JP2541215B2 - Filiform heating element and manufacturing method thereof - Google Patents

Filiform heating element and manufacturing method thereof

Info

Publication number
JP2541215B2
JP2541215B2 JP62100420A JP10042087A JP2541215B2 JP 2541215 B2 JP2541215 B2 JP 2541215B2 JP 62100420 A JP62100420 A JP 62100420A JP 10042087 A JP10042087 A JP 10042087A JP 2541215 B2 JP2541215 B2 JP 2541215B2
Authority
JP
Japan
Prior art keywords
heating element
resin
conductive
filamentous
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62100420A
Other languages
Japanese (ja)
Other versions
JPS63270828A (en
Inventor
洋 高橋
弘明 巽
研一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62100420A priority Critical patent/JP2541215B2/en
Publication of JPS63270828A publication Critical patent/JPS63270828A/en
Application granted granted Critical
Publication of JP2541215B2 publication Critical patent/JP2541215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は可撓性に富み、長期間の使用に耐える電気的
に発熱する糸状発熱体およびその製造方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a filamentous heating element which is highly flexible and electrically heats up to withstand long-term use, and a method for producing the same.

[従来の技術] 従来から機器類の保温ないし加熱用に金属細線から成
る可撓性の発熱線が使用されているが、特に、電気毛
布、電気カーペット等民生用にも広く普及し、その便利
さから今後益々商品に多様化が促進される趨勢にある。
[Prior Art] Conventionally, a flexible heating wire made of a thin metal wire has been used for keeping heat of equipment or heating, but it is particularly popular and widely used for consumer products such as electric blankets and electric carpets. Therefore, there is a trend that products will be more and more diversified in the future.

従来これらの発熱体には、ステンレス線、ニクロム線
等の金属細線から成る抵抗体が使用されていたが、前記
の各製品に可撓性であることを要求される場合には、可
撓性の芯に極細の抵抗線をスパイラル状にて捲きつけた
もの、布帛上にカーボンを樹脂バインダーにより固着さ
せたもの等が使用されている。
Conventionally, resistors made of thin metal wires such as stainless wire and nichrome wire were used for these heating elements, but when it is required that each of the above products is flexible, There are used those in which a very fine resistance wire is wound in a spiral shape on the core, and those in which carbon is fixed on a cloth with a resin binder.

しかしながら、これれらは何れも、耐屈曲性、耐摩擦
性等の点で要求する性能を充たすことができず、また、
可撓性が不足しており、改善が要求されている。
However, none of them can satisfy the performance required in terms of bending resistance, abrasion resistance, etc.
It lacks flexibility and needs improvement.

可撓性に富む糸状の発熱体を得る試みとして、例え
ば、ナイロンのコンジュゲートフィラメントを加熱によ
り軟化させるかあるいは膨潤剤により膨潤させて、カー
ボン粒子をフィラメント表層部に固着させて糸状の発熱
体とした特開昭51−109321号公報が開示されているがこ
の発熱体は、長さあたりの抵抗値が高すぎ、発熱素子と
して用いるには適さないものである。また、補強材であ
る芯糸にアクリル樹脂などの接着剤を塗布した後、導電
性粒子を覆着させて糸状の発熱体とした実公昭40−1575
0号公報がある。これらの方法ではカーボン粒子を均一
に固着させるのはむずかしく、したがって抵抗値のバラ
ツキが大きく、要求される抵抗値のものを工業的に安定
して供給することができない。
As an attempt to obtain a highly flexible filamentous heating element, for example, a nylon conjugate filament is softened by heating or swelled with a swelling agent to fix carbon particles to the filament surface layer to form a filamentous heating element. Japanese Patent Laid-Open No. 51-109321 has been disclosed, but this heating element has a too high resistance value per length and is not suitable for use as a heating element. Also, after applying an adhesive such as an acrylic resin to the core yarn which is a reinforcing material, conductive particles are covered to form a filamentous heating element.
There is publication 0. According to these methods, it is difficult to fix the carbon particles uniformly, and therefore the resistance value varies greatly, and it is impossible to industrially stably supply the one having the required resistance value.

また、導電性粒子をゴムまたはプラスチックに配合し
た導電性樹脂を芯糸に被覆した実公昭38−1470号公報が
あるが、ここに記載された導電性樹脂の体積固有抵抗値
(比抵抗)が20Ωcm以上とかなり高いばかりでなく、単
に被覆しても発熱体の抵抗値バラツキが大きく、工業的
に安定して供給することができるものではなかった。
In addition, there is a Japanese Utility Model Publication No. 38-1470 in which a core thread is coated with a conductive resin in which conductive particles are mixed with rubber or plastic, but the volume specific resistance value (specific resistance) of the conductive resin described here is Not only is it considerably high at 20 Ωcm or more, but even if it is simply coated, the resistance value of the heating element varies greatly, and it was not possible to supply it stably in industry.

[発明が解決しようとする問題点] 本発明は、かかる従来の問題点を改善し、可撓性に富
み、長さあたりの抵抗値のバラツキが小さく、長期間安
定して使用でき、低温発熱体として好ましく使用される
糸状の発熱体およびその製造方法を提供するものであ
る。
[Problems to be Solved by the Invention] The present invention solves the above conventional problems, is rich in flexibility, has a small variation in resistance value per length, can be used stably for a long time, and has low temperature heat generation. A filamentous heating element preferably used as a body and a method for producing the same.

