である。これら二つの孔の孔径は芯糸の毛
羽立ち、該合成樹脂溶液のニップル側への逆流、該合成
樹脂溶液の被覆ムラなどを防止するよう設計されるべき
であり、ニップル細孔径D + 、ダイ吐出孔径D2は
、d+0.05≦D1≦d+0.4 DI<D2≦2 の如く設計されることが好ましい。上式の単位はmであ
り、dは芯糸の直径に相当する値であり、 により計算される。ここで繊度、密度の単位はデニール
、9/cnfである。
The yarn guide attachment device described above is suitable for the process shown in FIG. A suitable deposition device for both FIGS. 1 and 2 will now be described. It has a structure similar to the coating part of a wire coating device, and as shown in FIG. This is a method of coating the resin and drawing it out from the discharge hole of the die 13. The diameters of these two holes should be designed to prevent fuzzing of the core yarn, backflow of the synthetic resin solution to the nipple side, uneven coating of the synthetic resin solution, etc. The pore diameter D2 is preferably designed as follows: d+0.05≦D1≦d+0.4 DI<D2≦2. The unit of the above formula is m, and d is a value corresponding to the diameter of the core yarn, which is calculated as follows. Here, the unit of fineness and density is denier, 9/cnf.

本発明に用いる芯糸の素材としては、合成繊維または天
然繊維の糸を用いる。これらは発熱体として通常使用さ
れる温度、すなわち、20〜100′Cの範囲で長期間
安定した性能を維持するものであり、また導電層との接
着性が良好でおれば良い。ポリアミド、ポリエステル、
ポリオレフィンなどの熱可塑性合成繊維は、非吸湿性、
耐薬品性が良好であり、上記温度範囲での熱劣化が少な
いほか、万一局部的に異常加熱が生じた場合には溶断す
るというヒユーズ機能を有す、るので好ましい。また、
芳香族ポリアミド、ポリベンズイミダゾール、ポリフェ
ニレントリアゾール、ポリオキサジアゾール、ポリイミ
ド、熱硬化性樹脂繊維などの耐熱性繊維を用いれば使用
可能な温度範囲を高くでき、製品寿命を茗しく延ばすこ
とができるなどの利点があり好ましい。
As the material for the core thread used in the present invention, synthetic fiber or natural fiber thread is used. It is sufficient that these materials maintain stable performance for a long period of time at temperatures normally used as heating elements, that is, in the range of 20 to 100'C, and have good adhesion to the conductive layer. polyamide, polyester,
Thermoplastic synthetic fibers such as polyolefins are non-hygroscopic,
It is preferable because it has good chemical resistance, little thermal deterioration in the above temperature range, and has a fuse function that blows out if abnormal heating occurs locally. Also,
By using heat-resistant fibers such as aromatic polyamide, polybenzimidazole, polyphenylene triazole, polyoxadiazole, polyimide, and thermosetting resin fibers, the usable temperature range can be increased and the product life can be extended gracefully. It is preferable because it has the following advantages.

本発明に用いる芯糸の形態は、合成樹脂との接着性、合
成樹脂溶液の吸収性が良好なこと、吸収後乾燥固着した
ときの糸状発熱体の表面特性、すなわち突起や太細のな
いスムーズな表面、偏平でない糸状発熱体の断面が達せ
られること、ざらには糸状発熱体としたときの外力に対
する抵抗力、たとえば引張り強度、伸度、初期ヤング率
、耐屈曲性、耐摩耗性に優れていることなどを考慮して
用途に応じて適宜選択することができる。具体的には、
紡績系、毛焼きした紡績糸、フラットヤーン、嵩高加工
糸、あるいはその撚糸、双糸、玉子などあるいは流体加
工処理した高交絡糸、タスラン糸、合成繊維のバイメタ
ル複合繊維や非対称冷却系などが挙げられる。
The form of the core yarn used in the present invention is such that it has good adhesion with synthetic resin, good absorption of synthetic resin solution, and the surface characteristics of the filament heating element when dried and fixed after absorption, i.e., smooth without protrusions or thick and thin. The filament heating element has a flat surface, a non-flat cross section, and a filament heating element with excellent resistance to external forces, such as tensile strength, elongation, initial Young's modulus, bending resistance, and abrasion resistance. It can be selected as appropriate depending on the application, taking into consideration the following factors: in particular,
Examples include spun yarns, burnt spun yarns, flat yarns, bulky processed yarns, twisted yarns, double yarns, egg yarns, etc., highly entangled yarns processed with fluid processing, taslan yarns, bimetallic composite fibers of synthetic fibers, and asymmetric cooling systems. It will be done.