[問題を解決するための手段] 前記した本願発明の目的は、芯糸の周囲に熱可塑性樹
脂と該樹脂中に分散配合させた導電性粒子とから成る溶
融被覆導電層(以下単に導電層という)を融着させたも
のであり、下記式に定義される離心率(e)が0.7以下
であり、かつ糸軸方向の重量バラツキCVが2.0%以下で
ある糸状発熱体によって達成できる。
[Means for Solving the Problem] The above-described object of the present invention is to provide a melt-coated conductive layer (hereinafter, simply referred to as a conductive layer) including a thermoplastic resin around the core yarn and conductive particles dispersed and blended in the resin. ), The eccentricity (e) defined by the following formula is 0.7 or less, and the weight variation CV in the yarn axis direction is 2.0% or less.

上記構成のうち、芯糸は糸状発熱体に可撓性をもた
せ、繰返し折りや摩耗に対する耐久性をもたせるために
必要である。
Of the above-mentioned constitutions, the core yarn is necessary for giving the filamentous heating element flexibility and durability against repeated folding and abrasion.

また、糸軸方向の重量バラツキCVを2.0%以下とする
ことにより製品としたときの発熱性能が従来の金属細線
からなる製品と同等の水準を満足する。特に重量バラツ
キCVは1.0%以下が好ましい。ここで、重量バラツキCV
(%)は、糸軸方向に25cmずつ40本の重量を連続して測
定したときのCV(%)で求められ、抵抗値バラツキを実
用化レベルとするために必要な構成要件である。測定を
25cm間隔で連続測定することは、この長さが通常製品と
したときの一電極間隔に略等しくこのため製品の大きさ
を考慮した有効な測定方法である。
Further, by setting the weight variation CV in the yarn axis direction to 2.0% or less, the heat generation performance of the product satisfies the same level as the product made of the conventional fine metal wire. Especially, the weight variation CV is preferably 1.0% or less. Where the weight variation CV
(%) Is obtained by CV (%) when 40 weights of 25 cm each are continuously measured in the yarn axis direction, and is a constituent requirement required to bring the resistance variation to a practical level. Measurement
The continuous measurement at 25 cm intervals is an effective measurement method considering the size of the product because this length is almost equal to the one electrode interval in the case of a normal product.

さらに本願発明では製品の横断面の離心率を0.7以下
とする必要がある。離心率を0.7以下とすることによ
り、すなわち、真円に近づけることにより、糸状発熱体
を製織などして布帛発熱体を製造する際の工程通過性が
良好となりトラブルを生じないばかりでなく、糸状発熱
体の発熱性能、すなわち抵抗値バラツキも小さくなる。
この理由は導電層の微視的な付着ムラが小さくなるため
と考えられる。離心率が0.5以下のものが特に好ましく
使用される。
Further, in the present invention, the eccentricity of the cross section of the product needs to be 0.7 or less. By setting the eccentricity to be 0.7 or less, that is, by approaching a perfect circle, not only does the process passability in producing a fabric heating element by weaving the filament heating element become good and no trouble occurs, but also the filament shape. The heating performance of the heating element, that is, the variation in the resistance value is also reduced.
It is considered that this is because the microscopic adhesion unevenness of the conductive layer is reduced. Those with an eccentricity of 0.5 or less are particularly preferably used.

又、本発明の糸状発熱体の好ましい製造方法は次の構
成を有する。すなわち、熱可塑性樹脂と該樹脂中に分散
配合された導電性粒子とから成る熱可塑性導電性樹脂を
加熱流動下で溶融計量し、連続走行している芯糸の周囲
に、下記式で定義されるドラフト率が0.8〜3.0となるよ
うに押出し被覆した後、冷却固化することにより、導電
性粒子を分散配合した導電層を該芯糸上に融着させて連
続形成させることを特徴とする糸状発熱体の製造法であ
る。
A preferred method for producing the filamentous heating element of the present invention has the following constitution. That is, a thermoplastic conductive resin comprising a thermoplastic resin and conductive particles dispersed and blended in the resin is melt-measured under heating and flowing, and is defined by the following formula around a continuously running core yarn. The filamentous shape is characterized in that a conductive layer in which conductive particles are dispersed and blended is fused and continuously formed on the core yarn by extrusion-coating so that the draft ratio is 0.8 to 3.0 and then cooling and solidifying. It is a method of manufacturing a heating element.

本発明に用いる芯糸の素材としては、天然繊維、再生
繊維または合成繊維の糸条が用いられるが、発熱体とし
て通常使用される温度、すなわち、20〜100℃という低
温範囲で長期間安定した性能を維持するものが好まし
い。ここで、合成繊維とはポリアミド、ポリエステル、
ポリオレフィン、ポリアクリロニトリル、ポリビニルア
ルコール、ポリ塩化ビニル等の一般的に知られた合成繊
維の他、ガラス繊維、アルミナあるいはジルコニア等の
無機繊維や各種金属繊維が含まれる。中でもポリアミ
ド、ポリエステル、ポリオレフィンなどの熱可塑性合成
繊維は、非吸湿性、耐薬品性であり、上記発熱体使用温
度範囲(20〜100℃)での熱劣化が少ないほか、万一局
所的異常加熱が生じた場合には溶断するというヒューズ
機能を有するので好ましい。また、芳香族ポリアミド、
全芳香族ポリエステル、ポリベンズイミダゾール、ポリ
フェニレントリアゾール、ポリオキサジアゾール、ポリ
イミド、熱硬化性樹脂繊維などの耐熱性合成繊維、無機
繊維あるいは金属繊維などを用いた場合には使用可能な
温度範囲を高くでき、また製品寿命を著しく延ばすこと
ができるなどの利点があり好ましい。
As the material of the core yarn used in the present invention, a yarn of natural fiber, regenerated fiber or synthetic fiber is used, but it is stable for a long period of time at a temperature usually used as a heating element, that is, a low temperature range of 20 to 100 ° C. Those that maintain performance are preferable. Here, the synthetic fibers are polyamide, polyester,
In addition to commonly known synthetic fibers such as polyolefin, polyacrylonitrile, polyvinyl alcohol, and polyvinyl chloride, glass fibers, inorganic fibers such as alumina and zirconia, and various metal fibers are included. Among them, thermoplastic synthetic fibers such as polyamide, polyester, and polyolefin are non-hygroscopic and chemical resistant, and have little heat deterioration in the above-mentioned operating temperature range of the heating element (20 to 100 ° C). This is preferable because it has a fuse function of fusing in the case of occurrence of. Also, aromatic polyamide,
When using a wholly aromatic polyester, polybenzimidazole, polyphenylenetriazole, polyoxadiazole, polyimide, heat resistant synthetic fiber such as thermosetting resin fiber, inorganic fiber or metal fiber, the usable temperature range is increased. This is preferable because it has the advantages that it can be used and that the product life can be significantly extended.

本発明に用いる芯糸の形態としては紡績糸マルチフィ
ラメント、モノフィラメントなど、形態を問わないが、
導電層との接着性が良好で、剥離し難いもの、たとえ
ば、紡績糸、表層部に単繊維を有するダブルストラクチ
ャードヤーンあるいは嵩高加工を施したフィラメントな
どが好ましい。また、単糸の断面形状を異形としても良
い。
The form of the core yarn used in the present invention may be spun yarn multifilament, monofilament, or the like,
Those that have good adhesiveness to the conductive layer and are difficult to peel off, such as spun yarn, double structured yarn having monofilament in the surface layer, or bulked filament are preferable. Moreover, the cross-sectional shape of the single yarn may be modified.

本発明の構成の1つである離心率を0.7以下とするた
めに特に好ましい芯糸の形態としては集束性良好なもの
を使用することである。すなわち、紡績糸フィラメント
の場合には、撚糸、特に双糸や三子が溶融被覆した際、
ムラのない導電層を融着させて形成できるのみではな
く、被覆後の糸の横断面形状が真円に近くなり、後加工
での工程通過性が良好となるため好ましい。
In order to set the eccentricity, which is one of the constitutions of the present invention, to 0.7 or less, a particularly preferable form of the core yarn is to use one having a good bundling property. That is, in the case of the spun yarn filament, when the twisted yarn, especially the twin yarn or the triplet is melt-coated,
This is preferable not only because it can be formed by fusing a uniform conductive layer, but also because the cross-sectional shape of the coated yarn is close to a perfect circle and the process passability in post-processing is good.

予め導電性粒子を分散配合した熱可塑性樹脂と芯糸の
両方に親和性の高い物質で、芯糸を処理しておくことも
好ましい。
It is also preferable to treat the core yarn with a substance having a high affinity for both the thermoplastic resin in which the conductive particles are dispersed and blended and the core yarn.

本発明に用いる導電性粒子を分散配合させる熱可塑性
樹脂は、発熱体の使用温度範囲(20〜100℃)で安定し
た電気抵抗性能を保ち、使用温度の上限以上の温度で溶
融もしくは軟化するものであればとくに制限はないが、
通常行なわれている押出成型温度100〜350℃で押出し可
能なものが良い。中でもポリオレフィン系、ポリエステ
ル系、ポリウレタン系、ポリ塩化ビニル系、ポリビニル
アルコール系、ポリスチレン系、などの熱可塑性エラス
トマーが可撓性や屈曲性の点から好ましく使用される。
The thermoplastic resin in which the conductive particles used in the present invention are dispersed and mixed maintains stable electric resistance performance in the operating temperature range of the heating element (20 to 100 ° C.), and melts or softens at a temperature higher than the upper limit of the operating temperature. If so, there is no particular limitation,
A material that can be extruded at a commonly used extrusion molding temperature of 100 to 350 ° C is preferable. Of these, thermoplastic elastomers such as polyolefins, polyesters, polyurethanes, polyvinyl chlorides, polyvinyl alcohols, polystyrenes, etc. are preferably used in terms of flexibility and flexibility.