本発明に用いる導電性微粒子を分散含有する合成樹脂は
、温度に対して安定した性能を保ち、接着性、耐屈曲性
、耐摩耗性等に優れた合成樹脂ならば、特に限定しない
が、好適に使用され得る樹脂としては、ポリウレタン系
樹脂、アクリル系樹脂、ブチラール樹脂等が挙げられ、
待に可撓性のものが好ましく選択される。
The synthetic resin containing dispersed conductive fine particles used in the present invention is not particularly limited, but is suitable as long as it maintains stable performance against temperature and has excellent adhesiveness, bending resistance, abrasion resistance, etc. Examples of resins that can be used include polyurethane resins, acrylic resins, butyral resins, etc.
A flexible one is preferably selected.

本発明に用いられる導電性微粒子としては、たとえば、
カーボン粒子、金属粒子が代表的なものとして挙げられ
る。たとえば、カーボン粒子としては、通常各種のカー
ボンブラックを使用することができ、粒子径としては、
1〜500TrLμのものが好ましく、特に10〜20
0TrLμのものが好ましく使用される。
As the conductive fine particles used in the present invention, for example,
Representative examples include carbon particles and metal particles. For example, various types of carbon black can usually be used as carbon particles, and the particle size is as follows:
1 to 500 TrLμ is preferable, especially 10 to 20
0TrLμ is preferably used.

また、カーボン粒子として黒鉛を使用することができ、
黒鉛としては天然黒鉛すなわちりん状黒鉛、りん片状黒
鉛、生状黒鉛、あるいは人造黒鉛の1〜100μ卯の大
きざのものが好ましく使用されるが、特にりん状黒鉛あ
るいはりん片状黒鉛の5〜50μmの大きさのものが好
ましく使用される。さらに前記カーボン粒子としてカー
ボンブラックと黒鉛とを混合使用することも好ましい。
Also, graphite can be used as carbon particles,
As the graphite, natural graphite, ie, phosphorous graphite, flaky graphite, raw graphite, or artificial graphite with a size of 1 to 100 μm is preferably used, and in particular, phosphorous graphite or flaky graphite with a size of 1 to 100 μm is preferably used. Those having a size of ~50 μm are preferably used. Furthermore, it is also preferable to use a mixture of carbon black and graphite as the carbon particles.

カーボン粒子の使用量は所望する抵抗値により適宜変更
される。発熱素子として所望の抵抗値とするためには、
前記樹脂溶液中のカーボン粒子量は5〜25重量%が好
ましく、7〜15重量%が特に好ましく使用される。
The amount of carbon particles used can be changed as appropriate depending on the desired resistance value. In order to obtain the desired resistance value as a heating element,
The amount of carbon particles in the resin solution is preferably 5 to 25% by weight, particularly preferably 7 to 15% by weight.

この程度の但の導電性微粒子を懸濁した合成樹脂溶液は
、放置しておくと構造粘性を示すために、粘度が数倍に
上昇する。このため、後述する計量装置の効率が悪化し
、該合成樹脂溶液の付着ムラが発生する。したがって、
この改善処置として、計広前に貯留している該合成樹脂
溶液が常に流動状態を保つように該合成樹脂溶液を攪拌
しておくことが好ましい。
A synthetic resin solution in which such conductive fine particles are suspended exhibits structural viscosity and its viscosity increases several times when it is left standing. For this reason, the efficiency of the measuring device described later deteriorates, and uneven adhesion of the synthetic resin solution occurs. therefore,
As a remedy for this, it is preferable to stir the stored synthetic resin solution so that it always remains in a fluid state before spreading.

本発明の糸状発熱体の抵抗値は、前記合成樹脂中に分散
含有されるカーボン粒子の含有量、積層する層の厚さ等
により適宜設定することができる。たとえば、前記配合
の場合では、1〜100にΩ/mの抵抗値を得ることが
できる。
The resistance value of the filamentous heating element of the present invention can be appropriately set depending on the content of carbon particles dispersed in the synthetic resin, the thickness of the laminated layers, etc. For example, with the above formulation, a resistance value of 1 to 100 Ω/m can be obtained.

そのときの樹脂の体積抵抗率は糸の太さによるがおよそ
0.01〜10Ω・cmである。用途によって導電性微
粒子ならびにそれと混用する合成樹脂を選択することが
できる。この糸状発熱体を更に複数本撚り合せ太くする
ことにより、抵抗値を小さくすることも可能である。
The volume resistivity of the resin at this time is approximately 0.01 to 10 Ω·cm, depending on the thickness of the thread. The conductive fine particles and the synthetic resin used in combination with the conductive fine particles can be selected depending on the purpose. It is also possible to reduce the resistance value by further twisting a plurality of filamentous heating elements to make them thicker.

本発明の糸状発熱体の製造り法の一例を挙げて次に示す
An example of the method for manufacturing the filamentous heating element of the present invention will be described below.

く準備工程〉 芯糸の準僅:結び玉のない糸条を用意する。Preparation process> Semi-slight core yarn: Prepare yarn without knots.

導電性微粒子の樹脂懸濁液の準備:適切な溶媒に樹脂お
よび導電性微粒子を溶解、懸濁させ合成樹脂溶液を作る
Preparation of resin suspension of conductive fine particles: A synthetic resin solution is prepared by dissolving and suspending the resin and conductive fine particles in an appropriate solvent.

本発明に用いる上記合成樹脂の溶媒は、上記合成樹脂を
溶解するものでおれば良く、たとえばポリウレタン系樹
脂の場合には、N−N−−ジエチルホルムアミド、N−
N”−ジエチルホルムアミド、N−N”−ジメチルアセ
トアミド。
The solvent for the synthetic resin used in the present invention may be any solvent that can dissolve the synthetic resin. For example, in the case of polyurethane resin, N-N-diethylformamide, N-
N''-diethylformamide, N-N''-dimethylacetamide.

ジメチルスルホキシド、テトラヒドロフラン。Dimethyl sulfoxide, tetrahydrofuran.

ジAキサン、ヘキザメチルホスホルアミドなどあるいは
これらを含む混合溶媒が用いられる。
DiAxane, hexamethylphosphoramide, or a mixed solvent containing these is used.

この際、合成樹脂溶液の粘度を1〜1000ボイズに調
整することが、均−付着および計量装置の吐出効率の面
から好ましく、2〜200ボイスに調整することがより
好ましい。また合成樹脂溶液の固形分すなわち溶媒以外
の重量割合は10〜50重量%に調整することが、付着
後の乾燥工程でのエネルギー節約および懸濁・溶解工程
の作業性の面から好ましい。該合成樹脂溶液は溶媒の蒸
発を防ぐために密閉容器に封入する。
At this time, it is preferable to adjust the viscosity of the synthetic resin solution to 1 to 1000 voices in terms of uniform adhesion and discharge efficiency of the metering device, and more preferably to 2 to 200 voids. In addition, it is preferable to adjust the solid content of the synthetic resin solution, that is, the weight ratio of components other than the solvent, to 10 to 50% by weight from the viewpoint of energy saving in the drying step after deposition and workability in the suspension and dissolution steps. The synthetic resin solution is sealed in a closed container to prevent evaporation of the solvent.

く計量・付着工程〉 導電性微粒子を懸濁させた前記合成樹脂溶液を攪拌しな
がら、前記密閉容器から配管を通して計量装置に移送す
る。□計量装置は公知の計量ポンプ、特に歯車ポンプが
好適に用いられる。
Measuring and Adhesion Step> While stirring the synthetic resin solution in which conductive fine particles are suspended, it is transferred from the closed container to a measuring device through piping. □As the metering device, a known metering pump, particularly a gear pump, is suitably used.