ここで熱可塑性エラストマーとは常温でゴム弾性を示
し高温で押出し可能な可塑性を示すのであるが、JIS K
6301規定のA硬度が低いもの程、可撓性が良好であり、
より多量の導電性粒子を分散配合できるばかりでなく、
できあがった糸状発熱体を屈曲させた場合に被覆融着さ
れた導電層に割れや切断を生じにくいため好ましい。こ
こで熱可塑性エラストマーとしてはJIS K6301規定のA
硬度が95以下のものが好ましく、より好ましくは90以下
であり、80以下のものが更に好ましく使用される。これ
らの熱可塑性樹脂は二種以上をブレンド使用しても良い
し、その際二種以上の樹脂がブロックかあるいはグラフ
ト化することにより反応していても良い。
Here, the thermoplastic elastomer has rubber elasticity at room temperature and plasticity that can be extruded at high temperature.
The lower the A hardness of 6301 standard, the better the flexibility,
Not only can a larger amount of conductive particles be dispersed and blended,
When the resulting filamentous heating element is bent, cracking or cutting is unlikely to occur in the conductive layer fused and coated, which is preferable. Here, as the thermoplastic elastomer, JIS K6301 standard A
A hardness of 95 or less is preferable, a hardness of 90 or less is more preferable, and a hardness of 80 or less is more preferably used. These thermoplastic resins may be used as a blend of two or more kinds, and in that case, two or more kinds of resins may be reacted by being blocked or grafted.

本発明に用いる導電性粒子としては、たとえば、カー
ボンブラックやグラファイトに代表される導電性カーボ
ン粒子、有機導電性粒子、導電性金属粒子、導電性金属
酸化物粒子およびそれらの被膜を有する粒子があげられ
る。ここで粒子とは、最大平均粒子径が100μ以下のも
のであればどのような形状でも良く、長さ100μ以下の
カーボン繊維も本発明でいう粒子含まれる。また、二種
以上の導電性粒子を混合して使用しても良い。上記導電
性粒子の中で、導電性カーボン粒子は熱可塑性樹脂への
分散配合が容易であり軽く高導電性のものが得られるた
め特に好ましい。中でも、平均粒子径が、10〜100mμの
アセチレンブラック、ファーネスブラック、ケッチング
ブラックなどのカーボンブラック類が好ましく使用され
る。
Examples of the conductive particles used in the present invention include conductive carbon particles typified by carbon black and graphite, organic conductive particles, conductive metal particles, conductive metal oxide particles and particles having a coating film thereof. To be Here, the particles may have any shape as long as the maximum average particle diameter is 100 μm or less, and carbon fibers having a length of 100 μm or less are also included in the present invention. Further, two or more kinds of conductive particles may be mixed and used. Among the above-mentioned conductive particles, conductive carbon particles are particularly preferable because they can be easily dispersed and blended in a thermoplastic resin, and light and highly conductive particles can be obtained. Among them, carbon blacks having an average particle diameter of 10 to 100 mμ such as acetylene black, furnace black and ketching black are preferably used.

本発明で使用される熱可塑性導電性樹脂は、前記熱可
塑性樹脂30〜75重量%、好ましくは、35〜70重量%、更
に好ましくは40〜65重量%と前記導電性粒子70〜25重量
%、好ましくは65〜30重量%、更に好ましくは60〜35重
量%とから成っている。熱可塑性樹脂が30重量%未満の
場合加熱流動性が悪いため、芯糸に該導電性樹脂を均一
に被覆することがむずかしく、導電性粒子が25重量%未
満であると発熱体として充分な導電性を保持することが
むずかしい。また、該導電性樹脂は熱可塑性樹脂と導電
性粒子の配合割合が前述の範囲であるならば、目的に応
じて種々の改質剤や添加剤を含有することができる。
The thermoplastic conductive resin used in the present invention, the thermoplastic resin 30-75 wt%, preferably 35-70 wt%, more preferably 40-65 wt% and the conductive particles 70-25 wt% , Preferably 65 to 30% by weight, more preferably 60 to 35% by weight. When the thermoplastic resin is less than 30% by weight, the heating fluidity is poor, and it is difficult to coat the conductive resin evenly on the core yarn, and when the conductive particles are less than 25% by weight, sufficient heat conductivity is achieved as a heating element. It is difficult to maintain sex. Further, the conductive resin may contain various modifiers and additives depending on the purpose, provided that the mixing ratio of the thermoplastic resin and the conductive particles is within the above range.

本発明においては、必要に応じて導電層を複数層設け
ることも行なわれる。この場合、熱可塑性樹脂中に分散
された導電性粒子の組成および含有量を、必要に応じ各
層毎に変更することができる。例えば、糸状発熱体の表
面滑性を高めるために、最外層における含有量を内層よ
り少なくする等適宜に決定して実施できる。
In the present invention, a plurality of conductive layers may be provided if necessary. In this case, the composition and content of the conductive particles dispersed in the thermoplastic resin can be changed for each layer as necessary. For example, in order to enhance the surface smoothness of the filamentous heating element, the content in the outermost layer may be appropriately determined such that it is smaller than that in the inner layer.