本発明の目的の一つは素線の抵抗値のバラツキを小さく
することにあるが、計量装置により合成樹脂溶液を計量
しつつ芯糸に付着させることで、素線の糸軸方向の付着
バラツキを極めて小さくすることが可能となる。計量さ
れた該合成樹脂溶液は前述の付着装置へと導かれ、芯糸
を被覆する。付着バラツキを小さくするために、付着装
置に芯糸を定速で供給することが好ましい。そのために
は付着装置の前および後)!の乾燥工程の後の糸をa−
ラにより供給、引取りする方法が好ましく用いられる。
One of the purposes of the present invention is to reduce the variation in the resistance value of the strands, but by measuring the synthetic resin solution using a metering device and attaching it to the core thread, the variation in the adhesion in the axial direction of the strands can be reduced. can be made extremely small. The measured amount of the synthetic resin solution is led to the above-mentioned coating device and coats the core yarn. In order to reduce adhesion variations, it is preferable to feed the core yarn to the adhesion device at a constant speed. For that purpose (before and after the adhesion device)! The yarn after the drying process is a-
A method of supplying and withdrawing by means of a roller is preferably used.

適度な張力で付着させるためには17前後のローラによ
り糸を緊張状態とすることも好ましい。
In order to attach the thread with appropriate tension, it is also preferable to tension the thread using around 17 rollers.

く凝固工程〉 本発明の最大の特徴は凝固工程をもつことであり、概要
は前述したとおりである。
Solidification Step> The greatest feature of the present invention is that it includes a solidification step, and the outline is as described above.

本発明に用いる凝固液は、上記合成樹脂に対して非溶媒
であり、かつ上記溶媒と混和するものが使用される。た
とえば、合成樹脂としてポリウレタン系樹脂を用いる場
合には、水、メタノール、エタノール、プロパツール、
ブタノール、エチレングリコール、アセトン、メチルエ
チルケトンなど、およびこれらの非溶媒の混合物の他に
ポリウレタン系樹脂を溶解しない程度にポリマーの溶剤
を混合した混合液、たとえば、N−N−−ジメチルホル
ムアミド/メチルエチルケトン、N−N”−ジメチルホ
ルムアミド/水の溶液などが用いられる。これらのうち
、該凝固液の組成として該合成樹脂の溶剤の水溶液が好
適に用いられる。この際、該凝固液の濃度は低すぎると
該合成樹脂溶液が急激に凝固しその際、ミクロな収縮が
起こるため、良好な樹脂被覆がなされない。逆に濃度が
高すぎる場合は。
The coagulating liquid used in the present invention is one that is a non-solvent for the synthetic resin and is miscible with the solvent. For example, when using polyurethane resin as a synthetic resin, water, methanol, ethanol, propatool,
A mixture of butanol, ethylene glycol, acetone, methyl ethyl ketone, etc., and a mixture of these non-solvents and a polymer solvent to an extent that does not dissolve the polyurethane resin, such as N-N--dimethylformamide/methyl ethyl ketone, N A solution of -N"-dimethylformamide/water is used. Among these, an aqueous solution of a solvent for the synthetic resin is preferably used as the composition of the coagulation liquid. At this time, if the concentration of the coagulation liquid is too low, The synthetic resin solution rapidly solidifies and micro-shrinkage occurs, so that good resin coating cannot be achieved.On the contrary, if the concentration is too high.

該合成樹脂溶液の脱溶媒が十分に行なわれ、乾燥効率の
向上が図れない。以上の点から該凝固液濃度は8%以上
80%以下が好ましく用いられる。凝固浴内の芯糸の滞
留時間は、凝固速度と乾燥効率の面から1秒以上100
秒以下が好ましい。該凝固液は経時とともに濃度が変わ
らないために常に管理しておくことが必要であり、その
手段として、@凝固液を攪拌すること、および循環させ
ることが好ましい。また、該凝固浴を芯糸の通路以外を
外気から遮断する方法も濃度管理の面で好ましい。
The solvent from the synthetic resin solution is not sufficiently removed, and the drying efficiency cannot be improved. From the above points, the concentration of the coagulating liquid is preferably 8% or more and 80% or less. The residence time of the core thread in the coagulation bath should be 1 second or more from the viewpoint of coagulation speed and drying efficiency.
It is preferably less than seconds. Since the concentration of the coagulating liquid does not change over time, it is necessary to constantly control the coagulating liquid, and as means for this, it is preferable to stir and circulate the coagulating liquid. In addition, a method of blocking the coagulation bath from the outside air except for the passage of the core yarn is also preferable from the viewpoint of concentration control.

く乾燥工程〉 凝固工程を経て引出された芯糸は、次の乾燥工程に移送
される。乾燥は、通常の通気乾燥で良いが、生産性の向
上等を考慮して乾燥空気の加温、赤外線ランプによる加
熱、加熱チューブ、熱板、加熱ローラ等、乾燥を促進す
るために通常用いられる各種の手段を併用することがで
きる。
Drying process> The core yarn drawn out after the coagulation process is transferred to the next drying process. For drying, normal ventilation drying is sufficient, but in order to improve productivity, heating of drying air, heating with infrared lamps, heating tubes, heating plates, heating rollers, etc. are usually used to accelerate drying. Various means can be used in combination.

かくして得られた本発明の糸状発熱体は、合成樹脂溶液
が均一付着するため、糸軸方向の樹脂付着量バラツキの
極めて低いものであり、また、乾燥固着方式を取ってい
るため、糸状発熱体内部に気泡が存在し、可撓性に富み
、耐屈曲性、耐摩耗性等の機械的性質が優れ、発熱線単
位長さ当たりの抵抗値が均一で必り、各種の発熱体製品
の発熱素材として有利に利用できる。
The thus obtained filamentous heating element of the present invention has extremely low variation in the amount of resin deposited in the direction of the filament axis because the synthetic resin solution is uniformly adhered thereto. It has air bubbles inside, has excellent mechanical properties such as flexibility, bending resistance, and abrasion resistance, and has a uniform resistance value per unit length of heating wire. It can be used advantageously as a material.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本発明における粘度、耐久性の測定は次の方法に
よった。
In addition, the viscosity and durability in the present invention were measured by the following method.

(粘度) 試料を500dの円筒容器に採取し、温度30℃±1℃
の条件でBM型回転粘度計(東京計器、製)により製造
直後の粘度を測定する。
(Viscosity) A sample was collected in a 500 d cylindrical container, and the temperature was 30°C ± 1°C.
The viscosity immediately after production is measured using a BM type rotational viscometer (manufactured by Tokyo Keiki) under the following conditions.

なお、測定する際はあらかじめ試料をプロペラミキサー
またはホモミキサーにて十分攪拌する。
In addition, when measuring, the sample is sufficiently stirred in advance using a propeller mixer or a homomixer.

(切断屈曲回数) MIT対折度試験機を使用し、付加荷重0゜5kO1測
定試料長7Cmで測定した。
(Number of cutting and bending) Measurement was performed using an MIT anti-folding tester with an additional load of 0°5 kO1 and a measurement sample length of 7 cm.

(切断摩耗回数) 糸−系耐摩耗試験機を使用し、測定試料長45cmで測
定した。
(Number of Cutting Wear) Measurements were made using a thread-based abrasion tester with a sample length of 45 cm.

実施例1 ポリエステル型ポリウレタン樹脂(大日精化工業(株H
りをメチルエチルケトンとジメチルホルムアミドとの混
合溶液(重量比80:20)に濃度16重量%となるよ
うに均一に溶解した後、平均粒径40mμのカーボンブ
ラックおよび平均粒径10μmの黒鉛をカーボン懸濁溶
液に対してそれぞれ7および5重量%となるように合成
樹脂溶液を調整した。この溶液の粘度は25ボイズ、固
形分26重量%であった。
Example 1 Polyester type polyurethane resin (Dainichiseika Kagyo Co., Ltd. H
Carbon black with an average particle size of 40 μm and graphite with an average particle size of 10 μm were suspended in carbon. The synthetic resin solution was adjusted to have a concentration of 7 and 5% by weight, respectively, based on the solution. The viscosity of this solution was 25 voids and the solids content was 26% by weight.

芯糸はポリエステルを紡糸速度3000m/分で紡糸し
たのち、常法により延伸仮ヨリ加工を行ないその俊、1
90℃で熱板により低トルク化し、150デニール72
フイラメントの三葉断面の仮ヨリ加工糸を得た。この糸
を玉子撚りとし、芯糸とした。芯糸の繊度は550デニ
ール、密度は1.385g/CX&であった。
The core yarn is made by spinning polyester at a spinning speed of 3000 m/min, and then subjecting it to a drawing and twisting process using a conventional method.
Low torque by heating plate at 90℃, 150 denier 72
A temporarily twisted yarn with a trilobal cross section of filament was obtained. This yarn was twisted into an egg and used as a core yarn. The fineness of the core yarn was 550 denier, and the density was 1.385 g/CX&.