本発明の糸状発熱体の抵抗値は、前記合成樹脂中に分
散含有される導電性粒子の含有量、被覆する層の厚さ等
により適宜設定することができるが、1〜100KΩ/mの抵
抗値のものが好ましい。抵抗値が1KΩ/m未満であると単
位長さ当りの発熱量が大きすぎ、また100KΩ/mを越える
と単位長さ当りの発熱量が小さ過ぎるため本発明の発熱
体の主要な用途である均一加熱可能な低温発熱体として
使用する上で好ましくない。
The resistance value of the filamentous heating element of the present invention can be appropriately set depending on the content of the conductive particles dispersedly contained in the synthetic resin, the thickness of the layer to be coated, etc., but the resistance is 1 to 100 KΩ / m. A value is preferable. If the resistance value is less than 1 KΩ / m, the heat generation amount per unit length is too large, and if it exceeds 100 KΩ / m, the heat generation amount per unit length is too small, which is the main application of the heating element of the present invention. It is not preferable for use as a low temperature heating element capable of uniform heating.

本発明の糸状発熱体の糸径は必要とされる導電性およ
び製品形態によって適宜選択できるが、出来るだけ細い
ものが好ましく、導電性を被覆した糸状発熱体の状態で
1mm径以下のものが好ましく、0.7mm径以下のものが更に
好ましい。
The thread diameter of the filamentous heating element of the present invention can be appropriately selected according to the required conductivity and product form, but it is preferable that the filament diameter is as thin as possible, and in the state of the filamentous heating element coated with conductivity.
A diameter of 1 mm or less is preferable, and a diameter of 0.7 mm or less is more preferable.

本発明の糸状発熱体は溶融被覆装置を用いて連続走行
している芯糸の周囲に熱可塑性導電性樹脂を加熱流動下
で溶融計量して溶融押出し被覆することで製造される
が、その際、被覆樹脂の下式で定義されるドラフト率を
0.8〜3.0、好ましくは0.9〜1.8、更に好ましくは0.95〜
1.5になるようにすることが必要である。
The filamentous heating element of the present invention is manufactured by melt-extruding and coating a thermoplastic conductive resin around a core yarn that is continuously running using a melt coating device under heating and flow, and at that time. , The draft ratio defined by the following formula of coating resin
0.8 to 3.0, preferably 0.9 to 1.8, more preferably 0.95 to
It needs to be 1.5.

ここで、芯糸の断面積と糸状発熱体の導電層の断面積
とは糸状発熱体の断面積を顕微鏡観察することで求める
ことができる。
Here, the cross-sectional area of the core yarn and the cross-sectional area of the conductive layer of the filamentous heating element can be obtained by observing the sectional area of the filamentous heating element with a microscope.

ドラフト率が3.0よりも大きいと走行している芯糸の
周囲に熱可塑性導電性樹脂を被覆した際、該樹脂が延伸
されるため導電層と芯糸との接着性(融着性)が悪くな
り、それらの間に空隙を生じる。それ故、得られた糸状
発熱体の断面形状が偏平となり離心率が大きくなること
により発熱体の電気抵抗値レベルが高くなるばかりでな
く抵抗値バラツキCV(%)が大きくなり、発熱体として
安定した性能が得られない。この理由は明確ではない
が、熱可塑性導電性樹脂が延伸されることにより、該樹
脂中に分散配合された導電性粒子の構造が破壊されるこ
と、導電層中にボイドを生じること、および/または糸
軸方向に導電層の微視的な付着ムラを生じること、など
が考えられる。
When the draft ratio is greater than 3.0, when the running conductive core yarn is coated with a thermoplastic conductive resin, the resin is stretched and the adhesiveness (fusion property) between the conductive layer and the core yarn is poor. And there are voids between them. Therefore, the cross-sectional shape of the obtained filamentous heating element becomes flat and the eccentricity increases, so that not only the electric resistance value level of the heating element rises but also the resistance value variation CV (%) increases and it is stable as a heating element. You cannot get the performance you want. The reason for this is not clear, but by stretching the thermoplastic conductive resin, the structure of the conductive particles dispersed and blended in the resin is destroyed, voids are generated in the conductive layer, and / Alternatively, it is conceivable that microscopic adhesion unevenness of the conductive layer occurs in the yarn axis direction.

又、ドラフト率が0.7よりも小さいとダイ孔出口表面
に熱可塑性導電性樹脂の一部が付着するなどして安定な
融着(付着)が難しくなり、得られた糸状発熱体は糸軸
方向の重量バラツキCV(%)が大きくなるばかりでな
く、該発熱体の断面形状の離心率が大きくなるため、電
気抵抗値の糸軸方向のバラツキCV(%)が大きくなり、
安定した電気性能の糸状発熱体が得られない。なお、ド
ラフト率は芯糸の走行速度と熱可塑性樹脂の供給速度と
ダイ孔径とを変更することでコントロールすることがで
る。
If the draft rate is less than 0.7, stable fusion bonding (adhesion) becomes difficult because part of the thermoplastic conductive resin adheres to the die hole outlet surface, and the obtained filamentous heating element is Not only increases the weight variation CV (%) of the heating element, but also increases the eccentricity of the cross-sectional shape of the heating element, which increases the variation CV (%) of the electric resistance value in the yarn axis direction.
A filamentous heating element with stable electric performance cannot be obtained. The draft rate can be controlled by changing the traveling speed of the core yarn, the supply speed of the thermoplastic resin, and the die hole diameter.