本発明の好ましい製造プロセスを第1図に示した。A preferred manufacturing process of the present invention is shown in FIG.

前記合成樹脂溶液を密閉容器10に封入、攪拌し、1回
転0.017CGの容量の歯車ポンプ11を用いて密閉
容器10から合成樹脂溶液を付着装置5へと移送した。
The synthetic resin solution was sealed in a closed container 10 and stirred, and the synthetic resin solution was transferred from the closed container 10 to the adhesion device 5 using a gear pump 11 having a capacity of 0.017 CG per revolution.

付着装置は第3図(a)の吐出孔径0.5j1111の
V字型セラミック製糸道ガイド2個を糸道方向に5#離
して対向方向に設置し、各吐出it1.0cc/分で前
記の芯糸に付着させた。芯糸は周速8m/分のローラ2
により定速で付着装置に送り出した。付着装置を通過し
た芯糸は引続いて長さ1.5mの凝固浴6へ導いた。凝
固液はメチルエチルケトン/ジメチルホルムアミド/水
(重量比30/10/60)からなり、40℃に保った
。芯糸はざらに水切り装置7により余分の液体を取除き
、150℃の熱風の循環する長さ1.5mの乾燥機8を
通過させ、引取ローラ3にて8m/分で引取り、巻取機
9により巻取った。(qられた発熱糸の乾燥状態を確認
するために、100℃で15分再乾燥したが、再乾燥前
後での抵抗値の変化は見られず、乾燥が十分であったこ
とを確認できた。得られた糸状発熱体を糸軸方向に25
αずつ40本の重量を連続して測定したところ平均値0
 、030 g/ 25 cm、標準偏差0.0007
8、標準偏差を平均値で除したCV値は2.6%であっ
た。また、同じ糸の抵抗値を測定したところ平均値3.
03にΩ/25C1n s標準偏差0.112、CV値
は3.7%であった。このことから、本発明の方法によ
り合成樹脂溶液が糸軸方向に均一に固着することにより
、糸状発熱体の抵抗値のバラツキは極めて小さいものと
なった。この糸状発熱体及び比較にニクロム線及び市販
のコードヒータを用いて切断屈曲回数及び切断摩耗回数
を測定した結果を表1に示す。表1から本発明の糸状発
熱体が、従来の金属ヒーター線に比し抜群の耐久性があ
ることがわかる。
The adhesion device was constructed by installing two V-shaped ceramic yarn guides with a discharge hole diameter of 0.5j1111 in the yarn path direction in opposite directions, with a discharge hole diameter of 0.5j1111 as shown in FIG. It was attached to the core thread. The core thread is roller 2 with a circumferential speed of 8 m/min.
was sent to the deposition device at a constant speed. After passing through the deposition device, the core yarn was subsequently led into a coagulation bath 6 with a length of 1.5 m. The coagulation liquid consisted of methyl ethyl ketone/dimethylformamide/water (weight ratio 30/10/60) and was maintained at 40°C. The excess liquid is removed from the core yarn by a rough drainer 7, and it is passed through a dryer 8 with a length of 1.5 m that circulates hot air at 150°C, and is taken up by a take-up roller 3 at a rate of 8 m/min and wound. It was wound up by machine 9. (In order to check the dry state of the heated yarn, it was re-dried at 100℃ for 15 minutes, but no change in resistance was observed before and after re-drying, confirming that the drying was sufficient. .The obtained filamentous heating element was
When the weight of 40 pieces of each α was measured continuously, the average value was 0.
, 030 g/25 cm, standard deviation 0.0007
8. The CV value obtained by dividing the standard deviation by the average value was 2.6%. Also, when the resistance value of the same thread was measured, the average value was 3.
03, the standard deviation of Ω/25C1ns was 0.112, and the CV value was 3.7%. From this, it was found that the method of the present invention allowed the synthetic resin solution to adhere uniformly in the direction of the fiber axis, so that the variation in the resistance value of the filament heating element became extremely small. Table 1 shows the results of measuring the number of times of cutting and bending and the number of times of cutting and abrasion using this filamentous heating element and a nichrome wire and a commercially available cord heater for comparison. Table 1 shows that the filamentous heating element of the present invention has outstanding durability compared to conventional metal heater wires.

第6図によって前記糸状発熱体を用いて得た電極線16
とポリエステル糸条17とを用い、緯糸には前記糸状発
熱体14と発熱量調節用のポリエステル糸条18とを用
い通常のR機によってイ「串状発熱体とした。ざらに絶
縁被覆する目的で布帛両面をポリエチレン溶融体により
コーティングした。また、前記電極性16に電流を通ず
るリード線19をハンダ付け20によって接続した。こ
の布帛状発熱体をベストの裏地に縫い付けたものにN 
i −Cd電池から電気を供給したところ、局所的な温
度ムラがなく、極めて柔軟であり、試着者に好評であっ
た。
Electrode wire 16 obtained using the thread-like heating element according to FIG.
A skewer-shaped heating element was made using a normal R machine using the thread-like heating element 14 and the polyester thread 18 for adjusting the calorific value as the weft.The purpose of providing a rough insulation coating. Both sides of the fabric were coated with a polyethylene melt. Also, a lead wire 19 that conducts current was connected to the electrode 16 by soldering 20. This fabric-like heating element was sewn to the lining of the vest, and N
When electricity was supplied from an i-Cd battery, there was no local temperature unevenness and it was extremely flexible, which was well received by those who tried it on.

比較実施例1 付着装置通過後”15cmの位置に乾燥機8を設置し、
凝固浴6、水切り装置7を除いた以外は実施例1と同様
にして糸状発熱体を17だ。熱風100℃×15分の再
乾燥により巻取系の抵抗値は0.85にΩ/ 25 c
m、28%減少した。
Comparative Example 1 A dryer 8 was installed at a position 15 cm after passing through the adhesion device,
A filamentous heating element 17 was prepared in the same manner as in Example 1 except that the coagulation bath 6 and draining device 7 were removed. After re-drying with hot air at 100℃ for 15 minutes, the resistance value of the winding system decreased to 0.85Ω/25c.
m, decreased by 28%.

実施例2 第2白を模した製造プロセスを用いて糸状発熱体を得た
。この際、付着装置は第5図を模した装置を用い、ニッ
プル細孔径0.5簡φ、ダイ吐出孔径0.8#φとし、
付着装置上面を凝固浴底部となした。凝固浴は長さML
、幅20 4m、奥行き30mの直方体とし、凝固液を
流速177L/分で循環させた。その他の条件は、実施
例1と同様にした。熱風100″’CX15分の再乾燥
前後で巻取糸の抵抗値は全く変化しなかった。
Example 2 A filamentous heating element was obtained using a manufacturing process similar to the second white. At this time, the adhesion device used was a device imitating the one shown in Fig. 5, the nipple pore diameter was 0.5 mm, the die discharge hole diameter was 0.8 #φ,
The top surface of the deposition device served as the bottom of the coagulation bath. The length of the coagulation bath is ML.
The coagulation liquid was circulated at a flow rate of 177 L/min. Other conditions were the same as in Example 1. The resistance value of the wound yarn did not change at all before and after re-drying with hot air 100''CX for 15 minutes.

[発明の効果] 本発明は、合成樹脂溶液の付着量バラツキが小さく抵抗
値バラツキが小さいため、製品としたときの温度ムラを
全く感じさせない程に小さく押えることができ、また、
可撓性に富み、発熱体層と芯糸との接着が良好で屈曲、
摩耗等により剥離し難く、長期間安定して使用し1qる
糸状の発熱体を操作性良好に高効率に製造することを可
能としたものである。これにより、製編織可能で、衣料
分野、連装分野、農業、水産、土木分野などの各種の用
途に適用できる発熱体を提供し得たものである。熱論、
自動車、電車などの車両や航空機、船舶、宇宙ロケット
などあらゆる乗物にも適用され1qる。
[Effects of the Invention] In the present invention, the variation in the amount of deposited synthetic resin solution is small and the variation in resistance value is small, so when it is made into a product, the temperature can be kept so small that no unevenness is felt at all.
It is highly flexible and has good adhesion between the heating element layer and the core thread, allowing it to bend easily.
This makes it possible to manufacture a thread-like heating element with good operability and high efficiency, which is difficult to peel off due to abrasion, etc., and can be stably used for a long period of time. This makes it possible to provide a heating element that can be knitted and woven and can be applied to various uses such as the clothing field, the clothing field, agriculture, fisheries, and civil engineering fields. hot theory,
It applies to all vehicles such as cars, trains, aircraft, ships, and space rockets.