次に本発明の糸状発熱体の製造方法について一例を挙
げて説明する。
Next, a method for manufacturing the filamentous heating element of the present invention will be described with reference to an example.

第1図に本発明の製造方法として好ましく用いられる
実施態様の一例を示す。芯糸1は実質的に延伸されるこ
となく連続走行しながらダイ5に入り、一方、導電性粒
子を分散配合した熱可塑性導電性樹脂2はメルトエクス
トルーダー3で加熱溶融あるいは加熱流動化され計量ポ
ンプ4で連続計量される。計量された該導電性樹脂は芯
糸1とは別口からダイ5に入り、第2図に示したように
ダイ5の中のニップルを通過してきた芯糸上にドラフト
率が0.8〜3.0で溶融状態で融着して被覆される。導電性
樹脂で融着して被覆された芯糸は、ダイ5のダイ孔8か
ら出た後、オーバーフロー型の冷却水槽6で水冷され、
巻き取り機7で巻き取られる。
FIG. 1 shows an example of an embodiment preferably used as the manufacturing method of the present invention. The core yarn 1 enters the die 5 while running continuously without being substantially stretched, while the thermoplastic conductive resin 2 in which conductive particles are dispersed and blended is heated and melted or fluidized by the melt extruder 3 to be weighed. It is continuously measured by the pump 4. The measured conductive resin enters the die 5 from a different port from the core thread 1 and has a draft rate of 0.8 to 3.0 on the core thread that has passed through the nipple in the die 5 as shown in FIG. It is fused and coated in a molten state. The core yarn fused and coated with the conductive resin, after exiting from the die hole 8 of the die 5, is water-cooled in an overflow type cooling water tank 6,
It is wound by the winder 7.

かくして本発明の糸状発熱体は、可撓性に富み、耐屈
曲性、耐摩擦性等の機械的強度に優れ発熱線単位長さ当
りの抵抗値が均一であり、各種の発熱体製品の発熱素
材、特に低温発熱素材として有利に利用できる。
Thus, the filamentous heating element of the present invention is highly flexible, has excellent mechanical strength such as bending resistance and abrasion resistance, and has a uniform resistance value per unit length of the heating wire, so that the heat generation of various heating element products can be improved. It can be advantageously used as a material, especially as a low temperature heat generating material.

以下、実施例により本発明を具体的に説明する。なお
実施例中、得られた糸状発熱体の特性の測定は次の方法
で行なった。
Hereinafter, the present invention will be specifically described with reference to examples. In the examples, the characteristics of the obtained filamentous heating element were measured by the following methods.

A.電気抵抗値:テスターを用いて25cm当りの抵抗値をn
=40で測定し、その平均値とそのCV(%)=標準偏差/
平均値を求めた。
A. Electric resistance value: n is the resistance value per 25 cm using a tester
= 40, the average value and its CV (%) = standard deviation /
The average value was calculated.

B.糸径:糸横断面の顕微鏡観察により該横断面積をn=
10で測定し、その平均値に等しい面積を持つ円の直径で
表示した。
B. Yarn diameter: The cross-sectional area of the yarn cross section was n =
It was measured by 10 and displayed by the diameter of a circle having an area equal to the average value.

C.可撓性:糸状発熱体を手で折り曲げた際の柔軟性レベ
ルで表示した。
C. Flexibility: Displayed as the flexibility level when the filamentous heating element was bent by hand.

実施例1 第1図の装置において、ニップル孔径0.35mmφのニッ
プルを通って70m/分の速度で連続走行している融点260
℃のポリエステル双糸の紡績糸(470デニール)に各種
の熱可塑性樹脂60重量%と平均粒径40mμの導電性カー
ボンブラック40重量%とからなる熱可塑性導電性樹脂を
200〜230℃で加熱流動(溶融)し、計量ポンプで10g/分
の割合で連続計量し、ダイ孔径0.45mmのダイを通して溶
融押出し被覆した。結果を第1表に示す。
Example 1 In the apparatus of FIG. 1, melting point 260 continuously running at a speed of 70 m / min through a nipple having a nipple hole diameter of 0.35 mmφ.
Thermoplastic conductive resin consisting of 60% by weight of various thermoplastic resins and 40% by weight of conductive carbon black having an average particle diameter of 40 mμ is added to spun yarn (470 denier) of polyester twin yarn at ℃
It was heated and fluidized (melted) at 200 to 230 ° C., continuously weighed with a metering pump at a rate of 10 g / min, and melt-extruded and coated through a die having a die hole diameter of 0.45 mm. The results are shown in Table 1.

第1表から明らかなように、本発明の方法により熱可
塑性導電性樹脂が糸軸方向に均一に付着しその断面形状
も真円に近く微視的な付着むらも小さいため、糸状発熱
体の抵抗値のバラツキはきわめて小さいものとなった。
また、得られた糸状発熱体の柔軟性も使用した熱可塑性
樹脂の硬度には依存するが、金属ニクロム線に比較する
と、かなり良好なレベルであった。
As is clear from Table 1, the thermoplastic conductive resin is uniformly attached in the yarn axis direction by the method of the present invention, and its cross-sectional shape is close to a perfect circle, and microscopic unevenness of adhesion is small. The variation in resistance was extremely small.
Further, although the flexibility of the obtained filamentous heating element depends on the hardness of the thermoplastic resin used, it was at a considerably good level as compared with the metal nichrome wire.