【図面の簡単な説明】[Brief explanation of drawings]

で好適に用いることのできる付着装置の一例である。第
6図は糸状発熱体を製織して1qた布帛状発熱体の概略
図である。 1:芯糸 2.3:駆動系 5:付着装置 6:凝固浴 7:水切り装置 8:乾燥機 11:計量装置
This is an example of an adhesion device that can be suitably used. FIG. 6 is a schematic diagram of a fabric-like heating element made by weaving 1 q of thread-like heating elements. 1: Core thread 2.3: Drive system 5: Adhesion device 6: Coagulation bath 7: Drainer 8: Dryer 11: Measuring device

Claims (1)

【特許請求の範囲】[Claims] 導電性微粒子を懸濁した合成樹脂溶液を計量装置により
計量しつつ芯糸に付着させ、次いで凝固浴にて凝固させ
たのち乾燥固着させて導電性微粒子を分散含有する合成
樹脂の導電層を前記芯糸上に形成させることを特徴とす
る糸状発熱体の製法。
A synthetic resin solution in which conductive fine particles are suspended is attached to the core yarn while being measured by a metering device, and then coagulated in a coagulation bath and dried and fixed to form a conductive layer of a synthetic resin containing conductive fine particles dispersed therein. A method for producing a filamentous heating element characterized by forming it on a core yarn.
JP10200887A 1987-04-27 1987-04-27 Production of yarn like heat generator Pending JPS63270869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200887A JPS63270869A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10200887A JPS63270869A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Publications (1)

Publication Number Publication Date
JPS63270869A true JPS63270869A (en) 1988-11-08

Family

ID=14315746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200887A Pending JPS63270869A (en) 1987-04-27 1987-04-27 Production of yarn like heat generator

Country Status (1)

Country Link
JP (1) JPS63270869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916485A (en) * 1991-12-11 1999-06-29 Atotech Deutschland Gmbh Method of manufacturing highly conducting composites containing only small proportions of electron conductors
JP2012079538A (en) * 2010-10-01 2012-04-19 Aoyama Sangyo Kk Planar heating element
JP2020133062A (en) * 2019-02-21 2020-08-31 株式会社金加 Method for producing yarn, and yarn, cloth or textile product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916485A (en) * 1991-12-11 1999-06-29 Atotech Deutschland Gmbh Method of manufacturing highly conducting composites containing only small proportions of electron conductors
JP2012079538A (en) * 2010-10-01 2012-04-19 Aoyama Sangyo Kk Planar heating element
JP2020133062A (en) * 2019-02-21 2020-08-31 株式会社金加 Method for producing yarn, and yarn, cloth or textile product

Similar Documents

Publication Publication Date Title
US3958066A (en) Conductive synthetic fibers
US4983814A (en) Fibrous heating element
KR100900134B1 (en) Specific Gravity-Adjustable Yarns with Low Elongation Rate and Excellent Abrasion Resistance
JP2969652B2 (en) Non-shrinkable hybrid yarn
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JPS63270869A (en) Production of yarn like heat generator
KR100754322B1 (en) Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method for carbon thread using the apparatus
JPS6316502B2 (en)
JPS63270868A (en) Production of yarn like heat generator
JP6617626B2 (en) Liquid crystal polyester multifilament and method for producing the same
JPS63270870A (en) Production of flexible yarn like heat generator
JPS63270867A (en) Production of yarn like heat generator
JP3596818B2 (en) Tire fiber cloth using polyester / high wet modulus rayon weft
JPS63270827A (en) Yarn-shaped heat generator and its production
JPS63270866A (en) Production of yarn like heat generator
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
US4721587A (en) Process of making heat-strengthened yarn
JPS62100971A (en) String heater element and manufacture of the same
JPS63270829A (en) Yarn-shaped heat generator and its production
JPS62100969A (en) String heater element
JPH03249237A (en) Glass cloth for printed wiring board
JPS6366889A (en) Filament heater
US4722864A (en) Heat-strengthened yarn
JP2891476B2 (en) Conductive yarn
JPS63270865A (en) Production of yarn like far infrared ray emitting heat generator