第3図によって前記糸状発熱体を用いて得た布帛状の
発熱体について説明する。図の布帛状の発熱体12は、経
糸には銅線をすず鍍金した電極線13とポリエステル糸条
14とを用い、緯糸には前記したNo.1の糸状発熱体11と発
熱量調節用のポリエステル糸条15とを用い通常の織機に
よって布帛状発熱体とした。さらに絶縁被覆する目的で
布帛両面にポリエチレン溶融体をバインダーとしてポリ
エチレンフィルムをはり合せた。また、前記電極線13に
電流を通ずるリード線16をハンダ付け17によって接続し
た、この布帛状発熱体をベストの裏地に縫い付けたもの
にNi−Cd電池から電気を供給したところ、局所的な温度
ムラがなく、極めて柔軟であり、試着者に好評であっ
た。
A cloth-shaped heating element obtained by using the filament heating element will be described with reference to FIG. The cloth-like heating element 12 shown in the figure is composed of a copper wire tin-plated electrode wire 13 and a polyester thread.
No. 1 was used as the weft yarn, and the polyester yarn 15 for adjusting the calorific value was used as the weft yarn to obtain a cloth-like heat generating element by a normal loom. Further, for the purpose of insulating coating, a polyethylene film was laminated on both sides of the cloth using a polyethylene melt as a binder. Further, when a lead wire 16 that conducts a current to the electrode wire 13 is connected by soldering 17, this cloth-like heating element is sewn to the lining of the vest, and electricity is supplied from the Ni-Cd battery, a local There was no temperature unevenness and it was extremely flexible, and was well received by the person trying it on.

実施例2 実施例1のNo.1と同じ方法にて、芯糸の走行速度と熱
可塑性導電性樹脂の供給速度とダイ孔径を変更して糸状
発熱体を製造した。結果を第2表に示す。
Example 2 A filamentous heating element was manufactured in the same manner as in No. 1 of Example 1 by changing the running speed of the core yarn, the feeding speed of the thermoplastic conductive resin and the die hole diameter. The results are shown in Table 2.

第2表から明らかなように、ドラフト率が本発明の範
囲であるNo.6〜8は離心率と重量バラツキCV(%)が本
発明の範囲にあり、抵抗値バラツキCV(%)が5%以下
とニクロム線や市販コードヒータ並みの安定な性能を示
した。
As is clear from Table 2, Nos. 6 to 8 in which the draft ratio is within the range of the present invention have eccentricity and weight variation CV (%) within the range of the present invention, and resistance value variation CV (%) is 5 % Or less, showing stable performance equivalent to that of a nichrome wire or a commercial cord heater.

No.5は、ドラフト率が小さすぎたため、得られた糸状
発熱体表面に凹凸を生じ、離心率にバラツキが大きく、
重量バラツキCV(%)も非常に大きくなった。これによ
り抵抗値バラツキCV(%)大きかった。
In No. 5, the draft rate was too small, so unevenness was generated on the surface of the obtained filamentous heating element, and the eccentricity varied greatly,
The weight variation CV (%) also became very large. As a result, the resistance variation CV (%) was large.

又、No.9はドラフト率が大きかったため、抵抗値バラ
ツキCV(%)が大きかった。
In addition, since No. 9 had a large draft rate, the resistance value variation CV (%) was large.

[発明の効果] 本発明は、導電層を溶融被覆し、かつ、芯糸に融着さ
せて形成したことにより、可撓性に富み、かつ長さあた
りの抵抗値のバラツキが小さく、長期間安定して使用で
き、低温発熱体として好ましく使用される糸状の発熱体
であり、これによって、製編織可能で、衣料分野、建装
分野、農業、水産、土木分野など各種の用途に適用でき
る発熱体を提供し得たものである。無論、自動車、電車
などの車両や航空機、船舶、宇宙ロケットなどあらゆる
乗物にも好適に適用される。
[Advantages of the Invention] The present invention is formed by melt-coating a conductive layer and fusion-bonding it to a core yarn, so that it is highly flexible and has a small variation in resistance value per length for a long period of time. It is a filamentous heating element that can be used stably and is preferably used as a low-temperature heating element. With this, it is possible to knit and weave, and it can be applied to various applications such as clothing field, construction field, agriculture, fisheries, civil engineering field. It was the one that provided the body. Of course, it can be suitably applied to all vehicles such as vehicles such as automobiles and trains, airplanes, ships, and space rockets.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の糸状発熱体の製造装置の一例であり、
第2図はその中のダイの断面図を示す。また、第3図は
糸状発熱体を製織して得た布帛状発熱体の説明図であ
る。 1:芯糸 2:熱可塑性導電性樹脂 3:メルトエクストルーダー 4:計量ポンプ 5:ダイ 6:冷却水槽 7:巻き取り機 8:ダイ孔 9:ニップル 10:ニップル孔
FIG. 1 shows an example of a filamentous heating element manufacturing apparatus of the present invention.
FIG. 2 shows a sectional view of the die therein. Further, FIG. 3 is an explanatory view of a cloth-like heating element obtained by weaving a filament heating element. 1: Core yarn 2: Thermoplastic conductive resin 3: Melt extruder 4: Metering pump 5: Die 6: Cooling water tank 7: Winder 8: Die hole 9: Nipple 10: Nipple hole

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芯糸の周囲に熱可塑性樹脂と該樹脂中に分
散配合された導電性粒子とから成る溶融被覆導電層を融
着させたものであり、−下記式に定義される離心率eが
0.7以下であり、かつ糸軸方向の重量バラツキCVが2.0%
以下であることを特徴とする糸状発熱体。
1. A melt-coated conductive layer comprising a thermoplastic resin and conductive particles dispersed and blended in the resin, which is fused around a core yarn, and the eccentricity defined by the following formula: e is
0.7 or less, and weight variation CV in the yarn axis direction is 2.0%
A filamentous heating element characterized in that:
【請求項2】熱可塑性樹脂がJIS K6301規定のA硬度で
95以下の熱可塑性エラストマーである特許請求の範囲第
1項記載の糸状発熱体。
2. The thermoplastic resin has an A hardness according to JIS K6301.
The filamentous heating element according to claim 1, which is a thermoplastic elastomer of 95 or less.
【請求項3】熱可塑性樹脂と該樹脂中に分散配合された
導電性粒子とから成る熱可塑性導電性樹脂を加熱流動下
で溶融計量し、連続走行している芯糸の周囲に、下記式
で定義されるドラフト率が0.8〜3.0となるように押し出
し被覆した後、冷却固化することにより、導電性粒子を
分散配合した導電性層を該芯糸上に融着させて連続形成
させることを特徴とする糸状発熱体の製造方法。
3. A thermoplastic conductive resin comprising a thermoplastic resin and conductive particles dispersed and blended in the resin is melt-measured under heating and flowing, and the following formula is provided around a continuously running core yarn. After extrusion coating so that the draft rate defined by the above is 0.8 to 3.0, by cooling and solidifying, the conductive layer in which the conductive particles are dispersed and blended is fused and continuously formed on the core yarn. A feature of the present invention is a method for producing a filamentous heating element.
【請求項4】熱可塑性樹脂がJIS K6301規定のA硬度で
95以下の熱可塑性エラストマーである特許請求の範囲第
3項記載の糸状発熱体の製造方法。
4. The thermoplastic resin has an A hardness according to JIS K6301.
The method for producing a filamentous heating element according to claim 3, which is a thermoplastic elastomer of 95 or less.
【請求項5】ドラフト率が0.9〜1.8である特許請求の範
囲第3項記載の糸状発熱体の製造方法。
5. The method for producing a filamentous heating element according to claim 3, wherein the draft rate is 0.9 to 1.8.
JP62100420A 1987-04-23 1987-04-23 Filiform heating element and manufacturing method thereof Expired - Lifetime JP2541215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100420A JP2541215B2 (en) 1987-04-23 1987-04-23 Filiform heating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100420A JP2541215B2 (en) 1987-04-23 1987-04-23 Filiform heating element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63270828A JPS63270828A (en) 1988-11-08
JP2541215B2 true JP2541215B2 (en) 1996-10-09

Family

ID=14273485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100420A Expired - Lifetime JP2541215B2 (en) 1987-04-23 1987-04-23 Filiform heating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2541215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197392A (en) * 1987-10-08 1989-04-14 Matsushita Electric Works Ltd Cordlike heater
BRPI0711130B1 (en) * 2006-05-01 2017-03-21 Nippon Sheet Glass Co Ltd method for producing a reinforcement cord as well as reinforcement cord and product containing a reinforcement cord

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811446U (en) * 1971-06-18 1973-02-08

Also Published As

Publication number Publication date
JPS63270828A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US4983814A (en) Fibrous heating element
US6720539B2 (en) Woven thermal textile
US3958066A (en) Conductive synthetic fibers
US4312260A (en) Flexible cable
US4756969A (en) Highly electrically conductive filament and a process for preparation thereof
US7204015B2 (en) Electric heating cloth method
US4207376A (en) Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
JPS59112018A (en) Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure
JP2891476B2 (en) Conductive yarn
JPH0370355B2 (en)
JP5615656B2 (en) Planar heating element
JPS63270874A (en) Production of yarn like heat generator
JPS63270831A (en) Flexible yarn like heat generator
JPS62100969A (en) String heater element
JPS63270865A (en) Production of yarn like far infrared ray emitting heat generator
JPS63270830A (en) Yarn-shaped heat generator
JPS63270876A (en) Yarn like heat generator
JP4774174B2 (en) Cord-like resistor and seat heater using the same
JPS63270869A (en) Production of yarn like heat generator
JPS62100971A (en) String heater element and manufacture of the same
JP2834256B2 (en) Conductive composite fiber
JPS63270868A (en) Production of yarn like heat generator
CN217736553U (en) Self-limiting temperature water hose
JPS6366889A (en) Filament heater